JPS6044852A - Method and apparatus for measuring concentration of crystal in crystalline slurry - Google Patents

Method and apparatus for measuring concentration of crystal in crystalline slurry

Info

Publication number
JPS6044852A
JPS6044852A JP15361383A JP15361383A JPS6044852A JP S6044852 A JPS6044852 A JP S6044852A JP 15361383 A JP15361383 A JP 15361383A JP 15361383 A JP15361383 A JP 15361383A JP S6044852 A JPS6044852 A JP S6044852A
Authority
JP
Japan
Prior art keywords
temperature
slurry
concentration
dissolved
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15361383A
Other languages
Japanese (ja)
Other versions
JPH0374334B2 (en
Inventor
Nobuyuki Noritake
則竹 信行
Makoto Tamura
信 田村
Kentaro Hashimoto
賢太郎 橋本
Keizo Takegami
敬三 竹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Tsukishima Kikai Co Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, Tsukishima Kikai Co Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP15361383A priority Critical patent/JPS6044852A/en
Publication of JPS6044852A publication Critical patent/JPS6044852A/en
Publication of JPH0374334B2 publication Critical patent/JPH0374334B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/14Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation
    • G01N25/147Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation by cristallisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure the concentration of crystal quickly and accurately regardless of the degree of concentration, by heating a sample, monitoring the curve of temperature increase, and correlating the curve with known saturation solubility data. CONSTITUTION:Crystalline slurry to be measured is sampled. The temperature of the sample is increased at a constant speed by externally applied heat. Then the first temperature increasing curve is indicated. The time point (temperature t2), when the crystal is all dissolved, is detected by finding a curved point in the temperature increase. The dissolved quantity X of the object component is obtained based on known saturation solubility data. Meanwhile, the temperature of the slurry before heating is actually measured. In this state, a quantity Z of the object component is present as the crystal, and a quantity Y is dissolved in mother liquor. Then the dissolved quantity Y at a temperaure t1 before heating is obtained based on the known saturation solubility data. As a result, the concentration of the crystal in the slurry to be found is given by an expression Z=X-Y.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、結晶性スラリー中の結晶濃度を測定する方法
とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method and apparatus for measuring crystal concentration in a crystalline slurry.

[発明の技術的背景とその問題点] 化学プロセスにおいては、多成分の混合溶液中に、その
内の単一成分(A成分とも呼ぶ)の結晶が存在する系が
多く見られる。これらの系において、結晶体となってい
るA成分の濃度を正確に測定し、この系の状態を調節制
御する方法がしばしばめられる。
[Technical background of the invention and its problems] In chemical processes, systems are often seen in which a crystal of a single component (also referred to as component A) exists in a mixed solution of multiple components. In these systems, methods are often used to accurately measure the concentration of component A in the form of crystals and to adjust and control the state of the system.

従来より、この結晶性スラリー中の結晶体濃度を計測す
る方法として、次記(1)〜(4)が知られているが、
それぞれ次述のような難点がある。
Conventionally, the following methods (1) to (4) have been known as methods for measuring the crystalline concentration in this crystalline slurry.
Each has the following difficulties.

(+)比重差法 この方法は、結晶比重と溶液比重とに差があることを利
用して、溶液のみの液柱と結晶混合スラリーの液柱との
底面での静圧の差を測定し、既知の溶液比重と結晶比重
データーより算出する方法である。この差圧を正確に測
定するためには、液柱の均一性を保つ必要があり、また
動圧の影響を完全に除かなければならず、測定作業に細
心の注意を必要とする。また両者の比重差が非常に小さ
い場合には、十分な差圧を得ることが難かしく、精度の
良い測定を行うには、特別な配慮が必要である。
(+) Specific gravity difference method This method uses the difference between crystal specific gravity and solution specific gravity to measure the difference in static pressure at the bottom of a liquid column containing only a solution and a liquid column containing crystal mixed slurry. , is a method of calculating from known solution specific gravity and crystal specific gravity data. In order to accurately measure this differential pressure, it is necessary to maintain the uniformity of the liquid column, and the influence of dynamic pressure must be completely eliminated, requiring close attention to measurement work. Further, if the difference in specific gravity between the two is very small, it is difficult to obtain a sufficient differential pressure, and special consideration is required to perform accurate measurement.

(2)光透過度法 この方法は測定できる固体濃度の範囲が非常にせまく限
られ、その範囲は比較的固体濃度の稀いところである。
(2) Light transmittance method This method has a very narrow range of solid concentrations that can be measured, and this range is where solid concentrations are relatively rare.

従って、光が透過しにくい濃い濃度の結晶混合スラリー
は測定できない。
Therefore, it is not possible to measure a crystal mixed slurry with a high concentration through which light cannot easily pass through.

(3)超音波測定法 この方法も、(2)の場合と同様に固体濃度の稀い場合
には測定できるが、固体濃度の濃いスラリーに対しては
、超音波の減衰量が大き過ぎて、測定が困難である。
(3) Ultrasonic measurement method Similar to (2), this method can measure cases where the solids concentration is rare, but the attenuation of the ultrasonic waves is too large for slurries with a high solids concentration. , difficult to measure.

(4)プロセスガスクロマトグラフィー装置的に非常に
高価であると同時に、サンプリング装置に工夫を凝らさ
なければならない、また測定にある程度の時間を必要と
し、系の調節動作にその結果をフィードバックしようと
した場合、時間遅れが激しく、最適な制御ができない難
点がある。
(4) Process gas chromatography equipment is very expensive, requires ingenuity in sampling equipment, requires a certain amount of time for measurement, and requires feedback of the results to system adjustment operations. In this case, there is a severe time delay and it is difficult to perform optimal control.

[発明の目的] 本発明は、前記従来の測定法の問題点を解決し、簡便で
ありながら、しかも高測定精度が得られる結晶性スラリ
ー中の結晶濃度測定方法およびその装置を提供すること
にある。
[Object of the Invention] The present invention solves the problems of the conventional measurement methods and provides a method and device for measuring the crystal concentration in a crystalline slurry that is simple and yet provides high measurement accuracy. be.

[発明の構成] この目的を達成するための本発明法は、結晶性スラリー
を加熱して順次一定速度で昇温するとともに、その温度
上昇速度が急激な昇温速度を示し始める変曲点の温度を
検知し、この変曲点温度における対象成分の溶解量を既
知の飽和溶解度データに基いてめ、他方加熱前に13”
tfる結晶性スラリー温度を測定し、この加熱前温度に
おける対象成分の結晶分を除いた溶解量の溶解量を既知
の飽和溶解度データに基いてめ、前記変曲点温度での溶
解量から加熱前温度での溶解量を減算して結晶体の濃度
を測定することを特徴とするものである。
[Structure of the Invention] The method of the present invention to achieve this object is to heat a crystalline slurry and gradually increase the temperature at a constant rate, and to reach an inflection point where the temperature increase rate starts to show a rapid temperature increase rate. Detect the temperature and determine the amount of target component dissolved at this inflection point temperature based on known saturation solubility data, and
tf), measure the crystalline slurry temperature, calculate the dissolved amount of the target component excluding the crystalline content at this pre-heating temperature based on known saturated solubility data, and calculate the dissolved amount at the inflection point temperature from the heated This method is characterized in that the concentration of the crystalline substance is measured by subtracting the amount dissolved at the previous temperature.

また本発明装置は、結晶性スラリーが通過可能なサンプ
リング槽と、その入口および出口を仕切る仕切弁と、内
部の結晶性スラリーを加熱する加熱手段と、内部の結晶
性スラリーの温度を連続的に検出する温度検出器と、内
部の結晶性スラリーの攪拌用のイナートガス吹込手段と
を備えたことを特徴とするものである。
The device of the present invention also includes a sampling tank through which the crystalline slurry can pass, a gate valve that separates the inlet and outlet of the tank, a heating means for heating the crystalline slurry inside, and a sampling tank that continuously controls the temperature of the crystalline slurry inside. It is characterized by being equipped with a temperature detector for detecting the temperature and an inert gas blowing means for stirring the internal crystalline slurry.

[発明の具体例] 」 以下さらに本発明を詳説する。 1 いま、測定対象の結晶性スラリーを回分式にサンプリン
グし、これを外部から加える熱によって一定速度で昇温
させて行くと、第1図のように、スラリー中に共存する
結晶が母液に順次溶解する過程(1)では、比較的なだ
らかな昇温カーブを示すが、スラリー中の結晶が全量溶
解し液体のみとなった点(この時点に対応する部層が飽
和溶解温度である)以後は、急激な温度上昇過程(II
)を示す。
[Specific Examples of the Invention] The present invention will be further explained in detail below. 1 Now, if the crystalline slurry to be measured is sampled batchwise and heated at a constant rate by externally applied heat, the crystals coexisting in the slurry will gradually be added to the mother liquor as shown in Figure 1. In the melting process (1), the temperature rise curve is relatively gentle, but after the point where all the crystals in the slurry have dissolved and only liquid remains (the layer corresponding to this point is at the saturated melting temperature), , rapid temperature rise process (II
) is shown.

そこで、本発明は、この事項を基礎とし、サンプリング
スラリーを過熱し、結晶が全溶解した時点(温度tz)
を、温度上昇の変曲点を見つけることにより検知し、対
象成分の溶解量を既知の飽和溶解度データに基いてめる
。この溶解量を仮にXとする。
Therefore, the present invention is based on this matter, and the sampling slurry is heated to a point at which the crystals are completely dissolved (temperature tz).
is detected by finding the inflection point of the temperature rise, and the amount of dissolved target component is determined based on known saturated solubility data. This amount of dissolution is assumed to be X.

他方、加熱前すなわちサンプリングしたままのスラリー
の温度を実測する。この状態では、対象成分はZ量が結
晶として存在し、他のY量は母液に溶解している。そこ
で、加熱前の温度t1における溶解量(Y量に相当)を
既知の飽和溶解度データに基いてめる。その結果、知る
べきスラリー中の結晶体の濃度は次記(1)式によって
与えられる。
On the other hand, the temperature of the slurry before heating, that is, as it is sampled, is actually measured. In this state, Z amount of the target component exists as crystals, and the other Y amount is dissolved in the mother liquor. Therefore, the amount of dissolution (corresponding to the amount of Y) at the temperature t1 before heating is determined based on known saturated solubility data. As a result, the concentration of crystals in the slurry that should be known is given by the following equation (1).

z=x−y ・・・・(1) このように、結晶体の濃度は、サンプルの加熱とその昇
温カーブの監視とを行いながら、既知の飽和溶解度デー
タとに照合することのみによって測定できるので、測定
がきわめて容易かつ迅速に行うことができ、また濃度に
冷製にも関係しない利点がある。実際、溶融点が、−8
0°C〜150°Cの温度範囲にある物質で、複数成分
の混合物系より結晶を析出させ、単一成分のみを取出す
プロセスにおいて、本発明を適用すると、後述の実施例
で示すように、測定精度が高く、しかも測定結果の迅速
なフィードバックが可能である。
z=x-y...(1) In this way, the concentration of the crystalline material can be measured only by heating the sample and monitoring the temperature rise curve, and comparing it with known saturation solubility data. Therefore, the measurement can be carried out very easily and quickly, and there is an advantage that the concentration is not related to cold production. In fact, the melting point is -8
When the present invention is applied to a process in which crystals are precipitated from a mixture system of multiple components and only a single component is extracted using a substance in the temperature range of 0°C to 150°C, as shown in the examples below, The measurement accuracy is high, and measurement results can be quickly fed back.

次いで、第2図によって、本発明法を実施する上で好適
な測定装置の例について説明する。
Next, an example of a measuring device suitable for carrying out the method of the present invention will be explained with reference to FIG.

10は竪型サンプリング槽で、上部にバッファ一部10
aを有している。このド部と、サンプリング槽lOの本
体部とバッファ一部10aとの境部分とには、それぞれ
シリンダー操作による入口仕切弁12および出口仕切弁
14が設けられている。原スラリー16は、下部入口!
8から入日仕切弁12を介してサンプリング槽10内に
供給された後、出口仕切弁14、バッファ一部10aを
通って流通出口2oからオーバーフロー管22へ流れる
ようになっている。また、入口仕切弁12を閉じると、
続く原スラリーは戻り管24を介してリターンするよう
になり、他方出口仕切弁14を閉じると、バッファ一部
り0a内のスラリーが排出管2Bからオーバーフロー管
22へ導かれるよう構成されている。
10 is a vertical sampling tank with a part of buffer 10 at the top.
It has a. An inlet gate valve 12 and an outlet gate valve 14, which are operated by cylinders, are provided at this door portion and at the boundary between the main body portion of the sampling tank IO and the buffer portion 10a, respectively. Raw slurry 16 is at the bottom entrance!
8 into the sampling tank 10 via the inlet gate valve 12, and then flows through the outlet gate valve 14 and the buffer part 10a from the distribution outlet 2o to the overflow pipe 22. Moreover, when the inlet gate valve 12 is closed,
The subsequent raw slurry is returned via the return pipe 24, and when the outlet gate valve 14 is closed, the slurry in the buffer part 0a is guided from the discharge pipe 2B to the overflow pipe 22.

一方、サンプリング槽1oの外壁には、スチームまたは
熱奴油等の熱媒Hを供給するための加熱トレース管28
が巻回され、その外側は、図示しないが、外気温の影響
を遮断するために、完全な保温または保冷手段が施こさ
れている。3oはサンプリング槽10のスラリー温度を
検出するための温度検出機で、その検出温度信号は演算
処理装置(図示せず)に取込まれるようになっている。
On the other hand, a heating trace pipe 28 for supplying a heat medium H such as steam or hot oil is provided on the outer wall of the sampling tank 1o.
Although not shown, the outside is completely insulated or cooled to block the influence of outside temperature. 3o is a temperature detector for detecting the temperature of the slurry in the sampling tank 10, and the detected temperature signal is taken into an arithmetic processing unit (not shown).

さらに。moreover.

サンプリング槽lo内のスラリーを均質に攪拌し、均一
な温度とするために、内部に連通して、途中に流量計3
2および止弁34を有する窒素等のイナートガスGの吹
込管38が設けられている。
In order to homogeneously stir the slurry in the sampling tank LO and keep it at a uniform temperature, a flow meter 3
2 and a stop valve 34, a blowing pipe 38 for inert gas G such as nitrogen is provided.

測定に際しては、仕切弁12.14を開とした状態室、
原スラリー16をサンプリング槽10内に定常的に流通
させておく。測定時点で、仕切弁12.14をそれぞれ
閉じ、原スラリーI6はリターンさせるとともに、バッ
ファ一部10aのスラリーは排出管2Bを介して排出し
、サンプリング槽1o内のスラリーの貯留量を一定とす
る。これと共に、加熱トレース管28を介して一定速度
でスラリーの昇温を行い、イナートガスGの吹込みも行
う。このとき、入熱開始時点の温度t1を温度検出器3
oから与えられるスラリー温度信号を連続的に監視し、
時間軸に対する温度上昇勾配を知り、これを微分して変
化率をめ、その変化率が急激に高くなる点を変局点とし
、そのときの温度t2 を知る。その後の濃度測定のた
めの演算処理は前述の通りである[実施例] 第2回に示す測定装置により測定を行った。サンプリン
グ槽の大きさは、直径80+am 、高さ500mmの
加熱トレース及び自動仕切弁を取付けたものである。目
標とした結晶スラリーは、混合キシレンを冷却して、そ
の中のパラキシレンを結晶体と17て晶出させたスラリ
ーであり、この結晶体濃度を計測した。サンプリングし
た結晶スラリーの直接温度は、−20,o℃であり、本
測定装置が検出した飽和溶解温度は、−5,3°Cであ
−った。この値を飽和溶解度データより計算すると、結
晶体濃度は30.5wtχとなった。同じサンプルをガ
スクロストグラフィー(G C)を用いて検定分析を行
った結果は、30.1%であった。さらに条件をかえて
、数回、測定と検定分析を繰返した結果、Gc分析結果
との平均誤差が±1.0%となり、非常に精度の良いも
のであった。この測定を3日間連続して自動測定を行わ
せた結果、検出不良が約120回のうち2回起っている
以外は、良好にプロセス系の状態変化を示した。
During the measurement, a state chamber with gate valves 12 and 14 open;
The raw slurry 16 is constantly circulated in the sampling tank 10. At the time of measurement, the gate valves 12 and 14 are closed, the raw slurry I6 is returned, and the slurry in the buffer part 10a is discharged through the discharge pipe 2B, so that the amount of slurry stored in the sampling tank 1o is kept constant. . At the same time, the temperature of the slurry is raised at a constant rate via the heating trace pipe 28, and the inert gas G is also blown into the slurry. At this time, the temperature t1 at the start of heat input is detected by the temperature detector 3.
continuously monitoring the slurry temperature signal provided by o;
The temperature rise gradient with respect to the time axis is known, this is differentiated to find the rate of change, the point where the rate of change suddenly increases is defined as an inflection point, and the temperature t2 at that time is determined. The subsequent arithmetic processing for concentration measurement was as described above. [Example] Measurement was performed using the measuring device shown in the second article. The dimensions of the sampling vessel are 80+ am in diameter and 500 mm in height fitted with a heated trace and an automatic gate valve. The target crystal slurry was a slurry obtained by cooling mixed xylene and crystallizing paraxylene therein into crystals, and the concentration of the crystals was measured. The direct temperature of the sampled crystal slurry was -20.0°C, and the saturated dissolution temperature detected by this measuring device was -5.3°C. When this value was calculated from the saturated solubility data, the crystalline concentration was 30.5 wtχ. The same sample was analyzed using gas clostography (GC) and the result was 30.1%. Furthermore, as a result of changing the conditions and repeating the measurement and verification analysis several times, the average error from the Gc analysis result was ±1.0%, which was very accurate. This measurement was carried out automatically for three consecutive days, and the results showed that the state of the process system changed well, except for two out of about 120 detection failures.

[発明の効果] 以上の通り、本発明によれテ、結晶体濃度を、高精度、
かつ簡易迅速に測定でき、しかも濃度のる濃に関係なく
測定できる利点がもたらされる。
[Effects of the Invention] As described above, according to the present invention, the crystal concentration can be determined with high precision.
Moreover, it has the advantage that it can be measured simply and quickly, and can be measured regardless of the concentration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1回はスラリーの加熱にょる昇温カーブを示す相関図
、第2図は本発明装置の具体例を示す概略図である。 10、、、、サンプリング 12.14−、、、、仕切
弁1B、、、、原スラリー 22.、、、オーバーフロ
ー管28、、、、加熱トレース管 30.、、、温度検
出器38、、、、イナートガス吹込管 特許出願人 月島機械株式会社 、三菱瓦斯化学株式会社 第1図 し−−(1)−一=(]I) 第2図
The first is a correlation diagram showing a temperature increase curve due to heating of the slurry, and the second is a schematic diagram showing a specific example of the apparatus of the present invention. 10. Sampling 12.14- Gate valve 1B Raw slurry 22. , , Overflow tube 28 , , Heating trace tube 30. ,,,Temperature detector 38, Inert gas blowing pipe Patent applicant Tsukishima Kikai Co., Ltd., Mitsubishi Gas Chemical Co., Ltd. Figure 1 - (1) -1 = (]I) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)結晶性スラリーを加熱して順次一定速度で昇温す
るとともに、その温度上昇速度が急激な昇温速度を示し
始める変曲点の温度を検知し、この変曲点温度における
対象成分の溶解量を既知の飽和溶解度データに基いてめ
、他方加熱前における結晶性スラリー温度を測定し、こ
の加熱前温度における対象成分の結晶分を除いた溶解量
の溶解量を既知の飽和溶解度データに基いてめ、前記変
曲点温度での溶解量から加熱前温度での溶解量を減算し
て結晶体の濃度を測定することを特徴とする結晶スラリ
ー中の結晶濃度測定方法。
(1) While heating the crystalline slurry and increasing the temperature one after another at a constant rate, detecting the temperature at the inflection point where the temperature increase rate starts to show a rapid temperature increase rate, and detecting the temperature of the target component at this inflection point temperature. Calculate the dissolved amount based on the known saturated solubility data, measure the temperature of the crystalline slurry before heating, and calculate the dissolved amount excluding the crystalline content of the target component at this pre-heating temperature based on the known saturated solubility data. Based on this, a method for measuring the concentration of crystals in a crystal slurry, characterized in that the concentration of crystals is measured by subtracting the amount dissolved at the pre-heating temperature from the amount dissolved at the inflection point temperature.
(2)結晶性スラリーが通過可能なサンプリング槽と、
その入口および出口を仕切る仕切弁と、内部の結晶性ス
ラリーを加熱する加熱手段と、内部の結晶性スラリーの
温度を連続的に検出する温度検出器機と、内部の結晶性
スラリーの攪拌用のイナートガス吹込手段とを備えたこ
とを特徴とする結晶性スラリー中の結晶性スラリー中の
結晶濃度測定装置。 ″
(2) a sampling tank through which the crystalline slurry can pass;
A gate valve that separates the inlet and outlet, a heating means that heats the internal crystalline slurry, a temperature detector that continuously detects the temperature of the internal crystalline slurry, and an inert gas for stirring the internal crystalline slurry. 1. A device for measuring the concentration of crystals in a crystalline slurry, comprising a blowing means. ″
JP15361383A 1983-08-22 1983-08-22 Method and apparatus for measuring concentration of crystal in crystalline slurry Granted JPS6044852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15361383A JPS6044852A (en) 1983-08-22 1983-08-22 Method and apparatus for measuring concentration of crystal in crystalline slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15361383A JPS6044852A (en) 1983-08-22 1983-08-22 Method and apparatus for measuring concentration of crystal in crystalline slurry

Publications (2)

Publication Number Publication Date
JPS6044852A true JPS6044852A (en) 1985-03-11
JPH0374334B2 JPH0374334B2 (en) 1991-11-26

Family

ID=15566310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15361383A Granted JPS6044852A (en) 1983-08-22 1983-08-22 Method and apparatus for measuring concentration of crystal in crystalline slurry

Country Status (1)

Country Link
JP (1) JPS6044852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141329A (en) * 1990-09-27 1992-08-25 Alcor, Inc. Micro freeze point analysis apparatus and method
CN105203582A (en) * 2015-09-11 2015-12-30 李彬 Estimation method of glass crystallinity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141329A (en) * 1990-09-27 1992-08-25 Alcor, Inc. Micro freeze point analysis apparatus and method
US5282682A (en) * 1990-09-27 1994-02-01 Alcor, Inc. Micro freeze point analysis apparatus and method
CN105203582A (en) * 2015-09-11 2015-12-30 李彬 Estimation method of glass crystallinity

Also Published As

Publication number Publication date
JPH0374334B2 (en) 1991-11-26

Similar Documents

Publication Publication Date Title
US4539296A (en) Method of analyzing chemical substances
US3555912A (en) Incremental method for surface area and pore size determination
US5190726A (en) Apparatus for measuring the flow rate of water vapor in a process gas including steam
US4286457A (en) Viscosity measurement
EP0840116B1 (en) Calibration method for a chromatography column
US3377838A (en) Apparatus for measuring various transformation characteristics of metallic materials
JPH021265B2 (en)
US3205045A (en) Apparatus for continuous measurement of organic matter in water
US3695093A (en) Device for measuring the solidification temperature of liquids
JPS6044852A (en) Method and apparatus for measuring concentration of crystal in crystalline slurry
US3577765A (en) Apparatus for determining crystalization temperature
US4572676A (en) Method and apparatus for determining the saturation temperature of a solution
JPH0339491A (en) Etching device for thin film
US3176500A (en) Measurement of gases in metals
US3716333A (en) Process of and apparatus for thermometric analysis
US3188857A (en) Method and apparatus for concentration measurement and control
US3483731A (en) Trace component chromatography
US3498106A (en) Chromatographic analysis
US3174824A (en) Method of producing an aqueous solution of ammonium nitrate of predetermined concentration and apparatus therefor
Ponter et al. NON-ISOTHERMAL ABSORPTION WITH CHEMICAL REACTION SURFACE TEMPERATURE AND ABSORPTION DATA FOR THE SO 3-H 2 SO 4 SYSTEM
JPH0712791A (en) Carrier gas pressure setting method for gas chromatograph
JPH0587727A (en) Adsorbed amount measuring instrument
RU2054204C1 (en) Method for checking gas phase composition of gas-liquid medium
US3451403A (en) Method and apparatus for determining the purity of a flowing solution or mixture
JP3050684B2 (en) Trace ion analyzer