JPS6046781A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPS6046781A
JPS6046781A JP58154651A JP15465183A JPS6046781A JP S6046781 A JPS6046781 A JP S6046781A JP 58154651 A JP58154651 A JP 58154651A JP 15465183 A JP15465183 A JP 15465183A JP S6046781 A JPS6046781 A JP S6046781A
Authority
JP
Japan
Prior art keywords
vibrating body
vibration
wavelength
wave
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58154651A
Other languages
Japanese (ja)
Other versions
JPH0515153B2 (en
Inventor
Takayuki Tsukimoto
貴之 月本
Ichiro Okumura
一郎 奥村
Kazuhiro Izukawa
和弘 伊豆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58154651A priority Critical patent/JPS6046781A/en
Publication of JPS6046781A publication Critical patent/JPS6046781A/en
Publication of JPH0515153B2 publication Critical patent/JPH0515153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enhance the drive efficiency of a vibration wave motor by setting the number of waves of traveling vibration wave produced at a vibrator to the prescribed number. CONSTITUTION:Electrostrictive elements 1a1, 1a2 are aligned in the width of 1/2 wavelength on a vibrator of circumference. Electrostrictive elements 1b1, 1b2 are also aligned in the width of 1/2 wavelength. The elements 1a1, 1a2 and 1b1, 1b2 are displaced by 1/4 wavelength. When an AC voltage is applied to the elements 1a1, 1a2 and 1b1, 1b2 arranged in this manner, standing waves are generated, and combined to become a traveling wave. At this time, the number of the waves of the traveling wave becomes 3 to one circumference of the vibrator. In other words, the tops of the waves of the vibrator are driven while supporting the moving unit at three points.

Description

【発明の詳細な説明】 本発明は進行性振動波により駆動する振動波モータの振
動波の波数に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the wave number of vibration waves of a vibration wave motor driven by progressive vibration waves.

振動波モータは例えば特開昭52−29192号公報に
も開示されているように、電歪素子に交流、脈流等の周
波電圧を印加したときに生ずる振動連動を回転連動又は
−次元運動に変換するものである。
As disclosed in JP-A-52-29192, for example, a vibration wave motor converts vibration interlocking that occurs when a frequency voltage such as alternating current or pulsating current is applied to an electrostrictive element into rotational interlocking or -dimensional movement. It is something that converts.

従来の電磁モータに比べて巻線を必要としないため、構
造が簡単で小型になり、低速回転時にも高トルクか得ら
れると共に慣性モーメントか少ないという利点がある。
Compared to conventional electromagnetic motors, they do not require windings, so they have a simpler and more compact structure, and have the advantage of being able to provide high torque even when rotating at low speeds, as well as having a small moment of inertia.

そのため、最近注目されている。Therefore, it has been attracting attention recently.

」1記公報等で知られている振動波モータは振動運動を
回転連動等に変換するにあたり、振動体に生じた定在振
動波で、振動体と接触するロータ筆の移動体を一方向に
摩擦駆動するもので、振動の往運動時には振動体と移動
体が摩擦接触し、復運動時には離れるようになっている
。そのため振動体と移動体を士微小範囲で接触する構造
、即ち点もり、 <は線接触に近い構造でなければなら
ず、いきおいj¥擦駆動効率の悪いものとなってしまう
The vibration wave motor known from Publication No. 1 uses standing vibration waves generated in the vibrating body to convert the vibrating motion into rotational movement, etc., and moves the moving body of the rotor brush in one direction in contact with the vibrating body. It is friction-driven, and the vibrating body and moving body come into frictional contact during forward motion of vibration, and separate during backward motion. Therefore, the structure must be such that the vibrating body and the moving body are in contact within a very small range, that is, a structure close to a line contact, resulting in poor drive efficiency.

最近この点を改良した振動波モータで、振動体に生ずる
進行性振動波によって移動体を摩擦駆動するものがある
Recently, there are vibration wave motors that have been improved in this respect and drive a moving body by friction using progressive vibration waves generated in the vibrating body.

第1図にはその要部の概略図が示しである。FIG. 1 shows a schematic diagram of its main parts.

同図で1は電歪素子で例えばPZT (チタン酸ジルコ
ン酸鉛)、21+振動体で弾性物質からなり、電歪素子
1を接着しである。振動体2は電歪素子lと共にステー
タ(不図示)側に保持されている。3は移動体で振動体
2に対し抑圧接触されていてロータを形成する。
In the figure, 1 is an electrostrictive element made of, for example, PZT (lead zirconate titanate), and 21+ a vibrating body made of an elastic material, to which the electrostrictive element 1 is bonded. The vibrating body 2 and the electrostrictive element 1 are held on the stator (not shown) side. Reference numeral 3 denotes a moving body which is in pressure contact with the vibrating body 2 and forms a rotor.

第2図は電歪素子1と振動体2の関係を示す側面図であ
る。電歪素子1は複数個の素子1al ・1a2・1a
3II1111及びlb、−1b2−1b3・・・が接
着されておりそのうちの一群の電歪素子1al ・1a
2 ・1a3 Φ・・に対し、他の群の電歪素子1b、
φlb、・1b3・・・は振動波の波長入の%波長分だ
けずれて配置される。
FIG. 2 is a side view showing the relationship between the electrostrictive element 1 and the vibrating body 2. The electrostrictive element 1 includes a plurality of elements 1al, 1a2, and 1a.
3II1111 and lb, -1b2-1b3... are glued together, and one group of electrostrictive elements 1al and 1a
2 ・1a3 Φ..., the electrostrictive elements 1b of other groups,
φlb, 1b3, . . . are arranged shifted by % wavelength of the vibration wave.

−・群内での各電歪素子1a、 ・la7 ・1a3 
・・・は展波長のピッチで、相隣り合うものの分極極性
が逆になるように配置されている。図中の+φ−は極性
を示している。もう−力の群内での各電歪素子1b、 
・lb2・1b3・・・も同じく局波長のピッチで、相
隣り合うものは逆極性である。これら電歪素子が並へら
れた大きさだけの大きさがある一つの電歪素子にして、
それを前記のピッチに分極処理してもよい。゛電歪素子
の分極両面には電圧を印加するための電極が蒸着、書込
等により形成される。
-・Each electrostrictive element 1a in the group, ・la7 ・1a3
. . . is the pitch of the extended wavelength, and the polarization polarities of adjacent ones are opposite to each other. +φ- in the figure indicates polarity. Each electrostrictive element 1b within the group of forces,
・lb2, 1b3... also have the same pitch as the station wavelength, and adjacent ones have opposite polarities. As a single electrostrictive element with a size equal to the size of these electrostrictive elements arranged side by side,
It may be polarized to the pitch described above. Electrodes for applying voltage are formed on both polarized surfaces of the electrostrictive element by vapor deposition, writing, or the like.

このような構成の振動波モータで−っの群内の電歪素子
1a、ela2 ll1a3*1a4118@には■。
In the vibration wave motor having such a configuration, the electrostrictive elements 1a and ela2 ll1a3*1a4118@ in the group -1 have ■.

Sinωtの交流電圧を印加する。もう−・力の群の電
歪素子lb工・lb2・lb3・lb4 ・・・には■
oCosωtの交流電ノ]ミを印加する。従って各電歪
素子は相隣り合うものどうし分極方向に対し180°位
相がずれ、一つの群どうし90°位相のずれた交流電圧
が印加されて伸jlii振動をする。この振動が伝えら
れて振動体2は電歪素−f1の配置ピッチに従って曲げ
振動をする。振動体2が一つおきの電歪素子の位置で出
っ張ると、他の一つおきの電歪素子の位置か引っ込む。
An AC voltage of Sinωt is applied. Electrostrictive element lb work of force group, lb2, lb3, lb4 ... is ■
An alternating current voltage of oCosωt is applied. Therefore, each electrostrictive element has a phase shift of 180 degrees with respect to the polarization direction between adjacent elements, and alternating current voltages with a phase shift of 90 degrees between one group are applied, causing stretching vibration. This vibration is transmitted, and the vibrating body 2 bends and vibrates according to the arrangement pitch of the electrostrictive elements -f1. When the vibrating body 2 protrudes at the position of every other electrostrictive element, it retracts at the position of every other electrostrictive element.

−・力、前記の如く電歪素子の一群は他の一群に対し、
賄波長ずれた位置にあり曲げ振動の位相ト が90°ずれているため振動波が合成され進行する。交
流電圧が印加されている間、次々と振動が励−起されて
、進行性曲げ振動波となって振動体2を伝わってゆく。
−・Force, as mentioned above, one group of electrostrictive elements is
Since they are located at different wavelengths and the phase of the bending vibration is shifted by 90 degrees, the vibration waves are synthesized and propagate. While the alternating current voltage is applied, vibrations are excited one after another and propagate through the vibrating body 2 as progressive bending vibration waves.

このときの波の進行状態が第3図(a) (b) (C
) (d)に示しである。いま進行性曲げ振動波が矢示
X方向に進むとする。Oは静止状態に於ける振動体の中
心面で、振動状態では鎖線6の状態となり、この中it
面6は曲げによる応力が拮抗している。中立面6と直交
する断面7についてみると、これら−面の交線5では応
力がかからず上下振動しているだけである。同時に断面
7は交線5を中心として左右の振り子振動している。同
図(a)に示す状態では断面7と振動体2の移動体側l
の表面との支線」−の点Pは左右振動の右死点となって
おり上方向連動だけしている。振り子振動は交線5が波
の正側では(中心面Oの上側にあるとき)左方向(波の
進行と逆方向)の応力が加わり、波の負側(同じく下側
にあるとき)右方向の応力が加わる。即ち同図 (a)
で交線5と断面7が前者のときの状7Lで点Pは応力F
が加わり交線5と断面7″か後者のときの状態で点Pは
応力Fが加わる。波が進’IjL、 (b)に示すよう
に波の正側に交線5がくると点Pは左方向の連動をする
と同時に上方向の運動をする。 (c、)で点Pは上下
振動の」二死点で左方向の運動だけする。 (d)では
左方向の運動と下方向運動をする。さらに波が進行し、
右方向と下方向の連動、右方向と上方向の運動を経て(
a)の状ffHに戻る。この一連の運動を合成すると点
Pは回転楕円運動をしている。同図(C)に示すように
点Pが移動体3′と接する線では点Pの運動によって移
動体3かX方向に摩擦駆動される。
The progress state of the wave at this time is shown in Figure 3 (a) (b) (C
) It is shown in (d). Assume that the progressive bending vibration wave now advances in the direction of arrow X. O is the central plane of the vibrating body in the resting state, and in the vibrating state it is in the state shown by the chain line 6, in which it
The stress due to bending is balanced on the surface 6. Looking at the cross section 7 perpendicular to the neutral plane 6, no stress is applied at the intersection line 5 of these planes, and it only vibrates vertically. At the same time, the cross section 7 is pendulum vibrating left and right about the intersection line 5. In the state shown in Figure (a), the cross section 7 and the movable body side l of the vibrating body 2
The point P of the branch line with the surface of ``-'' is the right dead center of the left-right vibration, and is only interlocked in the upward direction. In pendulum vibration, when the intersection line 5 is on the positive side of the wave (above the center plane O), stress is applied in the left direction (opposite to the direction of the wave), and on the negative side of the wave (when it is also on the lower side), stress is applied to the right direction. directional stress is applied. That is, the same figure (a)
When the intersection line 5 and the cross section 7 are the former, the point P is the stress F in the state 7L.
is added and the intersection line 5 and cross section 7'', or in the latter case, stress F is applied to the point P.The wave advances 'IjL, and as shown in (b), when the intersection line 5 comes to the positive side of the wave, the point P moves in the left direction and moves upward at the same time. In (c,), point P moves only in the left direction at the second dead center of vertical vibration. In (d), the robot moves leftward and downward. The waves progress further,
After interlocking rightward and downward movements, rightward and upward movements (
Return to state ffH in a). When this series of motions is combined, point P is moving in a spheroidal motion. As shown in FIG. 2C, on a line where point P touches the moving body 3', the movement of the point P causes the moving body 3 to be frictionally driven in the X direction.

このようにして駆動される振動波モータで、未だ充分な
駆動効率が得られるに至っていない。本発明者らはその
原因を探るため種々の実゛験をして考察した。その結果
、原因の−・つとして、振動体の波の頂点か移動体に多
点で接触していることにあることを解明した。従来の振
動波モータでは、振動体に対する電歪素子の配列ピンチ
は」−記のようになされているため、波長は所期のよう
になる。しかし、その波長の波数が振動体にいくつ生ず
るかは設′A!シていない。多数の波か振動体に生ビ、
その波の頂点が移動体に多点で接触することになる。と
ころが、電歪素子や振動体の材質の不均一により、波の
振幅も一定ではない。そのため、移動体と接触しない波
の頂点かあり、余波が駆動に関与しない。従って、効率
が悪くなる。
Vibration wave motors driven in this manner have not yet achieved sufficient drive efficiency. The present inventors conducted various experiments and considered the cause of the problem. As a result, it was determined that one of the causes was that the wave peaks of the vibrating body were in contact with the moving body at multiple points. In a conventional vibration wave motor, the arrangement of the electrostrictive element with respect to the vibrating body is arranged as shown in the figure below, so the wavelength becomes as expected. However, how many wave numbers of that wavelength occur in the vibrating body is determined by A! I haven't seen it. A large number of waves or vibrating bodies,
The peaks of the waves come into contact with the moving body at multiple points. However, due to non-uniformity in the materials of the electrostrictive element and the vibrating body, the amplitude of the waves is also not constant. Therefore, there is a peak of the wave that does not come into contact with the moving body, and the aftermath does not affect the drive. Therefore, efficiency deteriorates.

全波を移動体に接触させるために移動体に振動体を押し
つけても、効率は向」−ニしない。第4図に示すように
、波の頂点Aと若干ずれた点Bとでは、回転楕円運動の
X′方向成分の速度が異なるからである。多くの波を移
動体に均一に接触させるために゛電歪素子・振動体・移
動体の精度を向」−させることは困難である。特に、波
長が短かくて振幅の小さい波のときは一層困難である。
Even if a vibrating body is pressed against the moving body in order to bring the full wave into contact with the moving body, the efficiency will not improve. This is because, as shown in FIG. 4, the velocity of the X'-direction component of the spheroidal motion is different between the peak A of the wave and the slightly shifted point B. It is difficult to improve the accuracy of the electrostrictive element, vibrating body, and moving body in order to bring many waves into uniform contact with the moving body. This is especially difficult when the wavelength is short and the amplitude is small.

本発明は−に記のような事実に鑑みなされたもので、振
動体の構造を改良することにより、駆動効率の高い振動
波モータを提供することを目的とするものである。
The present invention has been made in view of the above-mentioned facts, and it is an object of the present invention to provide a vibration wave motor with high drive efficiency by improving the structure of the vibrator.

この目的を達成するため本発明は、電歪素子に周波電圧
を印加し、該電歪素子に接合した振動体に生ずる進行性
振動波によって、該振動体と接合する移動体を駆動する
振動波モータに於て、前記振動体に生ずる進行性振動波
の波数が3であることを特徴とする振動波モータである
In order to achieve this object, the present invention applies a frequency voltage to an electrostrictive element, and uses a progressive vibration wave generated in a vibrating body connected to the electrostrictive element to generate a vibration wave that drives a moving body connected to the vibrating body. The vibration wave motor is characterized in that a progressive vibration wave generated in the vibrating body has a wave number of 3.

以下図面に示された実施例を詳細に説明し上記本発明の
構成を明らかにする。
The embodiments shown in the drawings will be described in detail below to clarify the structure of the present invention.

第5図は本発明を適用した振動波°モータの電歪素子の
配列の実施例を示したものである。円周の振動体2(本
図に於て省略)に、電歪素子1a。
FIG. 5 shows an embodiment of the arrangement of electrostrictive elements of a vibration wave motor to which the present invention is applied. An electrostrictive element 1a is provided on a circumferential vibrating body 2 (omitted in this figure).

と1a2とが各′々坏波長巾で並べられる。電歪素子1
b、とl−b、も各/J ’f波長+1]で並へられる
and 1a2 are arranged with their respective wavelength widths. Electrostrictive element 1
b, and l-b are also arranged by each /J'f wavelength + 1].

電歪素子1al ・la2と電歪素子ib、 ・1b2
とは夫々属波長分だけずれて配置される。従って、振動
体2が電歪素子1al ・la2及び電歪素子lb、・
1b2に接していない、一方の余地は高波長、もう一方
の余地は374波長となる。
Electrostrictive elements 1al and la2 and electrostrictive elements ib and 1b2
and are arranged shifted by the genus wavelength, respectively. Therefore, the vibrating body 2 includes electrostrictive elements 1al and la2 and electrostrictive elements lb, and
One margin that is not in contact with 1b2 is a high wavelength, and the other margin is a 374 wavelength.

このように配列された電歪素子に前述のように交流電圧
を印加すると、電歪素子1al ・la2側には、 Y = Yo S i n 2 π(t/T)拳5in
2π (x/入) 電歪素子1b、・1b2側には。
When an AC voltage is applied to the electrostrictive elements arranged in this way as described above, on the electrostrictive elements 1al and la2 side, Y = Yo Sin 2 π (t/T) fist 5 inch
2π (x/in) on the electrostrictive elements 1b, 1b2 side.

Y=YoS i n (2π(t/T) −q/2)・
S i n (2π(x/入−tr/2)(Tは周期、
tは時刻、入は波長、Xは周1−の位置、Yoは振幅)
なる定在波が発生する。このニ一つの定在波が次々と発
生し、合成されて進行波になる。このとき、進行波の波
数は振動体2の一周に対し3になる。即ち、振動体2の
波の頂点は移動体3を3点で支持しながら駆動する。
Y=YoSi n (2π(t/T) −q/2)・
S i n (2π(x/in-tr/2) (T is period,
t is time, input is wavelength, X is position of circumference 1-, Yo is amplitude)
A standing wave is generated. These two standing waves are generated one after another and are combined to form a traveling wave. At this time, the wave number of the traveling wave is 3 per revolution of the vibrating body 2. That is, the peak of the wave of the vibrating body 2 drives the movable body 3 while supporting it at three points.

従って、振動体2の波の頂点は移動体3との間で隙間が
空くことがなくなり、全ての波が移動体3を駆動するこ
とになり、駆動効率が向上する。
Therefore, there is no gap between the peak of the wave of the vibrating body 2 and the movable body 3, and all the waves drive the movable body 3, improving driving efficiency.

波数が少ない(波長が長い)から、その分振幅か大きく
なる。そのため、電歪素子・振動体・移動体の面精度を
従来のものほど良くする必要がなく、筒単に製作できる
。振動波は振動体の周方向だけでなく、巾方向にも起る
ものであり、IJ力方向振動波は移動体の駆動に悪影響
を及ぼす。振動体の11方向の長さに比べ波長が長くな
るから、幅方向の振動は起りにくくなる。従って、悪影
響を及ぼす振動波の発生を抑えることができる。
Since the wave number is small (the wavelength is long), the amplitude will be correspondingly large. Therefore, it is not necessary to improve the surface precision of the electrostrictive element, vibrating body, and moving body as much as in the conventional case, and the structure can be manufactured simply as a cylinder. Vibration waves occur not only in the circumferential direction of the vibrating body but also in the width direction, and the IJ force direction vibration waves adversely affect the drive of the moving body. Since the wavelength is longer than the length of the vibrating body in the 11 directions, vibrations in the width direction are less likely to occur. Therefore, generation of vibration waves that have an adverse effect can be suppressed.

第6図は本発明を適用した振動波モータの別な実施例の
′電歪素子の配列を示したものである。この例では、2
つの電歪素子1a1と1a7とが各々展波長[IJで並
べられ、3つの電歪素子1btとtb2とtb3とが各
々高波長rlJで並べられる。
FIG. 6 shows an arrangement of electrostrictive elements in another embodiment of a vibration wave motor to which the present invention is applied. In this example, 2
The two electrostrictive elements 1a1 and 1a7 are arranged at the extended wavelength [IJ, respectively, and the three electrostrictive elements 1bt, tb2, and tb3 are arranged at the high wavelength rlJ, respectively.

電歪素子1a1 ・1a2と電歪素子1b、・1b、・
1t+3とは夫々%波長分だけずれて配置される。従っ
て振動′体2が電歪素子1a+*la2及び電歪素子l
b1 ・tb、、争ib3に接していない一力の余地が
高波長、もう一方の余地も高波長となる。振動体に発生
する波の数は3となる。
Electrostrictive elements 1a1 and 1a2 and electrostrictive elements 1b, 1b, and
1t+3 and are arranged respectively shifted by % wavelength. Therefore, the vibrating body 2 is the electrostrictive element 1a+*la2 and the electrostrictive element l.
b1 ・tb,, the one side that is not in contact with ib3 has a high wavelength, and the other side has a high wavelength as well. The number of waves generated in the vibrating body is three.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は4h4動波モータの主要部の概略図、第2図か
ら第4図は振動波モータの駆動原理を説明する図、第5
図は本発明を適用した振動波モータの電歪素子の配列の
実施例を示した図、第6図は別な実施例の同」1図であ
る。 2は振動体、3は移動体、la、・la2及びlbl 
・tb2は電歪素子、入は波長である。
Figure 1 is a schematic diagram of the main parts of a 4h4 dynamic wave motor, Figures 2 to 4 are diagrams explaining the driving principle of a vibration wave motor, and Figure 5
The figure shows an embodiment of the arrangement of electrostrictive elements of a vibration wave motor to which the present invention is applied, and FIG. 6 is a diagram illustrating another embodiment of the same. 2 is a vibrating body, 3 is a moving body, la, ・la2 and lbl
・tb2 is an electrostrictive element, and tb2 is a wavelength.

Claims (1)

【特許請求の範囲】[Claims] (1)電歪素子に周波電圧を印加し、該電歪素子に接合
した振動体に生ずる進行性振動波によって、該振動体と
接合する移動体を駆動する振動波モータに於て、 +iij記振動体に生ずる進行性振動波の波数が3であ
ることを特徴とする振動波モータ。
(1) In a vibration wave motor that applies a frequency voltage to an electrostrictive element and drives a moving body connected to the vibrating body by progressive vibration waves generated in the vibrating body connected to the electrostrictive element, A vibration wave motor characterized in that a progressive vibration wave generated in a vibrating body has a wave number of 3.
JP58154651A 1983-08-24 1983-08-24 Vibration wave motor Granted JPS6046781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154651A JPS6046781A (en) 1983-08-24 1983-08-24 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154651A JPS6046781A (en) 1983-08-24 1983-08-24 Vibration wave motor

Publications (2)

Publication Number Publication Date
JPS6046781A true JPS6046781A (en) 1985-03-13
JPH0515153B2 JPH0515153B2 (en) 1993-02-26

Family

ID=15588889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154651A Granted JPS6046781A (en) 1983-08-24 1983-08-24 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPS6046781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294102A2 (en) * 1987-06-04 1988-12-07 Seiko Instruments Inc. Travelling-wave motor
US5155407A (en) * 1989-12-08 1992-10-13 Canon Kabushiki Kaisha Vibration driven apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148682A (en) * 1982-02-25 1983-09-03 Toshio Sashita Motor device using supersonic vibration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148682A (en) * 1982-02-25 1983-09-03 Toshio Sashita Motor device using supersonic vibration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294102A2 (en) * 1987-06-04 1988-12-07 Seiko Instruments Inc. Travelling-wave motor
US5155407A (en) * 1989-12-08 1992-10-13 Canon Kabushiki Kaisha Vibration driven apparatus
EP0598710A2 (en) * 1989-12-08 1994-05-25 Canon Kabushiki Kaisha A vibration driven apparatus
EP0598710A3 (en) * 1989-12-08 1994-11-02 Canon Kk A vibration driven apparatus.

Also Published As

Publication number Publication date
JPH0515153B2 (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US4504760A (en) Piezoelectrically driven vibration wave motor
US4587452A (en) Vibration wave motor having a vibrator of non-uniform elastic modulus
JPH05949B2 (en)
JPS6013481A (en) Vibration wave motor
JP2722211B2 (en) Ultrasonic drive
JPS60170474A (en) Vibration wave motor
JPS6311070A (en) Piezoelectric actuator
JPS6046781A (en) Vibration wave motor
US4779019A (en) Electrostriction motor
JPS59185179A (en) Supersonic motor
JPS6051477A (en) Piezoelectric motor
JPS60183981A (en) Supersonic wave motor
JPH05948B2 (en)
JPS60226782A (en) Supersonic wave motor
JPS60226781A (en) Supersonic wave motor
JPS6339473A (en) Ultrasonic linear motor
JPS60160386A (en) Vibration wave motor
JPS60207468A (en) Supersonic motor
JPS63268476A (en) Oscillatory wave motor
JPS60167686A (en) Vibration wave motor
JPS60207466A (en) Supersonic motor
Hua et al. Precise impact drive mechanism based on asymmetrically clamped piezoelectric actuator
JP2710803B2 (en) Piezo actuator
JPS6062879A (en) Vibration wave motor
JPH076717Y2 (en) Ultrasonic linear motor