JPS6044841A - Torque detecting device - Google Patents

Torque detecting device

Info

Publication number
JPS6044841A
JPS6044841A JP58153724A JP15372483A JPS6044841A JP S6044841 A JPS6044841 A JP S6044841A JP 58153724 A JP58153724 A JP 58153724A JP 15372483 A JP15372483 A JP 15372483A JP S6044841 A JPS6044841 A JP S6044841A
Authority
JP
Japan
Prior art keywords
magnetic
torque
magnetic layers
circuit
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58153724A
Other languages
Japanese (ja)
Inventor
Yoshio Sekine
関根 義夫
Yasuyuki Makikawa
牧川 安之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58153724A priority Critical patent/JPS6044841A/en
Publication of JPS6044841A publication Critical patent/JPS6044841A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To measure the torque of a driven shaft without contact by a simple structure, by fixing magnetic layers to the outer surface of the driven shaft, and detecting the changes in permeabilities of the magnetic layers as the change in duty ratio of the output signal of an oscillating circuit. CONSTITUTION:First and second magnetic layers 5 and 6 having magnetic anisotropies in the different directions are fixed to the outer surface of a driven shaft 1. First and second detecting coils 8 and 9 are provided so as to surround the magnetic layers. A magnetism saturation type oscillating circuit 10 is formed from the detecting coils 8 and 9. Based on the changes in permeabilities of the magnetic layers 5 and 6 when torque is applied to the driven shaft, the duty ratio of the output signal of the oscillating circuit 10 is changed. The output signal is outputted through a waveform shaping circuit 11, an integrating circuit 12, and an amplifier circuit 13. Then the torque, which is applied to the driven shaft 1, is measured.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は例えば回転軸などの受動軸の軸トルクを非接
触で測定するトルク検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque detection device that non-contactly measures the shaft torque of a passive shaft such as a rotating shaft.

[従来技術] 従来、受動軸例えば回転軸の軸トルクを測定する方法と
しては、ストレンゲージを回転軸に貼り付けて、トルク
による軸のねじれに起因するストレンゲージの抵抗値変
化によりトルクを検出する方法、既知のヤング率を有す
る中間軸を駆動側と負荷側との間に挿入して、その中間
軸のねじれを位相差として検出する方法、さらに外力つ
まりトルクにより磁性材軸即ち回転軸の透磁率が変化す
に るいわゆる磁歪効果を利用する方法等である。
[Prior art] Conventionally, the method of measuring shaft torque of a passive shaft, such as a rotating shaft, is to attach a strain gauge to the rotating shaft and detect the torque by detecting the change in resistance value of the strain gauge due to twisting of the shaft due to torque. There is a method in which an intermediate shaft with a known Young's modulus is inserted between the drive side and the load side, and the torsion of the intermediate shaft is detected as a phase difference. This method utilizes the so-called magnetostriction effect, which causes magnetic flux to change.

ストレンゲージを回転軸に貼り付ける方法は、ストレン
ゲージの貼り付けの良否如何により精度が左右されるね
いう不都合があるうえ、加えて出力信号の取り出しにス
リップリング、テレメータ等を取り付ける必要があり、
装置が大きくなる。さらに加えて、高速回転、長時間運
転になると、スリップリングの電気抵抗値が変化してノ
イズが発生しやすいなどの欠点がある。中間軸のねじれ
による位相差を検出する方法は、電気回路が複雑となる
ため高価であり、また回転軸の高速回転時と低速回転時
の検出が両立しがたいという不都合を持つ。磁性材軸を
用いて磁歪効果を利用する方法は、実際の軸が利用でき
るという利点はあるが。
The method of attaching the strain gauge to the rotating shaft has the disadvantage that accuracy depends on how well the strain gauge is attached, and in addition, it is necessary to attach a slip ring, telemeter, etc. to take out the output signal.
The device becomes larger. In addition, there is a drawback that when rotating at high speeds and operating for long periods of time, the electrical resistance value of the slip ring changes and noise is likely to occur. The method of detecting the phase difference due to the torsion of the intermediate shaft requires a complicated electric circuit and is therefore expensive, and has the disadvantage that it is difficult to detect both high-speed rotation and low-speed rotation of the rotary shaft. The method of utilizing the magnetostrictive effect using a magnetic material shaft has the advantage that an actual shaft can be used.

しかし一方では通常の軸は強度にその多(の注意が払わ
れ、磁気特性についてはあまり考慮されていないので、
磁気的にははなはだ不均一である。
However, on the other hand, most attention is paid to the strength of ordinary shafts, and little consideration is given to magnetic properties.
Magnetically it is extremely non-uniform.

このため、この軸の磁気的不均一性による出方の回転角
依存性すなわち軸の回転に伴なう出方のドリフトを持つ
、換言すれば回転角によって出方が変動するという欠点
を持っている。もっともこの出力のドリフトつまり出方
変動は1軸のまわりに複数個の検出器を設けることなど
によって補正することはできるが、構造がそれだけ複雑
になり。
Therefore, due to the magnetic non-uniformity of the shaft, there is a rotation angle dependency of the output direction, that is, there is a drift in the output direction as the shaft rotates, in other words, the output direction varies depending on the rotation angle. There is. However, this output drift, that is, output variation, can be corrected by providing multiple detectors around one axis, but this increases the complexity of the structure.

好ましい方法とはいえない。This is not a desirable method.

[発明の概要コ この発明は上記のような従来のものの欠点を除去するた
め罠なされたものであり、受動軸の外周に2つの磁性層
を固着し、この各磁性層をそれぞれ包囲するように上記
受動軸に回転対称に2つの検出コイルを巻回し、この各
検出コイルを用いて磁気飽和形発振回路を構成し、各磁
性層をもっ受層の透磁率変化によって生ずる発振信号の
デユーティ比変化を検出することにより、印加されたト
ルクの大きさを検出しようとするものである。
[Summary of the Invention] This invention has been made to eliminate the drawbacks of the conventional ones as described above, and consists of fixing two magnetic layers around the outer periphery of the passive shaft and surrounding each of the magnetic layers. Two detection coils are wound rotationally symmetrically around the passive shaft, and each detection coil is used to configure a magnetic saturation type oscillation circuit, and the duty ratio of the oscillation signal changes due to changes in the magnetic permeability of each magnetic layer. The purpose is to detect the magnitude of the applied torque by detecting the amount of torque applied.

[発明の実施例] 第1図はこの発明の動作原理を説明するための図である
。一般に、磁性材に応力を加えると、その磁気特性が変
化することはよく知られており。
[Embodiments of the Invention] FIG. 1 is a diagram for explaining the operating principle of this invention. It is generally well known that when stress is applied to a magnetic material, its magnetic properties change.

引張応力によって透磁率は増加し、圧縮応力によって透
磁率は減少する。ところで、第1図に示すように受動軸
+1)K)ルクTを印加すると、中心軸(2)に対し+
45°方向に応力σが生ずる。つまり中心軸(2)に対
し+45°の角度をもつ線上に引張応力σが発生し、−
45°の角度をもつ線上に圧縮応力−σが生ずる。した
がって受動軸(1)の外周に高磁歪材からなる磁性層を
固着し、トルクが加わったときのその磁気ひずみ効果を
利用すれば、トルクの検出が可能となる。
Tensile stress increases magnetic permeability, and compressive stress decreases magnetic permeability. By the way, as shown in Fig. 1, when the passive axis +1)K) torque T is applied, +
Stress σ is generated in the 45° direction. In other words, tensile stress σ is generated on a line having an angle of +45° with respect to the central axis (2), and -
A compressive stress -σ occurs on a line with an angle of 45°. Therefore, by fixing a magnetic layer made of a highly magnetostrictive material to the outer periphery of the passive shaft (1) and utilizing the magnetostrictive effect when torque is applied, torque can be detected.

第2図はこの発明の一実施例を示す構成図であり、(1
)は中心軸(2)をもつ回転軸などの受動軸(以下回転
軸として説明を進める)であり、軸受(3)。
FIG. 2 is a block diagram showing an embodiment of the present invention, (1
) is a passive shaft such as a rotating shaft (hereinafter referred to as a rotating shaft) having a central axis (2), and a bearing (3).

(4)により回転自在に支承されている。この回転軸f
i+はステンレス鋼などの非磁性材でできており。
(4) is rotatably supported. This rotation axis f
i+ is made of non-magnetic material such as stainless steel.

トルクに耐え得る十分な機械的強度をもつものとする。It shall have sufficient mechanical strength to withstand torque.

+5) 、 (e)は高磁歪材からなる第1及び第2の
磁性層であり、中心軸(2)に対して第1の磁性層(5
)は+45°方向に磁気異方性が、第2の磁性層(6)
は=45°方向に磁気異方性が与えられるように、それ
ぞれ受動軸(1)の外周に固着されている。これら各磁
性層+51 、 (6)をなす磁性材としては、軟磁性
で高磁気ひずみ特性をもつものが望ま、し<、非晶質金
属がよい。何故なら、非晶質金属は高磁気ひずみ特性を
もち9機械的強度にもすぐれ、温度による特性変化も小
さいからである。(7)は回転軸(1)と同一の中心軸
をもつ円筒状のコイルボビン、(8)は上記第1の磁性
層(5)を包囲するようにコイルボビン(7)を介して
回転軸(すに巻回された第1の検出コイル、(9)は上
記第2の磁性層(6)を包囲するようにコイルボビン(
7)を介して回転軸(1)K巻回された第2の検出コイ
ルである。
+5) and (e) are the first and second magnetic layers made of a highly magnetostrictive material, and the first magnetic layer (5) is parallel to the central axis (2).
) has magnetic anisotropy in the +45° direction, and the second magnetic layer (6)
are fixed to the outer periphery of the passive shaft (1) so as to provide magnetic anisotropy in the =45° direction. The magnetic material forming each of these magnetic layers (6) is preferably one that is soft magnetic and has high magnetostriction characteristics, and is preferably an amorphous metal. This is because amorphous metals have high magnetostriction characteristics, excellent mechanical strength, and change in characteristics due to temperature is small. (7) is a cylindrical coil bobbin having the same central axis as the rotating shaft (1), and (8) is a rotating shaft (through which the coil bobbin (7) is connected so as to surround the first magnetic layer (5). The first detection coil (9) wound around the coil bobbin (9) surrounds the second magnetic layer (6).
7) is the second detection coil wound around the rotating shaft (1)K.

第3図はこの発明の一実施例を示す電気回路図である。FIG. 3 is an electrical circuit diagram showing one embodiment of the present invention.

この電気回路は上記第2図における回転軸(1)への印
加トルクを電気信号に変換して導出するだめのものであ
り、0〔は磁性層+5) 、 +61が固着された回転
軸(1)を磁心としたいわゆる磁気飽和形発振回路であ
り、この実施例では周知のロイヤー発振回路により構成
されている。α4 、 (+5はトランジスタ、 On
 、 aMは回路を安定に動作させるためのバイアス抵
抗、 Vccは駆動電源である。さて、ロイヤー回路に
使用する磁心としては、上記第1及び第2の磁性層+5
1 、 (61を固着した回転軸+1)そのものを利用
し、第1の磁性層(5)を包囲する第1の検出コイル(
8)としてはコレクタ巻線(8C)とベース巻線(8b
)を、第2の磁性層(6)を包囲する第2の検出コイル
(9)としてはコレクタ巻線(9C)とベース巻線(9
b)をそれぞれ設ける。これら各コレクタ巻線(8C)
 # (9C)及びぺ7ス巻線(8b) ? (9b)
は互いに巻数が等しくなるようそれぞれコイルボビン(
7)に巻回する。ロイヤー発振回路は、磁気飽和形プッ
シュプル発振回路であって発振周期は磁心の磁束レベル
が飽和値を往復する時間であり、またデユーティ比は検
出コイル<80) t (8t+)及び(9c) 、 
(9b)の磁心となる各磁性層(5)、(6)の透磁率
の相対的な変化によって変わる。またコレクタ出力電圧
υ。1゜υ。2は原理的に電源電圧vccの2倍のレベ
ルの矩形波信号となる。このコレクタ電圧のうちの一方
υo1が、抵抗Os及びツェナーダイオードαlからな
る波形整形回路(11)に導かれ、ツェナーダイオード
α値によって決まる電圧v2でリミットされた矩形波信
号υ1に整形される。この矩形波信号。1は抵抗(至)
This electric circuit is for converting the torque applied to the rotating shaft (1) in Fig. 2 above into an electrical signal and deriving it. ) is a so-called magnetic saturation type oscillation circuit with a magnetic core, and in this embodiment, it is constructed of a well-known Royer oscillation circuit. α4, (+5 is a transistor, On
, aM is a bias resistor for stable operation of the circuit, and Vcc is a drive power supply. Now, as a magnetic core used in the Royer circuit, the above-mentioned first and second magnetic layers +5
1. Using the (rotating shaft + 1 to which 61 is fixed) itself, the first detection coil (
8) is the collector winding (8C) and the base winding (8b).
), and the second detection coil (9) surrounding the second magnetic layer (6) includes a collector winding (9C) and a base winding (9C).
b) respectively. Each of these collector windings (8C)
# (9C) and 7th winding (8b)? (9b)
are coil bobbins (
7). The Royer oscillation circuit is a magnetic saturation type push-pull oscillation circuit, and the oscillation period is the time during which the magnetic flux level of the magnetic core goes back and forth to the saturation value, and the duty ratio is the detection coil <80) t (8t+) and (9c),
It changes depending on the relative change in magnetic permeability of each magnetic layer (5), (6) which becomes the magnetic core of (9b). Also the collector output voltage υ. 1゜υ. 2 is, in principle, a rectangular wave signal with a level twice the power supply voltage vcc. One of the collector voltages υo1 is guided to a waveform shaping circuit (11) consisting of a resistor Os and a Zener diode αl, and is shaped into a rectangular wave signal υ1 limited by a voltage v2 determined by the Zener diode α value. This square wave signal. 1 is resistance (to)
.

コンデンサC!υからなる積分器α擾に入力され、デユ
ーティ比に対応した直流レベルの信号υ2に変換されて
1次段のレペルシタト及び増幅回路o3に入力される。
Capacitor C! The signal υ is inputted to an integrator α consisting of υ, converted into a DC level signal υ2 corresponding to the duty ratio, and inputted to the primary stage repellent and amplifier circuit o3.

この回路は、オペアンプ(財)と抵抗の、(21゜3帖
(ハ)からなる反転増幅回路と、抵抗(ハ)、 c14
 、(ハ)からなる加算回路とにより構成される。抵抗
(ハ)は可変であり、負の電源−vccと接地との間に
接続されて電圧分割器を形成し、負の直流電圧υ3を設
定する。この負の直流電圧υ5は抵抗@を介してオペア
ンプ(5)の反転入力端子に接続され、そこで抵抗@に
より積分器02の出力電圧υ2と加算される。
This circuit consists of an inverting amplifier circuit consisting of an operational amplifier, a resistor, and a resistor (c).
, and (c). The resistor (c) is variable and connected between the negative power supply -vcc and ground to form a voltage divider and set a negative DC voltage υ3. This negative DC voltage υ5 is connected to the inverting input terminal of the operational amplifier (5) via a resistor @, where it is added to the output voltage υ2 of the integrator 02 by the resistor @.

上記負電圧υ3は軸に応力が生じない場合には、上記積
分器aaの出力電圧υ2との代数和がオペアンプ罰の入
力側で零になるような値に設定される。オペアンプ(5
)及び抵抗t2’3 、 @ 、 04 、(イ)によ
り構成される反転増幅器は、上記電圧υ2と電圧u3の
代数和に比例した出力電圧υ0を生じ、これがトルク検
出器の出力を形成する。
When no stress is generated on the shaft, the negative voltage υ3 is set to a value such that the algebraic sum with the output voltage υ2 of the integrator aa becomes zero on the input side of the operational amplifier. Operational amplifier (5
) and the resistors t2'3, @, 04, (a) produce an output voltage υ0 proportional to the algebraic sum of the voltage υ2 and the voltage u3, which forms the output of the torque detector.

第4図及び第5図は上記実施例の動作を説明するための
各部出力波形図であり、第4図は回転軸+11にトルク
が加わらない場合、第5図は回転軸(1)にトルクが加
わった場合をそれぞれ示す。回転軸(1)にトルクが加
わらない状態では、第1及び第2の磁性層+5+ 、 
16)の透磁率は等しいので2発振回路顛のコレクタ出
力電圧υ。1.υ。2は、第4図(A) 、 (B)に
示すように原理的にデユーティ比50%の信号となる。
4 and 5 are output waveform diagrams of each part for explaining the operation of the above embodiment. FIG. 4 shows the case where no torque is applied to the rotating shaft +11, and FIG. The cases in which . When no torque is applied to the rotating shaft (1), the first and second magnetic layers +5+,
Since the magnetic permeability of 16) is equal, the collector output voltage υ of the two oscillation circuits. 1. υ. 2 becomes a signal with a duty ratio of 50% in principle, as shown in FIGS. 4(A) and 4(B).

この信号は波形整形回路(11)によってツェナーダイ
オードのツェナー電圧Vglでリミットされ(第4図(
C)参照)、積分回路a邊に入力される。この第4図(
0)に示す波形整形回路αDの出力信号υ1もVZ /
 2のレベルの直流電圧信号V2に変換される。
This signal is limited by the Zener voltage Vgl of the Zener diode by the waveform shaping circuit (11) (see Fig. 4).
(see C)) is input to the integrating circuit a side. This figure 4 (
The output signal υ1 of the waveform shaping circuit αD shown in 0) is also VZ /
It is converted into a DC voltage signal V2 of level 2.

この直流信号υ2は可変抵抗2!9により設定される負
電圧u5と加算されて反転増幅器(5)の反転入力端子
罠接続されるが、上記負電圧υ3を−vz/2に設定し
ておけば9反転増幅器の出方電圧v(1は零となり。
This DC signal υ2 is added to the negative voltage u5 set by the variable resistor 2!9 and connected to the inverting input terminal of the inverting amplifier (5), but the negative voltage υ3 must be set to -vz/2. For example, the output voltage v of the inverting amplifier (1 becomes zero).

トルク零を指示する。Instructs zero torque.

次に回転軸(1)にトルクが加わった状態を考える。Next, consider a state in which torque is applied to the rotating shaft (1).

軸(1)の外周に固着された第1及び第2の磁性層(5
)。
The first and second magnetic layers (5) are fixed to the outer periphery of the shaft (1).
).

(6)は、前述したようにその磁気異方性が一方は軸(
1)の中心軸(2)に対して+45°方向に、他方は−
45゜方向に与えられているから、軸+11にトルクが
加わるとそれぞれの磁性層+51 、 +61で磁気異
方性が逆向きに変化する応力が加わることKなり、つま
り一方では引張応力により透磁率が増加し、他方では圧
縮応力によって透磁率が減少する。そのために発振回路
の信号のデユーティ比が変化する。
(6), as mentioned above, has magnetic anisotropy on one side (
1) in the +45° direction with respect to the central axis (2), and the other -
Since it is applied in the 45° direction, when a torque is applied to the axis +11, stress is applied that changes the magnetic anisotropy in the opposite direction in the respective magnetic layers +51 and +61.In other words, on the one hand, the magnetic permeability changes due to the tensile stress. on the other hand, the permeability decreases due to compressive stress. Therefore, the duty ratio of the signal of the oscillation circuit changes.

第5図(1) 、 (F)は、トルクが加わることによ
り第1の磁性層(5)の透磁率が減少し、第2の磁性層
(6)の透磁率が増加したときの、波形整形後の信号u
1と積分された後の信号υ2を示したものである。第5
図(G)、(ロ)は、上記と逆方向のトルクにより第1
の磁性層(5)の透磁率が増加し、第2の磁性層(6)
の透磁率が減少したときの、波形整形後の信号u1と積
分された後の信号υ2を示したものである。信号υ1は
、デユーティ比が50%を中心にトルクの向きと大きさ
に応じて増減し、また信号υ2は無負荷時の出力vz/
2を基準に同様に上下に変化する。この積分器(2)の
出力信号υ2は、前述したようKV2に設定された抵抗
分割器の基準電圧υ3と加算されて反転増幅器に入力さ
れるので9反転増幅器の出力VQには、トルクに比例し
た第5図(1)の点線あるいは一点鎖線で示すような電
圧が出力され、加えられたトルクの向きは出力電圧v(
1の正負によって判別することができる。
Figures 5 (1) and (F) show the waveforms when the magnetic permeability of the first magnetic layer (5) decreases and the magnetic permeability of the second magnetic layer (6) increases due to the application of torque. Signal u after shaping
This shows the signal υ2 after being integrated with 1. Fifth
Figures (G) and (B) show that the first
The magnetic permeability of the magnetic layer (5) increases, and the magnetic permeability of the second magnetic layer (6) increases.
This figure shows the signal u1 after waveform shaping and the signal υ2 after integration when the magnetic permeability of is decreased. The signal υ1 increases or decreases depending on the direction and magnitude of the torque around a duty ratio of 50%, and the signal υ2 is the output vz/at no load.
Similarly, it changes up and down based on 2. The output signal υ2 of this integrator (2) is added to the reference voltage υ3 of the resistor divider set to KV2 as described above and is input to the inverting amplifier. The voltage shown by the dotted line or dashed line in Fig. 5 (1) is output, and the direction of the applied torque is the output voltage v(
It can be determined by the sign of 1.

なお上記実施例では、磁気飽和形発振回路としてロイヤ
ー発振回路を用いた場合を示したが、第6図に示すよう
にやはり磁気飽和形発振回路である周知の抵抗結合型イ
ンバータ回路(至)を用いても同様の目的を達成し得る
。この場合には、ベース巻線が不要となるので検出コイ
ル(8) 、 (91が簡単になるという効果が期待で
きる。、第6図において。
In the above embodiment, a Royer oscillation circuit was used as the magnetic saturation type oscillation circuit, but as shown in FIG. The same purpose can be achieved by using In this case, since the base winding becomes unnecessary, the effect of simplifying the detection coils (8) and (91) can be expected. In FIG.

(至)、(至)はトランジスタ、 C(0、(至)はコ
ンデンサ、(至)。
(to), (to) is a transistor, C(0, (to) is a capacitor, (to) is.

(ロ)、(至)、(至)は抵抗である。(b), (to), and (to) are resistance.

また上記実施例では1回転軸に固着する2つの磁性層+
5) 、 (6)を、軸の中心軸に対して+45°の角
度にそれぞれ磁気異方性をもたせて固着するものとした
が、第1図に示すように細長い磁性層(ロ)、(11を
、一方では軸の中心軸に対して+45°の角度をなすよ
うに、他方では一45°の角度をなすようにそれぞれ軸
外周忙固着しても同様の効果を奏する。
In addition, in the above embodiment, two magnetic layers fixed to one rotation axis +
5) and (6) were fixed with magnetic anisotropy at an angle of +45° with respect to the central axis of the shaft, but as shown in Figure 1, the elongated magnetic layers (b), ( The same effect can be obtained by fixing the shafts 11 to each other on the outer circumference of the shaft so as to make an angle of +45° with respect to the central axis of the shaft on the one hand, and to make an angle of −45° on the other hand with respect to the central axis of the shaft.

これは、トルク印加にょる引張応カ、圧縮応カが最大と
なる軸表面+45°方向に固着する磁性層(D。
This is a magnetic layer (D.

(至)が十分に細長い形状であれば、軸にトルクが加わ
ったとき、一方の磁性層はほとんど引張応力のみを受け
、他方の磁性層ははとんど圧縮応力のみを受けることと
なり9両磁性層が上記実施例と同様の透磁率変化を生ず
ることになるからである。
If (to) is sufficiently elongated, when torque is applied to the shaft, one magnetic layer will receive almost only tensile stress, and the other magnetic layer will receive almost only compressive stress, resulting in 9 This is because the magnetic layer causes a change in magnetic permeability similar to that in the above embodiment.

また上記説明では、受動軸が回転軸である場合について
述べたが9回転軸に限定されるものでないことはいうま
でもない。
Further, in the above description, the case where the passive shaft is a rotary shaft has been described, but it goes without saying that the passive shaft is not limited to nine rotary shafts.

[発明の効果コ 以上のようにこの発明によれば、受動軸外周に固着され
た異なる方向の磁気異方性をもつ第1及び第2の磁性層
と、これらをそれぞれ包囲するように受動軸に所定のギ
ャップをおいて巻回された第1及び第2の検出コイルと
を用いて磁気飽和形発振回路を構成し、受動軸そのもの
を発振回路の帰還要素として用い、トルク印加時に生ず
る上記各磁性層の透磁率変化を発振回路の出方信号のデ
ユーティ比変化として検出してトルクを検出するように
したので、非接触状態で静止時及び回転時双方のトルク
が検出でき、しかも検出コイルを受動軸に回転対称に巻
回しているから出方が軸の回転角依存性を持たせること
なく検出でき、しかも加わるトルクの向きをも同時に検
出できるという効果を有する。さらに、検出部分が磁性
層とこれを包囲する検出コイルとでこと足り、その構造
が非常に簡単であるという効果もある。
[Effects of the Invention] As described above, according to the present invention, the first and second magnetic layers having magnetic anisotropy in different directions are fixed to the outer periphery of the passive shaft, and the passive shaft is attached to the outer periphery of the passive shaft so as to surround them. A magnetic saturation type oscillator circuit is constructed by using the first and second detection coils wound with a predetermined gap between the Torque is detected by detecting changes in the magnetic permeability of the magnetic layer as changes in the duty ratio of the output signal of the oscillation circuit, so torque can be detected both at rest and when rotating without contact. Since it is wound rotationally symmetrically around the passive shaft, it has the effect that the direction of output can be detected without dependence on the rotation angle of the shaft, and the direction of the applied torque can also be detected at the same time. Furthermore, the detection part consists of a magnetic layer and a detection coil surrounding the magnetic layer, and the structure is very simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の動作原理を説明するための図、第2
図はこの発明の一実施例を示す構造図で。 第3図はその電気回路図、第4図、第5図は第3図の動
作を説明するための各部出力波形図、第6図、第1図は
この発明の他の実施例を示す電気回路図及び構造図であ
り9図において(1)は受動軸。 +5) 、 +6)は第1及び第2の磁性層、 +81
 、 +91は第1及び第2の検出コイル、 (Be)
 # (9c)はコレクタ巻線。 (8b)、(9b)はペース巻線、鱒は磁気飽和形発振
回路であるロイヤー発振回路、aυは波形整形回路。 63は積分回路、0階は増幅回路、(至)は抵抗結合型
インバータ回路、 Cl7) 、 @は細長い磁性材か
らなる磁性層である。なお、各図中同一符号は同一また
は相当部分を示すものとする。 代理人大岩増雄 (ほか2名)
Figure 1 is a diagram for explaining the operating principle of this invention, Figure 2 is a diagram for explaining the operating principle of this invention.
The figure is a structural diagram showing one embodiment of this invention. FIG. 3 is an electric circuit diagram thereof, FIGS. 4 and 5 are output waveform diagrams of each part to explain the operation of FIG. 3, and FIGS. 6 and 1 are electric circuit diagrams showing other embodiments of the present invention. This is a circuit diagram and a structural diagram, and in Figure 9, (1) is the passive shaft. +5), +6) are the first and second magnetic layers, +81
, +91 are the first and second detection coils, (Be)
# (9c) is the collector winding. (8b) and (9b) are pace windings, trout is a Royer oscillation circuit which is a magnetic saturation type oscillation circuit, and aυ is a waveform shaping circuit. 63 is an integrating circuit, the 0th floor is an amplifier circuit, (to) is a resistance-coupled inverter circuit, Cl7), @ is a magnetic layer made of an elongated magnetic material. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (and 2 others)

Claims (5)

【特許請求の範囲】[Claims] (1)トルクを受ける受動軸の外周に、互いに異なる方
向でかつ軸方向に対し45°の磁気異方性をもたせて固
着された第1及び第2の磁性層、これら灸磁性層のそれ
ぞれを包囲するように上記受動軸に所定のギャップを隔
てて巻回された第1及び第2の検出コイル、これら各検
出コイルを用いて構成された。上記各磁性層を固着した
受動軸を磁心とする磁気飽和形発振回路を備え、トルク
による上記各磁性層の透磁率変化を上記発振回路出力の
デユーティ比変化として検出するようにしたことを特徴
とするトルク検出装置。
(1) First and second magnetic layers fixed to the outer periphery of the passive shaft that receives torque in different directions and with magnetic anisotropy of 45° with respect to the axial direction, each of these moxibustion magnetic layers. The first and second detection coils are wound around the passive shaft with a predetermined gap therebetween, and each of these detection coils is used. The present invention is characterized by comprising a magnetic saturation type oscillator circuit whose magnetic core is a passive shaft to which each of the magnetic layers is fixed, and a change in magnetic permeability of each of the magnetic layers due to torque is detected as a change in duty ratio of the output of the oscillation circuit. Torque detection device.
(2)各検出コイルが、それぞれコレクタ巻線とベース
巻線とからなり、磁気飽和形発振回路がロイヤー発振回
路からなることを特徴とする特許請求の範囲第1項記載
のトルク検出装置。
(2) The torque detection device according to claim 1, wherein each detection coil includes a collector winding and a base winding, and the magnetic saturation type oscillation circuit includes a Royer oscillation circuit.
(3) 磁気飽和形発振回路が、各検出コイルなコレク
タ巻線とする抵抗結合型インバータ回路からなることを
特徴とする特許請求の範囲第1項記載のトルク検出装置
(3) The torque detection device according to claim 1, wherein the magnetic saturation type oscillation circuit comprises a resistance-coupled inverter circuit in which each detection coil has a collector winding.
(4)各磁性層が、互いに異なる方向でかつ軸方向に対
し45°の傾きをもって受動軸の外周に固着された細長
い磁性材からなることを特徴とする特許請求の範囲第1
項記載のトルク検出装置。
(4) Each magnetic layer is made of an elongated magnetic material fixed to the outer periphery of the passive shaft in different directions and at an angle of 45 degrees with respect to the axial direction.
Torque detection device described in section.
(5)各磁性層が、軟磁性の非晶質金属であることを特
徴とする特許請求の範囲第1項及び第4項記載のトルク
検出装置。
(5) The torque detection device according to claims 1 and 4, wherein each magnetic layer is made of a soft magnetic amorphous metal.
JP58153724A 1983-08-23 1983-08-23 Torque detecting device Pending JPS6044841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58153724A JPS6044841A (en) 1983-08-23 1983-08-23 Torque detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58153724A JPS6044841A (en) 1983-08-23 1983-08-23 Torque detecting device

Publications (1)

Publication Number Publication Date
JPS6044841A true JPS6044841A (en) 1985-03-11

Family

ID=15568706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58153724A Pending JPS6044841A (en) 1983-08-23 1983-08-23 Torque detecting device

Country Status (1)

Country Link
JP (1) JPS6044841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258132A (en) * 1985-05-13 1986-11-15 Yutaka Takahashi Magnetostriction detecting type torque sensor
US4766977A (en) * 1985-10-15 1988-08-30 Mitsubishi Denki Kabushiki Kaisha Load detecting apparatus for elevator
JPH0545536U (en) * 1991-11-18 1993-06-18 日本電子機器株式会社 Magnetostrictive torque sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258132A (en) * 1985-05-13 1986-11-15 Yutaka Takahashi Magnetostriction detecting type torque sensor
US4766977A (en) * 1985-10-15 1988-08-30 Mitsubishi Denki Kabushiki Kaisha Load detecting apparatus for elevator
JPH0545536U (en) * 1991-11-18 1993-06-18 日本電子機器株式会社 Magnetostrictive torque sensor

Similar Documents

Publication Publication Date Title
US5708216A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
US4416161A (en) Method and apparatus for measuring torque
JPS6275328A (en) Torque sensor
EP1752751B1 (en) A magnetometer and torque sensor assembly
JPS6228413B2 (en)
JPS6044841A (en) Torque detecting device
JPS60173434A (en) Torque detector
JPS60173433A (en) Torque detector
JPS6044839A (en) Torque detecting device
JP2540865B2 (en) Torque detector
JP2516489B2 (en) Force sensor and force measuring device
JPS6044842A (en) Torque detecting device
Barton et al. Industrial torque measurement using magneto-strictive torquemeters
JPS6161026A (en) Shaft torque meter
JPH1194658A (en) Torque sensor
JP2958846B2 (en) Angle detector
JPS6050429A (en) Torque sensor
JPS60195430A (en) Torque detecting device
Harada et al. A new torque transducer with permanent magnets and a ring core
KR0135506B1 (en) Measuring torque
JPS60236041A (en) Torque detecting device
JPH08122422A (en) Magnetic field sensor utilizing reversible susceptibility
JPS6044840A (en) Torque detecting device
CA1177668A (en) Apparatus for providing an indication of fluid flow through a fluid metering device
JPH055661A (en) Torque sensor with multifunction