JPS6045282B2 - Manufacturing method of rotor for multi-stage axial flow rotating machine - Google Patents

Manufacturing method of rotor for multi-stage axial flow rotating machine

Info

Publication number
JPS6045282B2
JPS6045282B2 JP15747477A JP15747477A JPS6045282B2 JP S6045282 B2 JPS6045282 B2 JP S6045282B2 JP 15747477 A JP15747477 A JP 15747477A JP 15747477 A JP15747477 A JP 15747477A JP S6045282 B2 JPS6045282 B2 JP S6045282B2
Authority
JP
Japan
Prior art keywords
blade
blade root
rotor
stage
rotor disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15747477A
Other languages
Japanese (ja)
Other versions
JPS5493702A (en
Inventor
徳郎 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP15747477A priority Critical patent/JPS6045282B2/en
Publication of JPS5493702A publication Critical patent/JPS5493702A/en
Publication of JPS6045282B2 publication Critical patent/JPS6045282B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 従来の蒸気タービンなどの多段落軸流回転機械のロータ
ては、全部の段落又は大部分の段落、すなわち例えば調
速段落や出口又は入口側の最も翼の長い一、二の段落を
除く、すべての段落のロータディスク外径を同一とし、
かつこれらの段落の翼枚数及びクリスマスツリー形又は
類似形の翼根溝の形状を同一にし、全段落の同一位相に
あるすべての翼根溝を一つのブローチ工具で同時に創成
し、各一つの翼根溝には一つの翼が取付けられるものが
ある。
DETAILED DESCRIPTION OF THE INVENTION The rotor of a conventional multi-stage axial flow rotary machine, such as a steam turbine, has a rotor that has all or most of the stages, such as the governing stage or the longest wing on the outlet or inlet side. The rotor disk outer diameter of all paragraphs except the second paragraph is the same,
And the number of blades and the shape of the Christmas tree-shaped or similar blade root grooves in these paragraphs are made the same, and all the blade root grooves in the same phase in all the paragraphs are simultaneously created with one broach tool, so that each blade has one blade. Some root grooves have a single wing attached to them.

このようなタービンロータは、一つのブローチ工具で多
数の段落の同一位相にある翼根溝が同時に加工できるの
で、加工が容易で加工時間が短いなどの利点はあるが、
翼根部の形状、寸法が翼の長短にかかわらず同一となる
ため、翼根寸法はこの構造適用範囲内での運転時遠心力
等の最も大きい最長翼の段落のものに揃えられることに
なり、短翼の段落では必要以上の大きい強度となり、い
わゆる強度上過剰設計となる。然も翼の枚数が翼長に関
係なく、どの段落も同一となるため、段落によつては翼
長に対し極端な値の翼ピッチを採用しなければならない
という欠点もあり、段数が多く、翼長の変化のはげしい
軸流回転機械における実用化は極めて困難である。この
発明は、前記一つのブローチ工具による複・数段落の翼
根溝の同時加工の利点を失うことなく、前記過剰設計の
欠点を解消することを目的として提案された多段落軸流
回転機械のロータの製造法に関するもので、銀翼段落の
ロータ外径を他の長翼段落ロータデスク外径よりも予め
計算したi値だけ大きくして、ブローチ創成による銀翼
段落の翼根溝を深く形成し、その各一つの翼根溝に複数
個の翼を取付けたことを特徴とするものである。
This type of turbine rotor has advantages such as easy machining and short machining time because blade root grooves in the same phase of many stages can be machined simultaneously with a single broaching tool.
Since the shape and dimensions of the blade root are the same regardless of the length of the blade, the blade root dimensions will be aligned with the paragraph of the longest blade that has the greatest centrifugal force during operation within this structural application range. The short wing stage has a strength greater than necessary, resulting in what is called an over-designed strength. However, since the number of blades is the same in every paragraph regardless of the blade length, there is a disadvantage that depending on the paragraph, it is necessary to adopt an extreme value of blade pitch for the blade length, and the number of stages is large. It is extremely difficult to put this into practical use in axial flow rotating machines where the blade length changes rapidly. This invention is a multi-stage axial flow rotary machine proposed for the purpose of eliminating the drawbacks of over-design without losing the advantage of simultaneous machining of multiple stages of blade root grooves using a single broach tool. This relates to a rotor manufacturing method, in which the rotor outer diameter of the silver wing stage is made larger than the rotor desk outer diameter of other long wing stages by a pre-calculated i value, and the blade root groove of the silver wing stage is formed deeply by broach creation. It is characterized in that a plurality of blades are attached to each blade root groove.

以下に本発明の実施態様を示す図面について、段単列で
ロータを構成する場合を詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings showing embodiments of the present invention, a case in which a rotor is configured with a single row of stages will be described in detail below.

第1図の0はロータ軸で、これと一体に製作され又はこ
れに固着された各段落のロータディスク1,1,2,2
及び3,3は、第1図で左方のものほど短い翼を有する
ものとし、まず通常段落のロータディスク1,1の直径
D1及びその周辺に多数放射状に装着される翼11の翼
根12の形状寸法を設計により定め、更にその取付け用
の翼根溝10を深く延はした形状(最短翼段落ロータデ
ィスク3の翼根溝30の形状)に定めておく。短翼段落
の各ロータディスク2,2及び3,3では、各一つの翼
根溝20,30に装着される後述の翼数や翼根の分割様
式、更に遠心力に対する強度等の条件を考慮して、各ロ
ータディスク直径D2,D3を第1図、第2図のように
、それぞれ前記予め計算して定めた値d1及びD2だけ
大きく形成する。そして前記最短翼段落ロータディスク
3の翼根溝30の形状に適合する断面形状のプローチ工
具(図示しない)を、第1図でロータ軸0の軸線に平行
に例えば右から左へ送り連動させることにより、通常段
落のロータディスク1,1の周辺に翼根溝10,10を
削成すると同時に、これと同一位相の各短翼段落ロータ
ディスク2,2及び3,3における翼根溝20,30を
削成する。ロータ軸0を所定角度に順次割出して、各段
落ロータディスク1,2,3の周辺の全翼根溝をプロー
チ削成することは勿論である。次に短翼段落において、
短翼であるため回転に!よる遠心力が小さいことと、深
く延ばした翼根溝30に相応して翼根寸法が大きくなり
、強度設計上十分余裕ができることを利用して、一つの
翼根溝に複数個の翼を装着する。
0 in Fig. 1 is the rotor shaft, and the rotor disks 1, 1, 2, 2 of each stage are manufactured integrally with this or are fixed to it.
and 3, 3 have shorter wings as shown in FIG. The shape and dimensions of the rotor disk 3 are determined by design, and the blade root groove 10 for attachment thereof is determined to be deeply extended (the shape of the blade root groove 30 of the shortest blade stage rotor disk 3). For each of the rotor disks 2, 2 and 3, 3 of the short blade stage, conditions such as the number of blades to be installed in each blade root groove 20, 30, the division style of the blade root, and the strength against centrifugal force, which will be described later, are taken into consideration. Then, as shown in FIGS. 1 and 2, the rotor disk diameters D2 and D3 are made larger by the previously calculated values d1 and D2, respectively. Then, a probing tool (not shown) having a cross-sectional shape that matches the shape of the blade root groove 30 of the shortest blade stage rotor disk 3 is fed in parallel with the axis of the rotor shaft 0 in FIG. 1, for example from right to left. At the same time, the blade root grooves 10, 10 are cut around the rotor disks 1, 1 of the normal stage, and the blade root grooves 20, 30 of the short blade stage rotor disks 2, 2 and 3, 3 of the same phase are cut. Delete. Of course, the rotor shaft 0 is sequentially indexed at a predetermined angle, and the entire blade root groove around each stage rotor disk 1, 2, 3 is protruded. Next, in the short wing paragraph,
Because it has short wings, it can rotate! Multiple blades are attached to one blade root groove by taking advantage of the fact that the centrifugal force caused by the blade root groove 30 is small, and the blade root size increases in accordance with the deeply extended blade root groove 30, which provides sufficient margin in terms of strength design. do.

第2図は、翼根溝とこれに装着される翼根部の3一実施
形を例示したもので、最短翼段落ロータディスク3に装
着される翼根部は分割面34,34によつて3分割(分
割の実用的手段については後に第3,第4図により説明
)されており、それぞれの翼根部32はこれと一体に形
成されて放射方4向に延ひる1個の翼31を有する。
FIG. 2 illustrates 31 embodiments of the blade root groove and the blade root portion attached to the blade root groove, and the blade root portion attached to the shortest blade stage rotor disk 3 is divided into three parts by dividing surfaces 34, 34. (Practical means of division will be explained later with reference to FIGS. 3 and 4), and each blade root 32 has one blade 31 formed integrally therewith and extending in four radial directions.

次の短翼段落ロータディスク2の翼根溝20には、前記
分割面34と同様な分割面で2分割され、各分割片がそ
れぞれ1体に形成されて放射方向に延びる1個の翼21
を有する翼根部22が装着されている。第3図は翼根部
を複数の分割片に分割する手段の各種を例示したもので
、a−eは2分割(第2図では2段目の短翼段落)の例
、dは3分割の例7である。ただし、ロータ軸線方向の
移動を拘束する機種の図示は省略している。23,33
は各段落ロータディスクの周面に定位される翼根のフラ
ンジ部であり、aの2つ割翼根部22は、その中心を通
る分割平面24でフラ9ンジ部3と共に2個対称形の分
割片22a,22bに分割したもの、bは同様な分割面
24の片側の分割片22aに凹部25、他方の分割片2
2bにはこれに嵌合する凸部26を設けた例、eは短か
い分割平面27と相互に嵌合し合う凹部28、7凸部2
9との組合わせで非対称形の2つの分割片22c,22
dに分割した例である。
The blade root groove 20 of the next short blade stage rotor disk 2 is divided into two by a dividing surface similar to the dividing surface 34, and each divided piece is formed as a single body, and one blade 21 extends in the radial direction.
A blade root portion 22 having a diameter is attached to the blade root portion 22. Figure 3 shows various examples of means for dividing the blade root into a plurality of pieces, where a-e are examples of two-part divisions (the second short blade stage in Figure 2), and d is an example of three-part divisions. This is example 7. However, a model that restricts movement in the rotor axis direction is not shown. 23, 33
is the flange part of the blade root located on the circumferential surface of each stage rotor disk, and the two-part blade root part 22 of a is divided into two symmetrical parts together with the flange part 3 at the dividing plane 24 passing through its center. Divided into pieces 22a and 22b, b is a similar dividing surface 24, one side of the divided piece 22a has a recess 25, and the other divided piece 2
An example in which 2b is provided with a convex portion 26 that fits therein, and e is a concave portion 28 that fits into the short dividing plane 27, 7 convex portion 2
In combination with 9, two asymmetrical divided pieces 22c, 22
This is an example of dividing into d.

各分割片にはそれぞれ放射状に延びる1個の翼21が一
体に形成されている。aにおいては、翼根溝20に嵌合
する2片の翼根部が若干の相対運動を行うことlができ
、b及びcの例では相対運動が一方向を除き抑制される
。これらは実施上の各種の条件に基いて取捨選択し得る
。dは翼根部32を3分割する場合の一例で、分割面3
4,34と、両側の分割片にそれぞれ内向きに設けた凸
部35,35を作る分割面とで両側の分割片32a,3
2bの間に上下の広幅部分36,37の間に凹入する狭
幅部分38を有する第3の分割片32cを形成している
。3個の分割片は全体で1個のフランジ部33を有する
クリスマスツリー形翼根部を形成する。
Each divided piece is integrally formed with one wing 21 extending radially. In example a, the two blade root parts that fit into the blade root groove 20 can make some relative movement, and in examples b and c, the relative movement is suppressed except in one direction. These can be selected based on various practical conditions. d is an example where the blade root portion 32 is divided into three parts, and the dividing surface 3
4, 34, and the dividing surfaces forming the inwardly provided convex portions 35, 35 on the dividing pieces on both sides, respectively, to form the dividing pieces 32a, 3 on both sides.
2b, a third divided piece 32c is formed having a narrow portion 38 recessed between the upper and lower wide portions 36, 37. The three segments collectively form a Christmas tree-shaped blade root having one flange 33.

また各分割片はそれぞれ一体に形成されて放射状に延び
る1個の翼31を有する。上記複数に分割した翼根部は
、全体を1個として取扱うことができれば有利である。
Further, each divided piece has one blade 31 that is integrally formed and extends radially. It would be advantageous if the blade root section divided into a plurality of parts could be handled as a whole.

翼根溝部と翼根部の形状寸法又は翼根分割形状を工夫す
れば、わずかの力で分割翼根同志の動きを抑制するよう
に設計することもできるので、その場合には、翼に変形
を来さない程度の軽い溶接を施すことによソー体化し、
又は簡単な結合手段で連結して置くことができる。第4
図はかかる結合手段の1例で、前記第3図cのような2
個の分割片22c,22dにそれぞれに相互に平行な小
貫通孔40,40を設け、この両貫通孔にU字形止ピン
4の両脚部41,41を挿通し、他面から突出する脚部
先端を折曲げて両分割片22c,22dを一体化してい
る。同様な手段は、2個のピンの使用でdの3分割片の
一体化にも適用できることは明らかである。以上を要す
るに、一つの翼根溝に装着される各翼根部の分割は、ロ
ータの静止時、回転時共に相対運動上からも無理がかか
らぬような直線、曲線あるいはそれらの組合わせからな
る分割面で複数分割されるものである。
By devising the dimensions of the blade root groove and the blade root, or the shape of the blade root divisions, it is possible to design a design that suppresses the movement of the divided blade roots with a small amount of force. It is made into a saw body by applying light welding to the extent that it does not cause
Alternatively, they can be connected by simple coupling means. Fourth
The figure shows an example of such a coupling means, and the two
The divided pieces 22c and 22d are provided with mutually parallel small through holes 40, 40, respectively, and the legs 41, 41 of the U-shaped stop pin 4 are inserted into both of the through holes, and the legs protruding from the other surface. Both the divided pieces 22c and 22d are integrated by bending their tips. It is clear that similar measures can also be applied to the integration of the d triplets using two pins. In summary, each blade root installed in one blade root groove is divided into straight lines, curves, or a combination thereof so that no strain is applied to the relative motion of the rotor both when the rotor is stationary and when it is rotating. It is divided into multiple parts at the dividing plane.

本発明の製造方法によれば、以上に詳述するように、蒸
気タービン等の多段落ロータにおいて、通常設計で定め
られた長翼段落のロータディスクの径に比べて、各短翼
段落ロータディスクに形成された深い翼根溝に、複数個
(たとえば2又は3個)に分割されてそれぞれ1個の翼
を備えた翼根部を装着したので、従来この種軸流機械の
ロータのように短翼段落における過剰設計が解消され、
遠心力に対する強度が長翼段落と平均化し、また翼長に
対する翼ピッチの比も平均化し得る効果がある。
According to the manufacturing method of the present invention, as detailed above, in a multi-stage rotor such as a steam turbine, each short-blade stage rotor disk is The blade root section is divided into a plurality of parts (for example, 2 or 3 parts) each having one blade, and is installed in a deep blade root groove formed in the blade root groove. Over-design in the wing stage has been eliminated,
There is an effect that the strength against centrifugal force is equalized with the long blade stage, and the ratio of the blade pitch to the blade length can also be averaged.

なお、強度上その他の理由から可能な場合には、各ロー
タディスク外径Dl,D2,D3間のあらかじめ定めた
前記の値d1及びD2の一部をゼロに、すなわち、各ロ
ータディスク外径Dl,D2,D3の一部を同じにして
、翼根部の分割非分割又は分割数と無関係に、一部の段
落の翼根部の全体形を同一形状、同一寸法にすることも
可能である。
In addition, if possible for strength or other reasons, a part of the above-mentioned values d1 and D2 determined in advance between each rotor disk outer diameter Dl, D2, and D3 is set to zero, that is, each rotor disk outer diameter Dl , D2, and D3 are the same, so that the overall shape and dimensions of the blade root portions of some of the paragraphs can be made the same regardless of whether the blade root portion is divided or undivided or the number of divisions.

この場合においても、通常段落における翼と短翼段落に
おける翼の大きさの差による遠心力等の差に基いて、上
記同様に分割した翼根部はそれに必要な強度を維持し得
るものである。
Even in this case, the blade roots divided in the same manner as described above can maintain the necessary strength based on the difference in centrifugal force due to the difference in the size of the blades in the normal stage and the short blade stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施によつて製作された多段軸流回
転機械(蒸気タービン)のロータの側面図で、各段落ロ
ータディスクの翼根溝を切欠断面で示したもの、第2図
は第1図■−■線方向に見た正面図で、各段落ロータデ
ィスクの翼根溝に対する翼の装着状態を示したもの、第
3図A,b,c及びdは短翼段落ロータディスクの翼根
溝に対して装着される翼根部の分割例を示した拡大正面
、第4図は複数分割した翼根部の連結手段の一例を示す
拡大斜視図である。 j11・・・・・・長翼段落ロータディスク、2,3・
・・・・・短翼段落ロータディスク。
Figure 1 is a side view of the rotor of a multi-stage axial flow rotary machine (steam turbine) manufactured by implementing the present invention, showing the blade root grooves of each stage rotor disk in a cutaway cross section. Figure 1 is a front view seen in the direction of the ■-■ line, showing the state of attachment of the blades to the blade root grooves of each stage rotor disk, and Figures 3A, b, c and d are of the short blade stage rotor disk. FIG. 4 is an enlarged front view showing an example of a divided blade root section attached to a blade root groove, and FIG. 4 is an enlarged perspective view showing an example of a connecting means for a plurality of divided blade roots. j11...Long-blade stage rotor disk, 2,3.
...Short-wing stepped rotor disk.

Claims (1)

【特許請求の範囲】 1 下記A_1、A_2及びA_3の条件を備えたこと
を特徴とする多段落軸流回転機械のロータの製造法。 A_1 各短翼段落ロータディスク2、3の外径D_2
、D_3を、通常の設計で定められた長翼段落ロータデ
ィスク1の外径D_1より、それぞれ予め計算して定め
た値d_1及びd_2だけ大きくする。 A_2 最大直径のロータディスクの翼根溝形状に適合
するブローチ工具をロータ軸Oの軸線に平行に移動させ
て、上記各段落ロータディスク1、2、3の同じ位相の
翼根溝10、20、30を同時に削設することにより、
該各段落ロータディスク1、2、3に同じクリスマスツ
リー形その他の形状の翼根溝10、20、30を形成す
る。 A_3 上記短翼段落ロータディスク2、3の翼根溝2
0、30に、複数個に分割され、それぞれ一体に放射状
に延びる各1個の翼21、31を有しかつ全体で上記翼
根溝に適合する1個の翼根部を形成する分割片をその接
合面で合わせて装着する。
[Scope of Claims] 1. A method for manufacturing a rotor for a multi-stage axial flow rotating machine, characterized by meeting the following conditions A_1, A_2, and A_3. A_1 Outer diameter of each short blade stage rotor disk 2, 3 D_2
, D_3 are made larger by pre-calculated values d_1 and d_2, respectively, than the outer diameter D_1 of the long-blade stage rotor disk 1 determined in the normal design. A_2 A broaching tool that matches the blade root groove shape of the rotor disk with the largest diameter is moved parallel to the axis of the rotor axis O, and the blade root grooves 10, 20, of the same phase in each of the above-mentioned stages rotor disks 1, 2, and 3 are created. By removing 30 at the same time,
The same Christmas tree-shaped or other shaped blade root grooves 10, 20, 30 are formed in each stage rotor disk 1, 2, 3. A_3 Blade root groove 2 of the short blade stage rotor disks 2 and 3 above
0 and 30 are divided into a plurality of pieces, each having one blade 21 and 31 each integrally extending radially, and forming a single blade root portion that fits into the blade root groove as a whole. Attach the mating surfaces together.
JP15747477A 1977-12-28 1977-12-28 Manufacturing method of rotor for multi-stage axial flow rotating machine Expired JPS6045282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15747477A JPS6045282B2 (en) 1977-12-28 1977-12-28 Manufacturing method of rotor for multi-stage axial flow rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15747477A JPS6045282B2 (en) 1977-12-28 1977-12-28 Manufacturing method of rotor for multi-stage axial flow rotating machine

Publications (2)

Publication Number Publication Date
JPS5493702A JPS5493702A (en) 1979-07-25
JPS6045282B2 true JPS6045282B2 (en) 1985-10-08

Family

ID=15650461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15747477A Expired JPS6045282B2 (en) 1977-12-28 1977-12-28 Manufacturing method of rotor for multi-stage axial flow rotating machine

Country Status (1)

Country Link
JP (1) JPS6045282B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195827U (en) * 1982-06-24 1983-12-26 横河電機株式会社 electromagnetic flow meter
JPS595806A (en) * 1982-07-03 1984-01-12 Nissan Motor Co Ltd Axial flow turbine rotor
JPS60110601U (en) * 1983-12-28 1985-07-26 三菱重工業株式会社 moving blade
JPS60110603U (en) * 1983-12-28 1985-07-26 三菱重工業株式会社 gathering wings
JP2604448Y2 (en) * 1991-04-22 2000-05-15 三菱重工業株式会社 Rotor
US20100166561A1 (en) * 2008-12-30 2010-07-01 General Electric Company Turbine blade root configurations

Also Published As

Publication number Publication date
JPS5493702A (en) 1979-07-25

Similar Documents

Publication Publication Date Title
US4692976A (en) Method of making scalable side entry turbine blade roots
US3014695A (en) Turbine bucket retaining means
US4725200A (en) Apparatus and method for reducing relative motion between blade and rotor in steam turbine
US2619318A (en) Turbomachine rotor
EP0274978B1 (en) Multiple lug blade to disk attachment
RU2353480C2 (en) Method for manufacture of solid bladed rotors
JP2002201910A (en) Rotor assembly
KR910009708B1 (en) Turbine blade with integral shroud
JPH0233844B2 (en)
US4444544A (en) Locking of rotor blades on a rotor disk
KR20010062682A (en) Blade attachment configuration
US2625365A (en) Shrouded impeller
US6991434B2 (en) Method of producing components subjected to flow, and components made by said method
JPS63227904A (en) Assembly method and device for steam turbine reducing relative motion
JPH0772485B2 (en) Method of mounting blades on rotor and rotor and blade assembly
JPS6045282B2 (en) Manufacturing method of rotor for multi-stage axial flow rotating machine
US2394124A (en) Bladed body
US5395213A (en) Turbojet engine rotor
US3295826A (en) Blade lock
US2483610A (en) Bladed impeller for turboblowers
JPS5918522B2 (en) Filler member of turbomachine rotor
US2823889A (en) Rotor construction and fabrication
EP0353447A1 (en) Side-entry grooves for mounting turbine blades
CN221256880U (en) Locking blade set of quadrilateral T-shaped blade root of steam turbine and whole-circle blade structure
JP2753236B2 (en) Blade root structure of turbomachinery