JPS6044267B2 - Method for manufacturing high-strength calcium phosphate sintered body - Google Patents

Method for manufacturing high-strength calcium phosphate sintered body

Info

Publication number
JPS6044267B2
JPS6044267B2 JP53127851A JP12785178A JPS6044267B2 JP S6044267 B2 JPS6044267 B2 JP S6044267B2 JP 53127851 A JP53127851 A JP 53127851A JP 12785178 A JP12785178 A JP 12785178A JP S6044267 B2 JPS6044267 B2 JP S6044267B2
Authority
JP
Japan
Prior art keywords
calcium
frit
sintered body
calcium phosphate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53127851A
Other languages
Japanese (ja)
Other versions
JPS5556062A (en
Inventor
昭雄 高見
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP53127851A priority Critical patent/JPS6044267B2/en
Publication of JPS5556062A publication Critical patent/JPS5556062A/en
Priority to US06/171,409 priority patent/US4308064A/en
Priority to US06/256,007 priority patent/US4376168A/en
Publication of JPS6044267B2 publication Critical patent/JPS6044267B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、骨・歯に代わり得る生体材料(バイオセラ
ミックス)として、或いはICパッケージ基板等の高緻
密質セラミック基板として有用な、高強度かつ緻密質リ
ン酸カルシウムの制造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-strength and dense calcium phosphate, which is useful as a biomaterial (bioceramics) that can replace bones and teeth, or as a highly dense ceramic substrate such as an IC package substrate. .

リゾ酸カルシウムは生体と親和性を有し、その焼結体は
骨・歯に代わり得る生体材料として用いることが提案さ
れている。その他、その高緻密特性を利用してICパッ
ケージ基板として用いる外、高膨張性のセラミック材料
としても有用である。 従来このリン酸カルシウム焼結
体の製造方法としては、プレス後常圧で焼結する普通焼
結法、ホットブレス法等がある。
Calcium lysoate has an affinity for living organisms, and its sintered body has been proposed to be used as a biomaterial that can replace bones and teeth. In addition, it is useful as an IC package substrate due to its highly dense properties, and as a highly expansible ceramic material. Conventional methods for producing this calcium phosphate sintered body include a normal sintering method in which the sintered body is pressed and then sintered under normal pressure, a hot press method, and the like.

リン酸カルシウム粉末を単味で常圧下に焼結体(普通焼
結)させたとき、圧縮強度9O0に9/d程度(セラミ
ックス10〔7〕1975、474頁)で緻密度が低く
また、焼結後の冷却過程においてスポーリングを発生し
易く、即ちスポーリング抵抗に弱いという欠点がある。
他方、ホットプレス法では圧縮強度1000〜200
0に9/ c逍(医用器材研報〔Reportsoft
heInstituteforMedical& De
ntalEngineering〕7巻、113〜41
8頁(1973))と強度はかなり高くなるが、製法が
複雑であり、装置コストが大であつて量産も困難であり
、全体としてコストが高くつくという欠点を有している
。因みに、骨として一般に要求される強度は、圧縮強度
の場合約4000に9/dである。本発明は、このよう
な従来技術の欠点を除去する新たな製造方法を提供せん
とするものである。 即ち、本発明は、カルシウム/リ
ン原子比1.4〜1.75のカルシウムのリン酸塩を主
体とする粉末に、焼成後のリン酸カルシウム成分に対し
0.5〜15重量%のカルシウム/リン原子比0.2〜
0.75望ましくは0.3〜0.6を有するカルシウム
・リン酸系フリットを添加混合し焼結することを特徴と
するJリン酸カルシウム焼結体の製造方法である。
When a single calcium phosphate powder is sintered under normal pressure (normal sintering), the compressive strength is about 900 to 9/d (Ceramics 10 [7] 1975, p. 474), and the density is low. The disadvantage is that spalling tends to occur during the cooling process, that is, it is weak in spalling resistance.
On the other hand, the hot press method has a compressive strength of 1000 to 200
0 to 9/c (Medical Equipment Research Report [Reportsoft
he Institute for Medical & De
talEngineering] Volume 7, 113-41
8 (1973)), the strength is considerably high, but the manufacturing method is complicated, the equipment cost is high, mass production is difficult, and the overall cost is high. Incidentally, the strength generally required for bone is approximately 4000/9/d in the case of compressive strength. The present invention aims to provide a new manufacturing method that eliminates the drawbacks of the prior art. That is, the present invention provides powder mainly composed of calcium phosphate with a calcium/phosphorus atomic ratio of 1.4 to 1.75, and 0.5 to 15% by weight of calcium/phosphorus atoms based on the calcium phosphate component after firing. Ratio 0.2~
0.75, preferably 0.3 to 0.6, is added and mixed, and sintered.

以下本発明について詳述する。 リン酸カルシウム焼
結体製造のため本発明において用いる出発原料としては
、カルシウム/リン原子比(Ca/ P比)1.4〜1
.75のカルシウムのリ丁ン酸塩を主体とする粉末を用
いる。
The present invention will be explained in detail below. The starting material used in the present invention for producing a calcium phosphate sintered body has a calcium/phosphorus atomic ratio (Ca/P ratio) of 1.4 to 1.
.. A powder mainly composed of 75 calcium phosphate is used.

この原料粉末としては、水酸アパタイト112(Ca(
OH)。3Ca3(PO4)O)(Ca/p比5/3)
、第Ξリン酸カルシウム(Ca/P比3/2)又はこれ
らの混合物を主体とした粉末が属する。
As this raw material powder, hydroxyapatite 112 (Ca(
OH). 3Ca3(PO4)O) (Ca/p ratio 5/3)
, Ξ calcium phosphate (Ca/P ratio 3/2), or a mixture thereof.

このような出発原料粉末は、その他ピロリン酸カルシウ
ム、第一リン酸カルシウム等のリン酸カルシウム原料に
、炭酸カルシウム等のカルシウム塩を添加して水酸アパ
タイト又は第三リン酸カルシウムに近似の組成になるよ
う調合し、700〜1400℃の熱処理(仮焼)により
得ることができる。これに関しては、門間、金沢、石膏
石灰学会第54回学術講演会要旨10頁(1977年)
及び門間、金沢、第16回窯業基礎討論会7頂(197
奔)及び金沢、梅垣、セラミックス10〔7〕P463
(1975)に報告されている。この原料粉末に対しC
a/P原子比0.2〜0.75望ましくは0.3〜0.
6を有するカルシウム・リン酸系フリットを、焼結後の
リン酸カルシウム成分に対し0.5〜15重量%(以下
同様に重量%で示す)好ましくは2〜10%添加混合す
る。ここに用いるカルシウム・リン酸系フリットは焼結
助剤として添加されるものてあり、該フリットとしては
Ca・P2O,系フリットを用いる。この一例としては
、CacO3及びH3PO4を所望Ca/P比となるよ
うに配合し1300〜1400℃で溶融し、溶融物を急
水冷してさらに微粉砕して得られるものがある。この際
、不純物としてよくフリットに混入し易いものAl2O
3、SjO2、Na2O..Fe2O3、MgO..B
2O3等を小量含有することは、本発明の目的とする効
果にとつて大きな障害とはならない。該フリット中の不
純物量は、最終焼結体中のこれらの合量が約0.5%以
内にあれば、焼結体の強度に大きな影響は与えない。例
えばSiO2を5%フリット中に含.む助剤を5%添加
した焼結体(試料16)は、SiO2を含まない助剤を
用いたもの(試料7)と大きな差は認められない。また
前記フリットのCa/P比は前述の如く0.2〜0.7
5、好ましくは0.3〜0.6とするが、フリット組成
のCa過多又はP過多はいずれも焼結体の強度を減少さ
せる。
Such a starting raw material powder is prepared by adding a calcium salt such as calcium carbonate to other calcium phosphate raw materials such as calcium pyrophosphate and monobasic calcium phosphate to obtain a composition similar to that of hydroxyapatite or tribasic calcium phosphate. It can be obtained by heat treatment (calcination) at 1400°C. Regarding this, Monma, Kanazawa, Abstract of the 54th Academic Conference of the Gypsum and Lime Society, page 10 (1977)
and Monma, Kanazawa, 7th Summit of the 16th Ceramics Basics Forum (197
Kanazawa, Umegaki, Ceramics 10 [7] P463
(1975). C for this raw material powder
a/P atomic ratio 0.2-0.75, preferably 0.3-0.
6 is added and mixed in an amount of 0.5 to 15% by weight (hereinafter similarly expressed in weight%), preferably 2 to 10%, based on the calcium phosphate component after sintering. The calcium-phosphate frit used here is added as a sintering aid, and a Ca.P2O-based frit is used as the frit. An example of this is one obtained by blending CacO3 and H3PO4 to a desired Ca/P ratio, melting at 1300 to 1400°C, rapidly cooling the melt with water, and further pulverizing it. At this time, Al2O, which is often mixed into the frit as an impurity,
3, SjO2, Na2O. .. Fe2O3, MgO. .. B
Containing a small amount of 2O3 etc. does not pose a major hindrance to the desired effects of the present invention. The amount of impurities in the frit does not significantly affect the strength of the sintered body as long as the total amount of impurities in the final sintered body is within about 0.5%. For example, if 5% SiO2 is included in the frit. There is no significant difference between the sintered body (sample 16) to which 5% of the auxiliary agent was added and the sintered body (sample 7) in which the auxiliary agent did not contain SiO2. Further, the Ca/P ratio of the frit is 0.2 to 0.7 as described above.
5, preferably from 0.3 to 0.6, but too much Ca or too much P in the frit composition will reduce the strength of the sintered body.

このようなりルシウム・リン酸系フリットの原料粉末に
対する配合割合は、0.5〜15%とし残部を原料粉末
(水酸アパタイト、第三リン酸カルシ4ウム又はこれら
の混合物)とする。
The blending ratio of the lucium-phosphate frit to the raw material powder is 0.5 to 15%, with the remainder being the raw material powder (hydroxyapatite, tricalcium phosphate, or a mixture thereof).

フリットの割合の好ましい範囲は2〜10%である。フ
リットの配合割合(内%)が15%をこえると、本発明
の目的とする高強度は達成し難く、20(内)%では逆
に、原料粉末単味よりも焼結体強度(曲げ強さ)は低下
する。また、フリット添加の効果の下限は約0.5%で
ある。なお本発明の効果は、前記フリットを焼結助剤と
して用いることに基づくものである。
The preferred range of the frit percentage is 2-10%. If the blending ratio (in%) of frit exceeds 15%, it is difficult to achieve the high strength that is the objective of the present invention, and conversely, if the blending ratio (in%) of frit exceeds 15%, the strength of the sintered body (bending strength) will be lower than that of the raw material powder alone. ) decreases. Further, the lower limit of the effect of adding frit is about 0.5%. Note that the effects of the present invention are based on the use of the frit as a sintering aid.

即ち、フリットと同様の組成比に配合したピロリン酸カ
ルシウム及び炭酸カルシウムの混合物をフリット相当量
、前記原料粉末に混合して成型焼結したものは、効果が
殆んど認められない(試料12)。この焼結体試料のX
線回折によれば、ピロリン酸カルシウム及び炭酸カルシ
ウムの夫々の結晶ピークが認められたが、本発明のフリ
ットを用いた焼結体においては、そのようなピークは認
められなかつた。出発原料として、前記の水酸アパタイ
ト、第三リン酸カルシウム又はこれらの混合物の外には
、一般式Ca5(0H,F,CI)(PO4)3で表わ
されるアパタイト(F,Cl系アパタイト)、或いはこ
れとの混合物も用いることができるが、第一、第二リン
酸カルシウム、ピロリン酸カルシウムを用いたとき、フ
リット添加の効果は認められず、曲げ強度は非常に低い
That is, when a mixture of calcium pyrophosphate and calcium carbonate blended in the same composition ratio as the frit was mixed with the raw material powder in an amount equivalent to the frit, and molded and sintered, almost no effect was observed (Sample 12). X of this sintered body sample
According to line diffraction, crystal peaks of calcium pyrophosphate and calcium carbonate were observed, but no such peaks were observed in the sintered body using the frit of the present invention. As a starting material, in addition to the above-mentioned hydroxyapatite, tribasic calcium phosphate, or a mixture thereof, apatite (F, Cl-based apatite) represented by the general formula Ca5(0H,F,CI)(PO4)3, or this Although a mixture of primary and secondary calcium phosphates and calcium pyrophosphates is used, no effect of frit addition is observed and the bending strength is very low.

叙上の如く、本発明の方法により得られる高強度リン酸
カルシウム焼結体は緻密質であり、前述の用途の外、さ
らに、熱膨張係数α=120〜140×10−7℃−1
と大きいので、金属との組合せ耐熱材料として用いるこ
とが出来る。
As mentioned above, the high-strength calcium phosphate sintered body obtained by the method of the present invention is dense, and in addition to the above-mentioned uses, it also has a thermal expansion coefficient α = 120 to 140 × 10-7 °C
Because of its large size, it can be used as a heat-resistant material in combination with metals.

また■TRlテープデッキ等の磁気ヘッド(フェライト
)の止め具材料として用いることができ、さらに高膨張
性の封着材料としても用いることが出来るという利点を
有する。以下に本発明の実施例を記述する。
Furthermore, it has the advantage that it can be used as a stopper material for magnetic heads (ferrite) such as TRl tape decks, and can also be used as a highly expansible sealing material. Examples of the present invention will be described below.

実施例1 Ca/p原子比0.3〜0.6となるようにH3PO4
とCacO3とを混合し、該混合物を1300〜140
0℃、白金ルツボ内で約2時間加熱して溶融し、急水冷
した後粉砕して、CaO−P2O5系粉末フリットを得
た、次いで、水酸アパタイト、第三リン酸カルシウム、
及びこれら両者の混合物を出発原料粉末として、上記フ
リット粉末を所定量添加湿式混合し、バインダーとして
カンフアー3%を適量のエーテルと共に混合して加え、
ブレス圧800k9/dにて成型し、成型体を昇温速度
300℃/時間焼成温度1000〜1500℃の範囲内
で各1時間保持して焼結体を得た。
Example 1 H3PO4 so that the Ca/p atomic ratio is 0.3 to 0.6
and CacO3, and the mixture was heated to 1300 to 140
The mixture was melted by heating in a platinum crucible at 0°C for about 2 hours, rapidly cooled with water, and then crushed to obtain a CaO-P2O5 powder frit.Then, hydroxyapatite, tricalcium phosphate,
A mixture of both of these is used as a starting material powder, a predetermined amount of the above frit powder is added and wet-mixed, and 3% camphor is mixed and added with an appropriate amount of ether as a binder.
The molded body was molded at a press pressure of 800 k9/d, and the molded body was held at a heating rate of 300° C./hour at a firing temperature of 1000 to 1500° C. for 1 hour each to obtain a sintered body.

これらの各焼結温度による焼結体のうち、強度の一番高
いものを表1に掲げる。水酸アパタイト単味のもの(試
料1)は曲げ強度800kg/CTlと低く、スポーリ
ング抵抗も弱いが、フリットを5〜10%添加した試料
はいずれも、曲げ強度が顕著に増大している。さらに、
表1には掲げていないが、圧縮強度は曲げ強度の約3〜
4倍の値を示し、例えば試料4では約4倍の圧縮強度を
示した。フリット添加焼結体のうち曲げ強度大なるもの
について、焼結体をX線回折により調べた所、主成分は
水酸アパタイト、β一第三リン酸カルシウムてあること
が判明した。実施例2 S102を1.2Ca0−P2O5(Ca/P比0.6
)に対し、0.08分子比含有するフリットを予め調整
し、この不純物含有フリットを用いて、その他実施例1
と同様にして焼結体を得た。
Among the sintered bodies produced at each of these sintering temperatures, the one with the highest strength is listed in Table 1. The sample containing only hydroxyapatite (sample 1) has a low bending strength of 800 kg/CTl and has weak spalling resistance, but all the samples with 5 to 10% frit added have significantly increased bending strength. moreover,
Although not listed in Table 1, the compressive strength is approximately 3 to 30% of the bending strength.
For example, sample 4 showed a compressive strength of about 4 times. Among the frit-added sintered bodies, those with high bending strength were examined by X-ray diffraction, and it was found that the main components were hydroxyapatite and β-monocytophosphate. Example 2 S102 was converted to 1.2Ca0-P2O5 (Ca/P ratio 0.6
), a frit containing 0.08 molar ratio was prepared in advance, and using this impurity-containing frit, other Example 1
A sintered body was obtained in the same manner as above.

その各温度焼結物の中で曲げ強度最大のものを表2に示
す。曲げ強度において、実施例1の不純物を含有しない
ものと大きな差は認められなかつた。対照例(試料12
−15) (試料12) 水酸アパタイトを出発原料として、フリットに代わりピ
ロリン酸カルシウムと炭酸カルシウムをCa/p原子比
0.6となるように配合したものを用いてその他は実施
例1と同様な手順で試料を得た。
Table 2 shows the one with the highest bending strength among the sintered products at each temperature. There was no significant difference in bending strength from that of Example 1, which did not contain any impurities. Control example (sample 12
-15) (Sample 12) Using hydroxyapatite as a starting material and using a mixture of calcium pyrophosphate and calcium carbonate in place of frit so that the Ca/p atomic ratio was 0.6, the rest was the same as in Example 1. A sample was obtained according to the procedure.

その結果を表1、試料12として示す。強度は実施例7
と対比してはるかに低い。また焼結体のX線回折図には
、ピロリン酸カルシウム及び炭酸カルシウムのピークが
認められた。(試料13−15) 出発原料として第一リン酸カルシウム、第二リン酸カル
シウム、及びピロリン酸カルシウムを用い、フリットを
添加混合し、その他実施例1と同様にして試料を得た。
The results are shown as Sample 12 in Table 1. Strength is Example 7
much lower compared to Moreover, peaks of calcium pyrophosphate and calcium carbonate were observed in the X-ray diffraction diagram of the sintered body. (Sample 13-15) A sample was obtained in the same manner as in Example 1, using monocalcium phosphate, dibasic calcium phosphate, and calcium pyrophosphate as starting materials, adding and mixing frit.

Claims (1)

【特許請求の範囲】[Claims] 1 カルシウム/リン原子比1.4〜1.75でありか
つ水酸アパタイトないし一般式Ca_5(OH、F、C
l)(PO_4)で表わされるアパタイト、第三リン酸
カルシウムの1以上から成るカルシウムのリン酸塩を主
体とする粉末に、焼成後のリン酸カルシウム成分に対し
0.5〜15重量%のカルシウム/リン原子比1.2〜
0.75を有するカルシウム・リン酸系フリットを添加
混合し焼結することを特徴とするリン酸カルシウム焼結
体の製造方法。
1 Calcium/phosphorus atomic ratio 1.4 to 1.75 and hydroxyapatite or general formula Ca_5 (OH, F, C
l) A calcium/phosphorus atomic ratio of 0.5 to 15% by weight based on the calcium phosphate component after firing is added to powder mainly composed of calcium phosphate consisting of one or more of apatite and tricalcium phosphate represented by (PO_4). 1.2~
1. A method for producing a calcium phosphate sintered body, which comprises adding and mixing a calcium-phosphate frit having a particle diameter of 0.75 and sintering the mixture.
JP53127851A 1978-10-19 1978-10-19 Method for manufacturing high-strength calcium phosphate sintered body Expired JPS6044267B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP53127851A JPS6044267B2 (en) 1978-10-19 1978-10-19 Method for manufacturing high-strength calcium phosphate sintered body
US06/171,409 US4308064A (en) 1978-10-19 1980-07-23 Phosphate of calcium ceramics
US06/256,007 US4376168A (en) 1978-10-19 1981-04-21 Phosphate of calcium ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53127851A JPS6044267B2 (en) 1978-10-19 1978-10-19 Method for manufacturing high-strength calcium phosphate sintered body

Publications (2)

Publication Number Publication Date
JPS5556062A JPS5556062A (en) 1980-04-24
JPS6044267B2 true JPS6044267B2 (en) 1985-10-02

Family

ID=14970229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53127851A Expired JPS6044267B2 (en) 1978-10-19 1978-10-19 Method for manufacturing high-strength calcium phosphate sintered body

Country Status (1)

Country Link
JP (1) JPS6044267B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1247960A (en) 1983-03-24 1989-01-03 Hideki Aoki Transcutaneously implantable element

Also Published As

Publication number Publication date
JPS5556062A (en) 1980-04-24

Similar Documents

Publication Publication Date Title
Clifford et al. Apatite-mullite glass-ceramics
US4308064A (en) Phosphate of calcium ceramics
Rafferty et al. Influence of fluorine content in apatite–mullite glass‐ceramics
US4643982A (en) High-strength glass-ceramic containing anorthite crystals and process for producing the same
Jinlong et al. Investigation of phase evolution during the thermochemical synthesis of tricalcium phosphate
JPS6044267B2 (en) Method for manufacturing high-strength calcium phosphate sintered body
JPS6050744B2 (en) High strength calcium phosphate sintered body
Goto et al. Sintering mechanism of hydroxyapatite by addition of lithium phosphate
JPH0555150B2 (en)
JPS6044268B2 (en) High strength calcium phosphate sintered body
JPS60161368A (en) Manufacture of high strength calcium phosphate sintered body
JPS6025383B2 (en) Method for producing calcium phosphate sintered body
JPS59112908A (en) Preparation of member having high strength for organism
JPS60137853A (en) High-strength crystallized glass containing apatite crystal and its production
JPH02180737A (en) Heat and fire resistant cement composition and production thereof
Zhu et al. Preparation of phosphate glass composite and their prosthetic applications
JPS59468B2 (en) High expansion porcelain composition
US4413062A (en) Molding composition and product produced therefrom
JPH01298055A (en) Production of calcium phosphate sintered compact
JPH0191865A (en) Inorganic biomaterial and its manufacture
JPS6252163A (en) Apatite base sintered body
JPH0247417B2 (en)
JPH02258663A (en) Calcium phosphate-based substance and production thereof
JPH0138070B2 (en)
JPS6221747B2 (en)