JPS6046171B2 - Nickel-based alloy with improved hot workability - Google Patents

Nickel-based alloy with improved hot workability

Info

Publication number
JPS6046171B2
JPS6046171B2 JP53068970A JP6897078A JPS6046171B2 JP S6046171 B2 JPS6046171 B2 JP S6046171B2 JP 53068970 A JP53068970 A JP 53068970A JP 6897078 A JP6897078 A JP 6897078A JP S6046171 B2 JPS6046171 B2 JP S6046171B2
Authority
JP
Japan
Prior art keywords
nickel
hot workability
alloy
based alloy
improved hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53068970A
Other languages
Japanese (ja)
Other versions
JPS54160515A (en
Inventor
稔 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP53068970A priority Critical patent/JPS6046171B2/en
Publication of JPS54160515A publication Critical patent/JPS54160515A/en
Publication of JPS6046171B2 publication Critical patent/JPS6046171B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、市販ニッケル基合金中に含まれている不純物
元素としてのイオウ、アルミニウムのほか、ケイ素も極
力微量化して、該合金本来の強度特性、耐食性、磁気特
性を損なうことなく、熱間加工性を改良したニッケル基
合金である。
Detailed Description of the Invention The present invention aims to improve the strength, corrosion resistance, and magnetic properties inherent to the alloy by minimizing the amount of sulfur and aluminum as impurity elements contained in commercially available nickel-based alloys, as well as silicon. This is a nickel-based alloy with improved hot workability without any loss.

前記ニッケル基合金のうち、例えばインコネル60給金
は加熱炉部品、熱交換器、タービン部品に、モネル40
給金は無機合成化学、石油合成化学、油脂化学工業用の
配管部品に、またPCパーマロイ合金は高透磁率合金と
して磁気記録装置ヘッドコアに実用されている。本発明
の対象合金は、上記のものの外に、70%Ni系電熱合
金、バスアロイR−235耐熱合金、モネルに耐食合金
、78%Niパーマロイ磁性合金、インコネル601耐
熱合金、バスアロイ耐食合金、インコネル63渕熱合金
、ユニテンプC3囲耐熱合金、jVAR−M200耐熱
合金、IN−102耐熱合金、RA−33側熱合金そし
てバスアロイB耐熱合金等である。
Among the nickel-based alloys, for example, Inconel 60 is used for heating furnace parts, heat exchangers, and turbine parts, while Monel 40 is used for heating furnace parts, heat exchangers, and turbine parts.
PC permalloy alloy is used as a high magnetic permeability alloy for the head core of magnetic recording devices. In addition to the above, target alloys of the present invention include 70% Ni-based electric heating alloy, Bathalloy R-235 heat-resistant alloy, Monel corrosion-resistant alloy, 78% Ni permalloy magnetic alloy, Inconel 601 heat-resistant alloy, Bathalloy corrosion-resistant alloy, and Inconel 63. These include Fuchi heat-resistant alloy, Unitemp C3 heat-resistant alloy, jVAR-M200 heat-resistant alloy, IN-102 heat-resistant alloy, RA-33 side heat-resistant alloy, and Bath Alloy B heat-resistant alloy.

これらのニッケル基合金、とくにNiを60%以上含有
するニッケル基合金は、熱間鍛造性、熱間圧延性などの
熱間加工性が劣るため、製造歩留が低いという欠点があ
る。
These nickel-based alloys, especially nickel-based alloys containing 60% or more of Ni, have a drawback of low manufacturing yields due to poor hot workability such as hot forgeability and hot rolling properties.

ニッケル基合金の熱間加工性を改善するために、例えば
不純物元素としてのイオウ含有量を微量化する方法があ
るも、現行の精錬技術をもつてしては経済的ではない。
In order to improve the hot workability of nickel-based alloys, for example, there is a method of reducing the amount of sulfur as an impurity element, but this is not economical using current refining technology.

またマグネシウムのごとき硫化物安定化元素を加えるこ
とも熱間加工性の改善に有効であるが、他の特性を害す
るおそれがあるから好ましくない。このため、各種ニッ
ケル基合金の熱間加工性におよぼす前記不純物元素の影
響を調査するために第1図に示す試験片を調製し、これ
を1、300℃で熱間圧延して、熱間加工性の指標値で
ある限界圧延率を測定した。
Addition of a sulfide stabilizing element such as magnesium is also effective in improving hot workability, but this is not preferred since it may impair other properties. Therefore, in order to investigate the influence of the impurity elements on the hot workability of various nickel-based alloys, test pieces shown in Figure 1 were prepared and hot-rolled at 1,300°C. The limit rolling rate, which is an index value of workability, was measured.

その結果、第2図に示すように、ニッケル基合金中のS
を0.002%以下に微量化すればSiが0.06%以
上、Alが0.005%以上含有するも、限界圧延率は
50%以上に高められることがわかつた。
As a result, as shown in Figure 2, S
It has been found that if the amount of Si is reduced to 0.002% or less, the limit rolling rate can be increased to 50% or more even though the Si content is 0.06% or more and the Al content is 0.005% or more.

しかし、これは溶解原料の厳選、入念な溶解精錬が必要
となり、経済的な面から好ましくない。一方、同図にお
いて、S■0.003〜0.008%における限界J圧
延率はSiレベルの高低により二分されており、低Si
材の場合のそれは高いが、部i材のそれは低い。すなわ
ち、S ■0.003〜0.008%において、Siお
よびNをそれぞれ0.05%以下、0.004%以下に
微量化すれば限界圧延率40%以上確保できること丁が
わかつた。またSレベルを0.008%以下に規制する
ことは現行の精錬技術をもつてすればさほど困難でなく
、前記Sレベルを0.002%以下に規制する場合にく
らべて容易である。これらの知見にもとづいて、本願発
明合金の組成は、Niを60%以上含有するニッケル基
合金おいて、S:0.01%以下,Al:0.004%
以下,Si:0.05%以下に限定した。
However, this requires careful selection of melting raw materials and careful melting and refining, which is unfavorable from an economic standpoint. On the other hand, in the same figure, the limit J rolling ratio at S■0.003 to 0.008% is divided into two depending on the high and low Si level, and
It is high for the material, but it is low for the material i. In other words, it has been found that when Si and N are reduced to 0.05% or less and 0.004% or less, respectively, at 0.003 to 0.008% of S1, a critical rolling reduction of 40% or more can be ensured. Furthermore, regulating the S level to 0.008% or less is not so difficult using current refining technology, and is easier than regulating the S level to 0.002% or less. Based on these findings, the composition of the alloy of the present invention is a nickel-based alloy containing 60% or more of Ni, S: 0.01% or less, Al: 0.004%.
Hereinafter, Si was limited to 0.05% or less.

つぎに、本発明合金の特徴を代表的実施例により具体的
に説明する。
Next, the characteristics of the alloy of the present invention will be specifically explained using representative examples.

不活性ガス雰囲気状態におけるプラズマ・アーク溶解、
または真空誘導溶解などにより第1表に示す化学成分の
供試材を溶製し、ついで第1図に示すごとき形状および
寸法の鋳塊を製造した。
Plasma arc melting in an inert gas atmosphere,
Alternatively, test materials having the chemical components shown in Table 1 were melted by vacuum induction melting or the like, and then ingots having the shape and dimensions shown in FIG. 1 were produced.

つぎに、各鋳塊を巾20!Tl/mに切断後第2表に示
す圧延条件で熱間圧延した結果、第1表に併記したとお
り、本発明材の限界圧延率は市販相当材のそれよりも著
しく向上していることがわかる。また、これら各供試材
の耐食性、高温強度、磁気特性等の諸性質を調べたとこ
ろ、本発明材は市販相当材と同等またはそれ以上である
ことを確認した。したがつて、従来材よりもSi,S,
Alなどの含有量を微量化することは、各種ニッケル基
合金本来の特性を損なうことなく、熱間加工性を改善で
きる技術的成果は著大である。
Next, each ingot is 20mm wide! After cutting to Tl/m, the material was hot rolled under the rolling conditions shown in Table 2. As shown in Table 1, the limit rolling rate of the material of the present invention was significantly improved over that of the commercially available material. Recognize. Further, when various properties such as corrosion resistance, high-temperature strength, and magnetic properties of these test materials were investigated, it was confirmed that the materials of the present invention were equivalent to or better than commercially available equivalent materials. Therefore, Si, S,
Reducing the content of Al and the like is a significant technical achievement in that hot workability can be improved without impairing the inherent properties of various nickel-based alloys.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は限界圧延率実測用鋳塊の斜視図、第2図は限界
圧延率におよぼす%S,%Siおよび%A1の影響を示
す図。
FIG. 1 is a perspective view of an ingot for measuring the limit rolling rate, and FIG. 2 is a diagram showing the effects of %S, %Si, and %A1 on the limit rolling rate.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni:60%以上を含有するニッケル基合金おいて
、S:0.01%以下、Al:0.004%以下、Si
:0.05%以下、に調整したことにより熱間加工性を
改良したニッケル基合金。
1 In a nickel-based alloy containing Ni: 60% or more, S: 0.01% or less, Al: 0.004% or less, Si
: Nickel-based alloy with improved hot workability by adjusting to 0.05% or less.
JP53068970A 1978-06-09 1978-06-09 Nickel-based alloy with improved hot workability Expired JPS6046171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53068970A JPS6046171B2 (en) 1978-06-09 1978-06-09 Nickel-based alloy with improved hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53068970A JPS6046171B2 (en) 1978-06-09 1978-06-09 Nickel-based alloy with improved hot workability

Publications (2)

Publication Number Publication Date
JPS54160515A JPS54160515A (en) 1979-12-19
JPS6046171B2 true JPS6046171B2 (en) 1985-10-15

Family

ID=13389029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53068970A Expired JPS6046171B2 (en) 1978-06-09 1978-06-09 Nickel-based alloy with improved hot workability

Country Status (1)

Country Link
JP (1) JPS6046171B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121943B1 (en) * 2003-11-28 2012-03-09 가부시키가이샤 시로쿠 Pressure sensor using electromagnetic coupling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHYSICS=1966 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121943B1 (en) * 2003-11-28 2012-03-09 가부시키가이샤 시로쿠 Pressure sensor using electromagnetic coupling

Also Published As

Publication number Publication date
JPS54160515A (en) 1979-12-19

Similar Documents

Publication Publication Date Title
EP0035369B1 (en) Ferritic iron-aluminium-chromium alloys
GB2070642A (en) Ferritic iron-aluminium- chromium alloys
US2977225A (en) High-temperature alloys
JPH0321622B2 (en)
JPS62227051A (en) Terminal and connector made of cu alloy
US2287888A (en) Manganese-base alloys
JPS6158541B2 (en)
JPS6046171B2 (en) Nickel-based alloy with improved hot workability
US2839396A (en) Alloy
JPS55152153A (en) Invar alloy having good welding property
JPH0148337B2 (en)
US2005423A (en) Alloy
JPS589829B2 (en) Iron-based alloy with high temperature corrosion resistance, high temperature oxidation resistance, and high temperature strength
US2859264A (en) Thermocouple element composition
GB2083499A (en) Austenitic steel
JPH0676638B2 (en) High strength Ni-Cr alloy with excellent corrosion resistance and heat resistance
JPS6277446A (en) Electrode alloy for glass melting furnace
JPS5919978B2 (en) Malleable Ni-based super heat-resistant alloy
JPH0243815B2 (en) GASUTAABINYOKOKYODOC0KITAINETSUGOKIN
SU686479A1 (en) Nickel based resistance alloy
JPH02243743A (en) Material for durable heating wire
JPH02213439A (en) Electrode material for glass melting furnace having excellent erosion resistance in molten glass under energizing
JPH0210849B2 (en)
JPS6277445A (en) Electrode alloy for glass melting furnace
JPS62127452A (en) Electrode alloy for glass-melting furnace