JPS6046558A - Exposing device - Google Patents

Exposing device

Info

Publication number
JPS6046558A
JPS6046558A JP58154058A JP15405883A JPS6046558A JP S6046558 A JPS6046558 A JP S6046558A JP 58154058 A JP58154058 A JP 58154058A JP 15405883 A JP15405883 A JP 15405883A JP S6046558 A JPS6046558 A JP S6046558A
Authority
JP
Japan
Prior art keywords
foreign matter
light
reticle
illumination
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58154058A
Other languages
Japanese (ja)
Other versions
JPH0563931B2 (en
Inventor
Masataka Shiba
正孝 芝
Mitsuyoshi Koizumi
小泉 光義
Yukio Uto
幸雄 宇都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58154058A priority Critical patent/JPS6046558A/en
Publication of JPS6046558A publication Critical patent/JPS6046558A/en
Publication of JPH0563931B2 publication Critical patent/JPH0563931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To detect extremely small foreign matter on a preventive film at an exposure position by lighting the foreign matter sticking preventive film mounted on a reticle slantingly, and seeing scattered light from just beside through a window to which no regular reflection light is incident from the film. CONSTITUTION:The foreign matter sticking preventing film 10 mounted on the reticle 1 set at the exposure position is lighted uniformly and slantingly by using the illumination system which consists of a fluorescent lamp 11 and a cylindrical lens 12. If there is foreign matter 6 present on the preventive film 10, scattered light 13 is generated. This scattered light 13 is observed from just beside through the glass window 14 which is provided at right angles to the illumination light so that no regular refection light is incident. If there is the foreign matter 6, there is a glitter, so even foreign matter of several microns is detected. Consequently, the extremely small foreign matter on the preventive film 10 set at the exposure position is detected easily.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、特に半導体の製造に使用される、細小投影式
アライナ等の露光装置において、露光位置にセットした
状態のレチクルやマスクに装着された異物付着防止膜の
微小異物を検出するに好適な露光装置に関する。 〔発明の背景〕 半導体夷造に用いられる縮小投影式アライナに、第1図
のように、レチクル1に紫外線2を照射し、レチクル上
のノfターン3を縮小レンズ4を介し、ウェハ5上に縮
小投影し、ステップ・アンド−リピート駆動しながら、
ウェハ全面の露光をするものである。レチクル面上に異
物6が存在すると、ウェハ上の/4’ターン7のすべて
に異物の像8が転写されるため、全チップが不良となる
場合がある。 したがって、レチクル面上の異物検査に、歩留り向上の
上で欠かせない。従−米、レチクル面上の異物検fは、
実際に微光されたウェハのノ9ターンを顕微鏡を用いて
、目視横置することにより行なっていたが、一枚のウニ
への検査に1時間近くもかかり、作業者にとって、精神
的にも肉体的にも、大きな負担となっていた。 レチクル自動交換機能を持った縮小投影式アライナでは
、レチクル収納部と露光位置をつなぐ搬送途中に、レー
ザ走査式のレチクル面上自動異物検査装置が備えられて
いるが、同じ1/チクルを用いて長期間露光を行なう場
合でも、ウェハの一部ロット毎にレチクルを取り出し、
搬送途中の検査装置に戻して検査を行なう必要があるた
め、搬送時での異物付着の可能性や、検査毎にレチクル
・アライメント’にやり直す必要がある等の欠点があっ
た。また、この種の検査装置は、装置自体が複雑なため
、露光位置に設置しようとしても不可能であり、また異
物付着防止膜全装着
[Field of Application of the Invention] The present invention is particularly applicable to an exposure apparatus such as a fine projection aligner used in the manufacture of semiconductors, in which fine foreign matter is removed from a foreign matter adhesion prevention film attached to a reticle or mask set at an exposure position. The present invention relates to an exposure apparatus suitable for detecting. [Background of the Invention] As shown in FIG. 1, a reduction projection type aligner used for semiconductor fabrication is used to irradiate a reticle 1 with ultraviolet rays 2, and to apply nof-turns 3 on the reticle through a reduction lens 4 onto a wafer 5. While projecting the image in a reduced size and driving it step-and-repeat,
This exposes the entire wafer. If a foreign object 6 exists on the reticle surface, the image 8 of the foreign object will be transferred to all /4' turns 7 on the wafer, which may result in all chips being defective. Therefore, it is essential for improving yield when inspecting foreign objects on the reticle surface. Detection of foreign matter on the reticle surface is as follows:
In practice, nine turns of a wafer under dim light were visually inspected using a microscope and placed horizontally, but it took nearly an hour to inspect a single wafer, which was mentally stressful for the worker. Physically, it was a huge burden. A reduction projection aligner with an automatic reticle exchange function is equipped with a laser scanning automatic particle inspection device on the reticle surface during transportation between the reticle storage section and the exposure position. Even when performing long-term exposure, the reticle is removed from each lot of wafers.
Since it is necessary to return the reticle to the inspection device during transportation for inspection, there are drawbacks such as the possibility of foreign matter adhering during transportation and the need to redo reticle alignment for each inspection. In addition, this type of inspection equipment is complicated, so it is impossible to install it at the exposure position, and it is impossible to install it at the exposure position, and it is impossible to install it at the exposure position.

【7た場合の1/チクルやマスクに
対応できなかった。 〔発明の目的〕 本発明の目的は、露光位置にセットしたレチクルやマス
クに異物が付着して起こる不良を低減するため、微小異
物を容易に検出1〜、しかも小型化の可能な異物検査装
置を有する露光装置を提供することにある。 〔発明の概要〕 上記目的を達成するために、本発明による露光装置に、
レチクルまたはマスク上の回路パターンを光学系を用い
て加工しようとする物体に転写する露光装置において、
露光位置にセットされたレチクルまたにマスクに装着さ
れている異物付着防止膜またはそれと同等の効果を持つ
厚手のレチークルの非パターン面上に存在する微小異物
を検出するため、上記を一様照明するための照明光学装
置と、上記レチクルまたはマスクの周囲の一部に設けら
れた、照明光の上記膜からの正反射光を通過させない窓
を通して異物からの散乱光を検出するための検出光学装
置とから成る異物検査装置を有することを要旨とする。 平滑な面に一様な照明光を照射した場合、面上に異物が
存在すると、光が乱され、側方から見ると、異物の位置
がきらきらと輝く。この光の散乱現象は、異物の大きさ
が数ミクロンのオーダーでも発生するため、異物検出の
有効な手段である。 しかし、一般に、レチクル面上には様々な角度に形成さ
れたノ4’ターンの段差や欠陥パターンを修正した白点
修正や黒点修正があり、これからの散乱光が、微小異物
からの散乱光と混在するため、分離のため、レーザ・ス
ポットの走査等を行なう必要があり、露光位置にセット
した状態で検査するには異物検査装置が大きくなりすぎ
た。 ところで、異物付着防止膜は、第2図および第3図に示
すように金属製の枠9の上に+トロ士ルローズ等の薄膜
10ヲ貼ったものである。レチクル1面上に異物6が存
在すると(第4図)、異物の像8はウェハ5上に結ぶた
め、検出すべき異物の大きさは数ミクロンと小さいが、
異物付着防止膜10上に異物6が存在すると(第5図)
、異物の像8はウェハ5上には結像せず、ぼけるため検
出すべき異物の大きさは数十ミクロンと大きくなる。ま
た、異物付着防止膜上には前述したレチクル面上のノ4
ターン段差や修正箇所もないため、純粋忙異物からの散
乱光のみを抽出でき、異物検査装置の小型化が図れる。 本発明は、このような点に着目し、これまで、不可能と
されていた露光位置における異物検査を、異物付着防止
膜よもしくは、同等の効果を持つ厚手レチクルの非パタ
ーン面上の異物の検出に限定し・実現したものである。 上記膜上を照明する照明光学装置は露光装置の露光照明
光学系を用いることも、これと別に設けることもできる
。また、異物からの散乱光を観察するための上記窓は、
上記膜からの正反射光がはいらないように、照明光学装
置が検査しようとする膜を斜めから照明し、その照明光
を真横から見る位置にあることも、また直線偏光された
照明光を使用し、正反射光の偏光面に垂直な偏光面を有
する成分のみを通過させる偏光板を含むときは、正反射
光かにいる位置にあることもできる。 本発明の有利な実施の態様においては、検出装置ltは
、集光レンズと、微小異物を検出しようとする面の上記
レンズによる結像位置に置かれたりニアセンサとから成
る検出光学系ユニットを有し、上記面の全面検査は上記
ユニットヲ検出方向に対して直角な方向に移動させるこ
とによって行なわれる。 以下に、図面を参照しながら、実施例を用いて本発明を
一層詳細に説明するが、それらは例示に過ぎず、本発明
の枠を越えることなしにいろいろな変形や改良があり得
ることは勿論である。 〔発明の実施例〕 第6図および第7図は、装置を最も小型化するために、
異物検出を目視確認により行なう一実施例を示す。露光
位置にセットされたレチクル1上に装着した異物付着防
止膜10の斜め方向から一様照明を行なう。この実施例
では、螢光灯11と照度向上のためのシリンドリカルレ
ンツ11から成る照明系を採用しているが、光ファイバ
により導光したり、発光ダイオードを並べる等の方法も
使用できる。照明光の波長は短い方が良いが、特に露光
光の波長に近い場合には、ウェハに感光する恐れもある
ため、ウェハのない検査時にのみ照明されるよう、シャ
ッタやスイッチを設ける必要がある。 なお、一様照明を得るため、螢光灯11の中心をシリン
ドリカルレンズ12の焦点にあわせ、平行光を得ている
。 異物不着防止膜10上に異物6が存在すると、散乱光1
3が発生する。この散乱光を照明光と直角方向からガラ
ス窓14ヲ介して、目視位置15から観察すると、異物
があればきらきらと光って見える。 なお、゛解明系、検出系とも、上下面の検査のために2
セット設ける必要がある。 この方法でに、数ミクロン程度の小さな異物も光って見
えることがあるため、ガラス窓14は、光量を低減でき
るNDフィルタのようら材質で作るとよい。また、照明
光に紫外線が含まれる場合には、安全のためq色フィル
タを挿入する。窓ガラスは、レチクルを密閉状態に置き
、異物付着を防止するために不可欠である。また、露光
時に紫外線が洩るのを防ぐため、シャッタ16ヲ設け、
検査時のみを開くような機構を設けるのがよい。 照明光としては、第6図のような斜め方向からのものと
、露光用の照明光学系による垂直方向からのものが考え
られる。数十ミクロン程度の異物の場合、両者とも、十
分に異物散乱光を発することができるが、コンタクトホ
ール形成用レチクルのように、レチクル下面への透過光
の少ない場合には、下面の検査は不可能となる。 第8図は、第6図の方法を改良して、異物の自動検出が
できるようにした例である。 照明系は、第6図と同様、螢光灯11とシリンドリカル
レンズ12から成る。検出系に、集光レンズ19とリニ
アセンサ20ヲのせたユニット18と、これをX方向に
走査するXステージ17および異物付着防止のための窓
ガラス14から成る。 異物付着防止膜10の面と、集光レンズ】9.リニアセ
ンサ頷の関係は、第9図に示すように、結像関係にあり
、異物付着防止膜10上の点AI 、 Bl 。 CI 、 DIが、リ−:7−1! 7す膜上でA2 
、82 、 C2゜D2となるよう、 リニアセンサ2
0tl−集光レンズ19に対して傾けて設けである。こ
の光学系では、第8図におけるYl−Y2軸のみ検出さ
れるため、異物付着防止膜10の全面を検査するには、
ユニット18’eX方向に走査する必要がある。 第10図は、N個の画素を持つリニアセンサ上の一画素
を抽出し、その出カ■全縦軸に、ユニットX方向位置を
横軸にプロットしたものである。異物の大小により、散
乱光出力は変化するため、閾値33ヲ設け、これを越す
ものは欠陥異物31 、これ以下のものは無効異物32
として電気的に処理する必要がある。 閾値33に、画素毎に異なるため、実際の検出回路は第
1】図のような構成となる。タイミング発生器40によ
り、画素切替カウンタ41が変化する。このカウンタか
らの切替信号42により各画素のアナログ信号がスイッ
チ43で切り換えられる。カウンタ内容は、閾値メモリ
44にも送られ、閾値データt DIA変換器45でア
ナログ・データに変換され、閾値が設定される。リニア
センサの各画素46ニ光47が到達すると電流が発生し
、それが抵抗48により電圧に変換され、アナログ信号
が得られる。この信号が、コンミ9レータ49ヲ介して
、閾値と比較され、閾値以上の時、パルス発生回路間に
よりパルスが発生し、カウンタ41の内容51がマイク
ロコンピュータ52へ転送される。タイミング発生器4
0はXステージ駆動用モータ53の駆動にも使われ、X
軸位置カウンタ54の内容55もマイクロコンピュータ
52に送られる。これらのデータをもとに、モニタI上
に異物分布マッグ57が出力され、異物の位置が表示さ
れる。なおリニアセンサ’e走査fると同等の機能を固
体カメラ等のイメージセンサで実現することも可能であ
る。 第6図から第11図の実施例でに、検出系は、照明系か
らの正反射光が到達しない位置に設けられていたが、第
12図および第13図は、偏光を用い、正反射光側に検
出系を設けるようにした例である。 螢光灯1】とシリンドリカルレンズ12から成る前述の
照明系の後に偏光板21ヲ設け、S偏光のみを照射する
。検出系は、これと反対側に配置され、ここには、S偏
51遮断するための偏光板nが設けられる。一般に、異
物付着防止膜10での反射は正反射である丸め、S偏光
は保たれ、偏光板nで遮断されるが、異物6が存在する
と、散乱光13では偏光が乱されP偏光が発生するため
、偏光板22を通過し、目視位置15で観察できる。 なお、偏光板は、第6図における窓ガラス】4の役目も
兼ねる。 本発明に、異物付着防止膜と同等の効果を得るため作ら
れた厚手のレチクルの非パターン面上の微小異物検出や
、縮小投影式アライナ以外の露光装置にも適用可能であ
る。 〔発明の効果〕 以上説明した通り、本発明によれば、露光位置にセット
したままの状態で、レチクルに装着した異物付着防止膜
上の微小異物を容易に検出できるため、これまで必要と
された長時間の目視検査作業を必要とし、作業者を精神
的、肉体的な疲労から開放でき、また、異物検査を常時
性なえるため、歩留りが大幅に向上するなど、半導体製
造分野において大きな効果がある。
[In case of 7.1/We were unable to respond to tickles and masks. [Object of the Invention] An object of the present invention is to provide a foreign matter inspection device that can easily detect minute foreign matter and can be miniaturized in order to reduce defects caused by foreign matter adhering to a reticle or mask set at an exposure position. An object of the present invention is to provide an exposure apparatus having the following features. [Summary of the Invention] In order to achieve the above object, an exposure apparatus according to the present invention includes:
In an exposure device that uses an optical system to transfer a circuit pattern on a reticle or mask to an object to be processed,
Uniform illumination of the reticle set at the exposure position, the foreign matter adhesion prevention film attached to the mask, or the non-patterned surface of a thick reticle with an equivalent effect to detect minute foreign matter present on the non-patterned surface. and a detection optical device for detecting scattered light from a foreign object through a window provided in a part of the periphery of the reticle or mask that does not allow specular reflection light of the illumination light from the film to pass through. The gist is to have a foreign matter inspection device consisting of the following. When a smooth surface is irradiated with uniform illumination light, if a foreign object is present on the surface, the light will be disturbed, and when viewed from the side, the position of the foreign object will shine brightly. This light scattering phenomenon occurs even when the size of a foreign object is on the order of several microns, so it is an effective means for detecting foreign objects. However, in general, white spot correction and black spot correction are performed to correct the 4' turn steps and defect patterns formed at various angles on the reticle surface, and the scattered light from now on is different from the scattered light from minute foreign objects. Since they are mixed together, it is necessary to perform laser spot scanning or the like in order to separate them, and the foreign matter inspection device becomes too large to be inspected while set at the exposure position. Incidentally, the foreign matter adhesion prevention film is made by pasting a thin film 10 of Toroshiro Rorose or the like on a metal frame 9, as shown in FIGS. 2 and 3. If a foreign object 6 exists on the surface of the reticle 1 (FIG. 4), the image 8 of the foreign object will be focused on the wafer 5, so the size of the foreign object to be detected is as small as several microns.
When foreign matter 6 is present on the foreign matter adhesion prevention film 10 (Fig. 5)
Since the image 8 of the foreign object is not formed on the wafer 5 and is blurred, the size of the foreign object to be detected becomes as large as several tens of microns. In addition, on the foreign matter adhesion prevention film, the above-mentioned notches 4 on the reticle surface are
Since there are no turn steps or correction points, only the scattered light from pure foreign objects can be extracted, making it possible to downsize the foreign object inspection device. Focusing on these points, the present invention has been developed to detect foreign matter at the exposure position, which has been considered impossible until now, by using a foreign matter adhesion prevention film or by detecting foreign matter on the non-pattern surface of a thick reticle, which has an equivalent effect. This was achieved by limiting the detection. The illumination optical device for illuminating the above-mentioned film can be provided using the exposure illumination optical system of the exposure device, or can be provided separately. In addition, the above window for observing scattered light from foreign objects is
In order to avoid specular reflection from the film, the illumination optical device illuminates the film to be inspected obliquely and is placed in a position where the illumination light is viewed directly from the side.Also, linearly polarized illumination light is used. However, when it includes a polarizing plate that passes only a component having a polarization plane perpendicular to the polarization plane of the specularly reflected light, it can also be located in a position where the specularly reflected light is present. In an advantageous embodiment of the present invention, the detection device lt has a detection optical system unit consisting of a condensing lens and a sensor located at or near the image formation position of the lens on the surface where the microscopic foreign matter is to be detected. However, the entire surface is inspected by moving the unit in a direction perpendicular to the detection direction. Hereinafter, the present invention will be explained in more detail using examples with reference to the drawings, but these are merely illustrative and it is understood that various modifications and improvements may be made without going beyond the scope of the present invention. Of course. [Embodiment of the invention] FIGS. 6 and 7 show that in order to make the device the most compact,
An example in which foreign matter is detected by visual confirmation will be described. Uniform illumination is performed from an oblique direction onto a foreign matter adhesion prevention film 10 mounted on a reticle 1 set at an exposure position. In this embodiment, an illumination system consisting of a fluorescent lamp 11 and a cylindrical lens 11 for improving illuminance is employed, but methods such as guiding light through an optical fiber or arranging light emitting diodes may also be used. The shorter the wavelength of the illumination light, the better, but if it is particularly close to the wavelength of the exposure light, there is a risk that the wafer will be exposed to the light, so it is necessary to install a shutter or switch so that the illumination is only illuminated when there is no wafer present. . In order to obtain uniform illumination, the center of the fluorescent lamp 11 is aligned with the focus of the cylindrical lens 12 to obtain parallel light. When foreign matter 6 exists on foreign matter non-adhesion prevention film 10, scattered light 1
3 occurs. When this scattered light is observed from the viewing position 15 through the glass window 14 in a direction perpendicular to the illumination light, if there is a foreign object, it will appear to shine. In addition, both the elucidation system and the detection system have two
It is necessary to set up a set. In this method, even foreign objects as small as several microns may appear to shine, so the glass window 14 is preferably made of a material such as an ND filter that can reduce the amount of light. Additionally, if the illumination light contains ultraviolet rays, a Q-color filter is inserted for safety. The window glass is essential for keeping the reticle sealed and preventing foreign matter from adhering to it. In addition, a shutter 16 is provided to prevent ultraviolet rays from leaking during exposure.
It is best to provide a mechanism that opens only during inspection. The illumination light may be from an oblique direction as shown in FIG. 6, or from a vertical direction using an illumination optical system for exposure. In the case of a foreign object of several tens of microns, both can sufficiently emit foreign object scattered light, but when there is little light transmitted to the bottom surface of the reticle, such as with a reticle for forming contact holes, inspection of the bottom surface is not necessary. It becomes possible. FIG. 8 shows an example in which the method shown in FIG. 6 has been improved to enable automatic detection of foreign objects. The illumination system consists of a fluorescent lamp 11 and a cylindrical lens 12, as in FIG. The detection system includes a unit 18 on which a condensing lens 19 and a linear sensor 20 are mounted, an X stage 17 that scans the unit in the X direction, and a window glass 14 to prevent foreign matter from adhering. Surface of foreign matter adhesion prevention film 10 and condensing lens]9. As shown in FIG. 9, the relationship between the linear sensor angles is an imaging relationship, and the points AI and Bl on the foreign matter adhesion prevention film 10. CI, DI, Lee: 7-1! A2 on the 7th membrane
, 82 , C2°D2, linear sensor 2
0tl - It is provided at an angle with respect to the condensing lens 19. Since this optical system detects only the Yl-Y2 axis in FIG. 8, in order to inspect the entire surface of the foreign matter adhesion prevention film 10,
It is necessary to scan the unit 18'e in the X direction. In FIG. 10, one pixel on a linear sensor having N pixels is extracted, and its output is plotted on the vertical axis and the position of the unit in the X direction is plotted on the horizontal axis. Since the scattered light output changes depending on the size of the foreign object, a threshold value 33 is set, and anything exceeding this is considered a defective foreign object 31, and anything below this is considered an invalid foreign object 32.
It is necessary to process it electrically. Since the threshold value 33 differs from pixel to pixel, the actual detection circuit has a configuration as shown in FIG. The timing generator 40 causes the pixel switching counter 41 to change. The analog signal of each pixel is switched by a switch 43 by a switching signal 42 from this counter. The contents of the counter are also sent to the threshold value memory 44, converted into analog data by the threshold value data tDIA converter 45, and the threshold value is set. When the light 47 reaches each pixel 46 of the linear sensor, a current is generated, which is converted into voltage by the resistor 48, and an analog signal is obtained. This signal is compared with a threshold value via a commutator 49, and when it is greater than or equal to the threshold value, a pulse is generated between the pulse generating circuits and the contents 51 of the counter 41 are transferred to the microcomputer 52. timing generator 4
0 is also used to drive the X stage drive motor 53,
The contents 55 of the axis position counter 54 are also sent to the microcomputer 52. Based on these data, a foreign object distribution mag 57 is output on the monitor I, and the position of the foreign object is displayed. Note that it is also possible to realize the same function as the linear sensor'e scanning f with an image sensor such as a solid-state camera. In the embodiments shown in Figs. 6 to 11, the detection system was installed at a position where the specularly reflected light from the illumination system does not reach, but in Figs. 12 and 13, polarized light is used to detect specularly reflected light. This is an example in which a detection system is provided on the light side. A polarizing plate 21 is provided after the aforementioned illumination system consisting of a fluorescent lamp 1 and a cylindrical lens 12, and irradiates only S-polarized light. The detection system is arranged on the opposite side, and a polarizing plate n for blocking the S polarization 51 is provided here. Generally, the reflection from the foreign matter adhesion prevention film 10 is a regular reflection, rounded, and the S-polarized light is maintained and blocked by the polarizing plate n. However, when the foreign matter 6 is present, the polarization of the scattered light 13 is disturbed and P-polarized light is generated. Therefore, it passes through the polarizing plate 22 and can be observed at the viewing position 15. Incidentally, the polarizing plate also serves as the window glass [4] in FIG. The present invention can also be applied to detect minute foreign matter on the non-patterned surface of a thick reticle made to obtain the same effect as a foreign matter adhesion prevention film, and to exposure apparatuses other than reduction projection aligners. [Effects of the Invention] As explained above, according to the present invention, minute foreign matter on the foreign matter adhesion prevention film attached to the reticle can be easily detected while the reticle is set at the exposure position, which is an improvement that has not been previously required. It has great effects in the semiconductor manufacturing field, such as relieving workers from mental and physical fatigue that requires long visual inspection work, and eliminating the need for constant foreign object inspection, which greatly improves yields. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は縮小投影式アライナの斜視図、第2図に異物付
着防止膜装置レチクルの斜視図、第3図は第2図に示す
レチクルの断面図、第4図および第5図は異物付着防止
膜の効果を示すための図式図、第6図は本発明の一実施
の態様による露光装置レチクル付近の斜視図、第7図は
第6囚に示す装置の側面図、第8図に本発明の他の一つ
の実施の態様による露光装置の斜視図、第9図は第8図
に示す装置の側面図、第10図は第8図および第9図中
のりニアセンサの出力波形図、第11図は第8図および
第9図に示す装置の駆動装置の構成を示すブロック図、
第12図は本発明のさらに他の一つの実施の態様による
露光装置の斜視図、第13図は第12図に示す装置の側
面図である。 1・・・レチクル、3・・りやターン、6・・・異物、
10・・・異物付着防止膜、1】・・・螢光灯、12・
・・シリンドリカルレンズ、13・・・散乱光、14・
・・窓ガラス、15・・・目視位置、16・・・シャッ
タ、19・・・集光レンズ、加・・・リニアセンサ、2
1 、22・・・偏光板。 代理人弁理士 秋 本 正 実 第1図 第2図 :、153図 0 第4図 第5図 ’=j6図 1 ijZ図 第8図 第9図 ! 第10図 第11図 第12図 第13図
Fig. 1 is a perspective view of the reduction projection aligner, Fig. 2 is a perspective view of the reticle of the foreign matter adhesion prevention film device, Fig. 3 is a cross-sectional view of the reticle shown in Fig. 2, and Figs. 4 and 5 are the foreign matter adhesion prevention film device reticle. A schematic diagram to show the effect of the preventive film, FIG. 6 is a perspective view of the vicinity of the exposure apparatus reticle according to an embodiment of the present invention, FIG. 7 is a side view of the apparatus shown in FIG. FIG. 9 is a side view of the apparatus shown in FIG. 8; FIG. 10 is a diagram of the output waveform of the linear sensor in FIGS. 8 and 9; FIG. 11 is a block diagram showing the configuration of the drive device of the apparatus shown in FIGS. 8 and 9;
FIG. 12 is a perspective view of an exposure apparatus according to still another embodiment of the present invention, and FIG. 13 is a side view of the apparatus shown in FIG. 12. 1...Reticle, 3...Riya turn, 6...Foreign object,
10...Foreign matter adhesion prevention film, 1]...Fluorescent lamp, 12.
... Cylindrical lens, 13... Scattered light, 14.
...Window glass, 15...Visual position, 16...Shutter, 19...Condensing lens, Addition...Linear sensor, 2
1, 22...Polarizing plate. Representative Patent Attorney Tadashi Akimoto Figure 1 Figure 2:, 153 Figure 0 Figure 4 Figure 5' = j6 Figure 1 ijZ Figure 8 Figure 9! Figure 10 Figure 11 Figure 12 Figure 13

Claims (1)

【特許請求の範囲】 1、 レチクルまたはマスク上の回路ノ母ターンを光学
系を用いて加工しようとする物体忙転写する露光装置に
おいて、露光位置にセットされたレチクルま念はマスク
に装着されている異物付着防止膜またはそれと同等の効
果を持つ厚手のレチクルの非パターン面上に存在する微
小異物を検出するため、上記膜を一様照明するための照
明光学装置と、上記レチクルまたはマスクの周囲の壁に
設けられた、照明光の上記膜からの正反射光を通過させ
Aい窓を通して異物からの散乱光を検出するための検出
装置とから成る異物横比装置を有することを特徴と″す
る露光装置。 24 上記照明光学装置が上記膜を斜めから照明し、上
記窓がその照明−yt、f:真横から見る位置にあるこ
とを特徴とする特許請求の範囲第1項記載の露光装置。 3、上記照明光学装置の照明光が′a元用の光であるこ
とを特徴とする特許請求の範囲第1項記載の露光装置。 4、上記検出装置が集光レンズと、微小異物を検出しよ
うとする面の上記レンズによる結像位置に置かれたりニ
アセンサとから成る検出光学系ユニットを有し、上記面
の全面検査が上記ユニットを検出方向に対して直角な方
向に移動させることによって行なわれることを特徴とす
る特許請求の範囲第1項記載の露光装置。 5、上記照明光学装置の照明光が直線偏光であり、上記
正反射光ft通過させない窓が正反射光の偏光1M’[
垂直な偏光面を有する成分のみを通過させる偏光板を含
むことを特徴とする特許請求の範囲第1項記載の露光装
置。
[Scope of Claims] 1. In an exposure device that transfers a circuit pattern on a reticle or mask using an optical system, the reticle head set at the exposure position is attached to the mask. In order to detect minute foreign matter present on the non-patterned surface of a foreign matter adhesion prevention film or a thick reticle having an equivalent effect, an illumination optical device for uniformly illuminating the film and the area around the reticle or mask are used. A foreign matter aspect ratio device is provided on the wall and includes a detection device for passing specularly reflected light from the illumination light from the film and detecting scattered light from the foreign matter through an A-shaped window. 24. The exposure apparatus according to claim 1, wherein the illumination optical device illuminates the film obliquely, and the window is located at a position where the illumination -yt, f: is viewed directly from the side. 3. The exposure apparatus according to claim 1, wherein the illumination light of the illumination optical device is light for the 'a source. 4. The detection device includes a condensing lens and a micro foreign object. It has a detection optical system unit that is placed at the imaging position of the surface to be detected by the lens or a near sensor, and the entire surface can be inspected by moving the unit in a direction perpendicular to the detection direction. 5. The illumination light of the illumination optical device is linearly polarized light, and the window that does not allow the specularly reflected light ft to pass therethrough is a polarized light 1M' of the specularly reflected light. [
2. The exposure apparatus according to claim 1, further comprising a polarizing plate that allows only components having a vertical plane of polarization to pass through.
JP58154058A 1983-08-25 1983-08-25 Exposing device Granted JPS6046558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154058A JPS6046558A (en) 1983-08-25 1983-08-25 Exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154058A JPS6046558A (en) 1983-08-25 1983-08-25 Exposing device

Publications (2)

Publication Number Publication Date
JPS6046558A true JPS6046558A (en) 1985-03-13
JPH0563931B2 JPH0563931B2 (en) 1993-09-13

Family

ID=15575986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154058A Granted JPS6046558A (en) 1983-08-25 1983-08-25 Exposing device

Country Status (1)

Country Link
JP (1) JPS6046558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430513A (en) * 1990-05-28 1992-02-03 Nec Kyushu Ltd Reduction projection aligner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480082A (en) * 1977-12-05 1979-06-26 Ibm Mask for projecting print
JPS5780546A (en) * 1980-11-07 1982-05-20 Nippon Kogaku Kk <Nikon> Detecting device for foreign substance
JPS58120155A (en) * 1982-01-12 1983-07-16 Hitachi Ltd Detecting device for extraneous substance on reticle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480082A (en) * 1977-12-05 1979-06-26 Ibm Mask for projecting print
JPS5780546A (en) * 1980-11-07 1982-05-20 Nippon Kogaku Kk <Nikon> Detecting device for foreign substance
JPS58120155A (en) * 1982-01-12 1983-07-16 Hitachi Ltd Detecting device for extraneous substance on reticle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430513A (en) * 1990-05-28 1992-02-03 Nec Kyushu Ltd Reduction projection aligner

Also Published As

Publication number Publication date
JPH0563931B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
US6184976B1 (en) Apparatus and method for measuring an aerial image using transmitted light and reflected light
JP2796316B2 (en) Defect or foreign matter inspection method and apparatus
JPH0875661A (en) Defect detecting equipment
JP2004037248A (en) Inspection device and inspection method for through hole
CA1191040A (en) Machine reticle inspection device
JP3048168B2 (en) Surface condition inspection apparatus and exposure apparatus having the same
JP3519813B2 (en) Defect detection method and defect detection device
US6396579B1 (en) Method, apparatus, and system for inspecting transparent objects
JPS6046558A (en) Exposing device
JP3445047B2 (en) Illumination device and observation device using the same
JP2000097867A (en) Defect detecting device and method for translucent substrate
JP2705764B2 (en) Defect detection device for transparent glass substrate
JPH0448250A (en) Fuse array inspecting device
JP3068636B2 (en) Pattern inspection method and apparatus
JPS60167327A (en) Inspection of photo mask
JPH1172443A (en) Automatic macroscopic inspection apparatus
JPH0312542A (en) Mask surface inspection device
JPH04165641A (en) Inspecting device for external appearance of wafer
JP2962752B2 (en) Pattern inspection equipment
JPH1183752A (en) Method and apparatus for inspecting surface state
JPH06236838A (en) Semiconductor exposure device
KR100243219B1 (en) Method for inspecting the light-receiving face of a charge coupled device
JPS62134647A (en) Foreign matter checking device
JPH11183151A (en) Transparent sheet inspecting equipment
JPH0620934A (en) Method and apparatus for inspecting foreign matter of resist coating film