JPS6044150A - Production of water soluble casting mold - Google Patents

Production of water soluble casting mold

Info

Publication number
JPS6044150A
JPS6044150A JP58151105A JP15110583A JPS6044150A JP S6044150 A JPS6044150 A JP S6044150A JP 58151105 A JP58151105 A JP 58151105A JP 15110583 A JP15110583 A JP 15110583A JP S6044150 A JPS6044150 A JP S6044150A
Authority
JP
Japan
Prior art keywords
mold
molding
casting
core
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58151105A
Other languages
Japanese (ja)
Other versions
JPH0249818B2 (en
Inventor
Takeshi Imura
井村 武
Masaki Sakakibara
榊原 将樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58151105A priority Critical patent/JPS6044150A/en
Publication of JPS6044150A publication Critical patent/JPS6044150A/en
Publication of JPH0249818B2 publication Critical patent/JPH0249818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a casting mold which has excellent deflection strength and is free from deformation and crack by casting pressure by adding water to a mixture composed of gypsum, hydrate of magnesium sulfate and refractories to prepare a slurry, subjecting the molding to injection molding with pressure in a mold to form a molding and drying the molding in twt stages. CONSTITUTION:Gypsium and hydrate of magnesium sulfate, for example, 7- hydrate are mixed to <=3:7 by weight. Water is added to the mixture composed thereof to prepare a slurry. The slurry is injection-molded in a mold under the pressure exerted thereto to form a molding having the shape of a casting mold. Such molding is subjected to primary drying at >=120 deg.C and further to secondary drying at >=200 deg.C.

Description

【発明の詳細な説明】 本発明は水溶性の鋳型のうち、特に表層部に硫酸マグネ
シウムの結晶微粒子を多く含む緻密層を形成した鋳型の
・製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a water-soluble mold, particularly a mold in which a dense layer containing many crystalline fine particles of magnesium sulfate is formed in the surface layer.

一般に鋳造法は、重力鋳造法と圧力鋳造法に大別され、
重力鋳造法によって、中窒部を有する製品或いは複雑形
状の製品を鋳造する場合には、珪砂等を基桐とした鋳型
(中子を含む)を用いている。例えば中子を用いる場合
にあっては、型内に中子をセットした後、金属の溶湯を
注入し、この溶湯が凝固した後に中子を崩壊させて取り
除き、所望形状の鋳物製品を得るよう・にしている。
Casting methods are generally divided into gravity casting methods and pressure casting methods.
When casting a product having a core or a complex shape by the gravity casting method, a mold (including a core) whose base material is silica sand or the like is used. For example, when using a core, after setting the core in a mold, molten metal is injected, and after the molten metal solidifies, the core is disintegrated and removed to obtain a cast product of the desired shape. ·I have to.

しかじなが′ら、中子に限らず複雑な形状の鋳型を使用
した場合には、鋳造後の鋳型の取り除きが面倒で、鋳物
内部に珪砂等が残ってしまう不利がある。
However, when a complex-shaped mold is used, not limited to the core, it is troublesome to remove the mold after casting, and there is a disadvantage that silica sand and the like remain inside the casting.

一方、ダイカスト法などの圧力鋳造によって中空状の鋳
物金得ようとする場合、前記と同様の珪砂等を基材とし
た中子を用いろと、先ず強度的に溶゛湯圧力に耐えられ
ず、且つ溶湯の差し込みがあるため鋳肌も悪くなる不利
がある。このため、ダイカスト法などにあっては、金属
性鋳型(中子)やNa、 Kなどを含んだアルカリ金属
塩の鋳型(中子)或いは鋳造後に鋳型(中。子)のみを
溶出しイIIるようにした低融点合金かもな7)鋳型(
中子)音用いている。
On the other hand, when trying to obtain hollow castings by pressure casting such as die casting, it is recommended to use a core made of silica sand or the like as the base material, as it is not strong enough to withstand the pressure of the molten metal. Moreover, since the molten metal is inserted, there is a disadvantage that the casting surface deteriorates. For this reason, in die casting methods, etc., only the metal mold (core), the mold (core) of an alkali metal salt containing Na, K, etc., or the mold (core) after casting is eluted. 7) Mold (
Nakako) sound is used.

しかし1工から、金属性v5型は引き抜き或いは取り出
し可能な形状としなければならないので複雑形状の鋳物
を製造することがでさず、丑たアルカリ金属塩の鋳型に
強度的に複雑形状0も0)に適さず、更に、低融点合金
の鋳型は加熱溶出時に鋳造合金と反応して化合物を作り
、鋳肌を損う等の欠点があり実用的でな℃・0 斯る従来の問題点を解決すべく本出願人は先に特願昭5
7−62003号として、溶湯圧先制えることができ且
つ注水による崩壊性に優れた鋳型の製造方法を提案した
。本発明は特願昭5’1L−62003号の製造方法の
目的に加うろに、更に成形が極めて容易で作業性の向上
を目的としてなされたものであゃ、この目的達成のため
本発明方法は、石こう、硫酸マグネシウムの水和物、粒
状又は粉状の耐火物に水を加えてスラリーとする工程と
、このスシリーヲ射出成形して鋳型形状をした成形物を
作る工程と、この成形物を異なる温度で二段階に乾燥せ
しめる工程とからなることをその構成上の特徴としてい
る。
However, since the metal V5 mold must be shaped so that it can be pulled out or removed from the first stage, it is not possible to manufacture castings with complex shapes, and the strength of the molds made of alkali metal salts is too complex. ), and furthermore, molds made of low melting point alloys react with the cast alloy during heat elution to form compounds, damaging the casting surface, making them impractical. In order to solve the problem, the applicant first filed a patent application in 1973.
No. 7-62003, we proposed a method for manufacturing a mold that can control the pressure of molten metal and has excellent disintegration properties when poured with water. In addition to the purpose of the manufacturing method disclosed in Japanese Patent Application No. 5'1L-62003, the present invention has been made for the purpose of making molding extremely easy and improving workability. The process involves adding water to gypsum, magnesium sulfate hydrate, granular or powdered refractories to make a slurry, injection molding this sushiry to make a mold-shaped product, and making this molded product. Its structural feature is that it consists of two steps of drying at different temperatures.

以下に本発明に係る水溶性鋳型の製造方法σ) −例を
工程順に説明する。
Below, an example of the water-soluble mold manufacturing method σ) according to the present invention will be explained in order of steps.

先ず、石こ5 (CaSO4・%H20)に硫酸マグネ
シウム水和物、例えば7水塩(MgSO4・7H2,0
)を混合する。この混合割合は硫酸マグネシウムの量7
5S石こうの量よりも多くなるように、例えは重量比で
3=7以上となるようにずろ。ここで、無水硫酸マグネ
シウムとせず水和物としたのは、無水硫酸マグネシウム
とする仁、後にスラリーを凝固せしめる際に、無水硫酸
マグネシウムが石こう、l:Dも先に凝固し、フローテ
ーション現象、つまり混合物中の硫酸マグネシウムの結
晶微粒子が成形物(鋳型)内の水分の移動に伴って成形
物の最外表面に東″1.る現象が生じなくなり、後に硫
酸マグネシウムの結晶微粒子を多く含む緻密な表層部が
形成されなくなることによる。!た、硫酸マグネシウム
水和物の添加量金石こう」ン、上としたのは、硫酸マグ
ネシウムの添加量が少ないと、前記したフローテーショ
ン現象が題著とならず、且つ熱間強度が低下することに
よる。
First, magnesium sulfate hydrate, for example, heptahydrate (MgSO4.7H2,0
) to mix. This mixing ratio is the amount of magnesium sulfate 7
Adjust the amount so that it is larger than the amount of 5S gypsum, for example, so that the weight ratio is 3 = 7 or more. Here, the hydrate was used instead of anhydrous magnesium sulfate. When the slurry was solidified later, the anhydrous magnesium sulfate was solidified first, and the l:D was also solidified first, causing a flotation phenomenon. In other words, the phenomenon in which the fine crystalline particles of magnesium sulfate in the mixture migrate to the outermost surface of the molded article due to the movement of moisture within the molded article (mold) does not occur, and the fine crystalline particles of magnesium sulfate in the mixture will later form a dense layer containing many fine crystalline particles of magnesium sulfate. This is due to the fact that the amount of magnesium sulfate hydrate added to gold gypsum does not form.The above reason is that if the amount of magnesium sulfate added is small, the flotation phenomenon described above will occur. This is because the hot strength is lowered and the hot strength is lowered.

尚、石こうに添加する硫酸マグネシウム水和物の水分子
数は上記に限らず、1.2..4.5.6.12等の水
分子が結合した水和物全使用することが可能である。
Incidentally, the number of water molecules in the magnesium sulfate hydrate added to the plaster is not limited to the above, but may be 1.2. .. It is possible to use all hydrates with bound water molecules, such as 4.5.6.12.

このように、石こうと硫酸マグネシウム水和物とからな
る混合物に粉末状耐火物と水を加え、次いで珪砂などの
粒状耐火物を混合してスラリーを生成する。尚、スラリ
ーを生成するにあたっては、スラリー中への気泡の巻、
き込みを極力抑えるべく、静かに攪拌するか、好ましく
は減圧下にスラリーをNき脱泡するようにし、後の成形
物表面を良好にするようにしてもよい。
Thus, a powdered refractory and water are added to a mixture of gypsum and magnesium sulfate hydrate, and then a granular refractory such as silica sand is mixed in to form a slurry. In addition, when generating the slurry, the winding of air bubbles into the slurry,
In order to suppress the entrainment as much as possible, the slurry may be stirred gently or preferably the slurry may be defoamed with nitrogen under reduced pressure to improve the surface of the molded product afterward.

以上のようにして得られたスラリーを圧力を加えて型内
に射出成形し、2分〜4分静置することで、石こ5に凝
固せしめた後離型、し、目的とする鋳型形状をなす成形
物を得る。このようにして得られた成形物の強度(抗折
力)及び密度と成形圧力との関係を第1図に示した。第
1図から明らかなように、圧力を加えて射出成形した場
合には、少くとも密度は2.217’ /cA以上とな
り、流し込み成形した場合の密度20?1ctd程度)
と比べ大巾に密度が向上していることが分る。また密度
の向上に伴って抗折力も向上し、特に抗折力については
離型時間が影響することが分る。つまり離型時間が2分
程度では抗折力は約15〜であるのに対し、離型時間を
10分とした場合には抗折力は45〜以上となる。
The slurry obtained in the above manner is injection molded into a mold by applying pressure, and left to stand for 2 to 4 minutes to solidify into a stone 5, which is then released from the mold to achieve the desired mold shape. A molded article is obtained. FIG. 1 shows the relationship between the strength (transverse rupture strength) and density of the molded product thus obtained and the molding pressure. As is clear from Figure 1, when injection molding is applied with pressure, the density is at least 2.217'/cA, and when cast molding is performed, the density is about 20 to 1 ctd).
It can be seen that the density has been greatly improved compared to the previous one. Furthermore, as the density increases, the transverse rupture strength also improves, and it can be seen that the demolding time particularly affects the transverse rupture strength. That is, when the mold release time is about 2 minutes, the transverse rupture strength is about 15 or more, whereas when the mold release time is about 10 minutes, the transverse rupture strength is about 45 or more.

次に型から取り出した上記成形物を、120℃以下の乾
燥炉にて2時間以上、好ましくは2〜3時間−次乾燥を
行う。ここで−次乾燥温度を120℃以下としたのは、
120℃以上の温度で乾燥せしめると、石こうの水和物
(CaSO4・%H20)及び値tVマグネシウムの水
和物の脱水反応が急激に発生し、フローテーションによ
って生じた鋳型(成形e/J)最外表面の緻密な層の通
気が悪くなり、部分的に破裂状態となり、鋳型としての
機能を果たせないことによる。また、乾燥時間音2時間
以上としたのは、第2図にも示すように、表面緻笛層の
生成が2時間以下では1wnに満たず、特に乾燥時間を
1時間以下とすると、鋳型中の水分の除去を充分に行え
ず、ft1X>型取出後に変形音生じることによる。
Next, the molded product taken out from the mold is subjected to secondary drying in a drying oven at 120° C. or lower for 2 hours or more, preferably 2 to 3 hours. Here, the reason why the -second drying temperature was set to 120℃ or less is because
When dried at a temperature of 120°C or higher, a dehydration reaction of gypsum hydrate (CaSO4 %H20) and tV magnesium hydrate occurs rapidly, and the mold formed by flotation (molding e/J) This is because the dense layer on the outermost surface has poor ventilation, resulting in partial rupture and the inability to function as a mold. In addition, the reason why the drying time was set to 2 hours or more was because, as shown in Figure 2, the formation of a surface fine layer does not reach 1wn if the drying time is 2 hours or less, and if the drying time is 1 hour or less, This is because moisture cannot be removed sufficiently and deformation noise occurs after removing the mold.

次いで、−次乾燥が済んだ成形物を更に200℃以上の
温度で二次乾燥せしめる。この二次乾燥の温度全200
℃以上としたのは、200℃以下の温度で二次乾燥を行
うと、石こうの水和物の脱水反応、即ち、CaSO4”
 %HBO→CaSO4+%l−120の反応が生じな
い為、鋳造後に残留結晶水が製品に悪影響企及ぼすおそ
れがあることによる。
Next, the molded product that has undergone secondary drying is further subjected to secondary drying at a temperature of 200° C. or higher. The total temperature of this secondary drying is 200
℃ or higher is because if secondary drying is performed at a temperature of 200℃ or lower, a dehydration reaction of gypsum hydrate occurs, that is, CaSO4"
This is because the reaction of %HBO→CaSO4+%l-120 does not occur, so there is a risk that residual water of crystallization may have an adverse effect on the product after casting.

以上の如くして得られた鋳型の抗折力音信の方法によっ
て得たものと比較した結果を第3図に示す。この図から
明らかなように、本発明方法によって得られた鋳型は従
来のものに比べ、抗折力に優れ、鋳込圧力による変形、
熱衝撃、熱応力による割れ等の発生がないことが分る。
FIG. 3 shows the results of comparison of the mold obtained as described above with that obtained by the transverse rupture force transmission method. As is clear from this figure, the mold obtained by the method of the present invention has superior transverse rupture strength compared to conventional molds, and is less susceptible to deformation due to pouring pressure.
It can be seen that there is no occurrence of cracking due to thermal shock or thermal stress.

そして、実際に上記鋳型を中子としてダイカスト鋳造を
行った結果、鋳造時に中子の変形、割れ、或いは中子表
面への溶湯の差し込みもなく、更に噴射水の洗浄で容易
に崩壊溶出した。
As a result of actual die casting using the above mold as a core, there was no deformation or cracking of the core during casting, nor was there any penetration of molten metal into the surface of the core, and the core was easily disintegrated and eluted when washed with sprayed water.

以下に更なる具体例実施例を述べる。Further specific examples will be described below.

(実施例1) 石こう水和物(CaSO4・”/2H20) 6 wt
 % ニ硫酸マグネシウム水和物(Mg S 04・7
1−L+0 ) 6.8 wt%全混ぜ、この混合物に
粉末側人物としてのムライトフラワー24.4wt%及
び水12.8wtチ入れ、更に粒状耐火物としての珪砂
(6分相9)50wt%を入れ、減圧室内で混合してス
ラリーとし、このスラリーを型内に約60〜の圧力で射
出成形して約2分経過した後、凝固した成形物を取り出
し、直ちに80℃の乾燥炉で3時間−次乾燥し、その後
300℃の乾燥炉で3時間程二次乾燥せしめて中子全得
fc。
(Example 1) Gypsum hydrate (CaSO4・”/2H20) 6 wt
% Magnesium disulfate hydrate (Mg S 04.7
1-L+0) 6.8 wt%, add 24.4 wt% of mullite flour as a powder side and 12.8 wt of water to this mixture, and further add 50 wt% of silica sand (6-part phase 9) as a granular refractory. The slurry was then injection molded into a mold at a pressure of about 60°C. After about 2 minutes, the solidified molded product was taken out and immediately placed in a drying oven at 80°C for 3 hours. -Next drying, and then secondary drying for about 3 hours in a drying oven at 300°C to obtain the entire core fc.

得られた中子の構造は第4図に示す如く、3)彊から成
っており、〔表〕からも明らかなように、中子1の最外
側にはMgSO4の結晶微粒子を多く含んだ組織的に極
めて緻密な表層2が形成され、この表層2の内側にはM
gSO4の含有量が若干少く、組織的にやや粗くなった
中間層3が形成され、更に最も内側にはMg S 04
の含有量が極めて少なく、粗い組織の中心層4が形成さ
れる。
As shown in Figure 4, the structure of the obtained core consists of 3) ridges, and as is clear from the table, the outermost part of core 1 has a structure containing many crystalline fine particles of MgSO4. An extremely dense surface layer 2 is formed, and inside this surface layer 2, M
An intermediate layer 3 with a slightly lower content of gSO4 and a slightly rougher structure is formed, and the innermost layer contains MgSO4.
A center layer 4 with a coarse structure is formed.

〔表〕〔table〕

そして、上記中子を型内にセットし、単気筒のシリンダ
ホートラ、射出圧力600〜、h(J合金の溶湯温度を
700℃としてダイカスト鋳造したところ、差し込みの
全くない良好な鋳肌の製品が得られた。
Then, the above-mentioned core was set in a mold, and die-casting was performed using a single-cylinder cylinder, injection pressure 600~, h (J alloy molten metal temperature at 700°C), and a product with a good casting surface without any insertions. was gotten.

捷た、鋳造後の中子の排除には20シの圧力で60℃の
温水を噴出せしめたところ容易に中子は崩壊溶出した。
To remove the broken core after casting, hot water at 60° C. was jetted under a pressure of 20 cm, and the core easily collapsed and eluted.

(実施例2) 石こう水和物(CaS、046 %HzO) 10 w
t%、硫酸マグネシウム(Mg S 04・7’H20
) 15 wt%、ムライトフラワー21wt%、珪砂
45.5 wt%及び水8.5wt%全原料として、前
記実施例1と同様の条件で、自動車用シリンダブロック
鋳造用の中子全製造した。
(Example 2) Gypsum hydrate (CaS, 046%HzO) 10w
t%, magnesium sulfate (Mg S 04.7'H20
) 15 wt%, mullite flour 21 wt%, silica sand 45.5 wt%, and water 8.5 wt% as the total raw materials, and under the same conditions as in Example 1, a core for casting an automobile cylinder block was manufactured.

この中子を型にセットし、射出圧力240 V* 、A
7合金(ADC1’2相肖)σ)溶湯温度730℃0)
条件で前記自動車用シリンダブロックrpj造したとこ
ろ、溶湯の差し込みが全くなく、夕tモ1、も良好なり
5111t’t:もち、且つ内部も健全な製品力;イイ
られた。
Set this core in a mold and apply an injection pressure of 240 V*, A
7 alloy (ADC1'2 phase ratio) σ) Molten metal temperature 730℃0)
When a cylinder block for an automobile was manufactured under the above-mentioned conditions, there was no insertion of molten metal at all, and the product was in good condition.

尚、以上は本発明の実施の一例K 3fj2き゛う゛、
IJ衰7JIIする耐火物はムライトフラワー、刊−少
に1j髪らう゛、ジルコンフラワー、シリカフラワー、
ジルコ/ツ−ンド、アルミサンド等の金属酸イヒ1勿、
及び金1・4米1″l子を使用しても前記と同様σつ効
タロを得ること力(でき、また、本発明方法によって得
ら才tた中子等θり鋳型は圧力鋳造法に限らす重力四′
法にも女子う塩1−るものである。
The above is an example of implementing the present invention.
IJ decline 7JII refractories include mullite flower, published-1J hair rough, zircon flower, silica flower,
Metal acids such as Zirco/Tuned, aluminum sand, etc.
Even if gold 1.4 rice 1"l is used, it is possible to obtain the same σ-strength as described above. Also, the core etc. θ-shaped mold obtained by the method of the present invention can be obtained by pressure casting. Gravity limited to 4′
There is also a law against women.

以上に説明したように本発明によ涛1ま、石こう、耐火
物等とともに硫酸マグネ7ウムθ) 71(1ll−D
 ’l勿力・らなる鋳型形状に成形嘔れた成形η勿會二
段1@に乾偵とせしめ、成形物表面にフローテーション
によって硫酸マグネシウムの微細結晶を多く含む緻密A
m k形成し、内部を比較的粗〜・組織となるようにし
たので、従来の如く中子(鋳型)表面にコーチづングを
施すことなく、鋳肌の良好な製品を得ることができる。
As explained above, according to the present invention, magnesium sulfate 71 (1ll-D
Formed into a mold shape, the molded material was molded into a mold shape.
Since the core (mold) has a relatively rough texture inside, it is possible to obtain a product with a good casting surface without applying coaching to the surface of the core (mold) as in the conventional method.

また前記成形物を成形するにあたり、射出成形を用いる
ようにしたので、成形物自体の抗折力及び密度が向上す
るため鋳造時の圧力に充分耐え、溶湯の差し込みもなく
、成形時間の短縮が図れるとともに成形物の精度も向上
する。したがって製品自体の寸法精度を高めることもで
きる等多くの効果を発揮する。
In addition, since injection molding is used to mold the molded product, the transverse rupture strength and density of the molded product itself are improved, so it can withstand the pressure during casting, and there is no need to insert molten metal, reducing molding time. This also improves the precision of the molded product. Therefore, many effects such as being able to improve the dimensional accuracy of the product itself can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形圧力と抗折力及び密度との関係を示すグラ
フ、第2図は乾燥時間と表面緻密層の厚さとの関係を示
すグラフ、第3図は乾燥温度と抗折力との関係を示すグ
ラフ、第4図は中子の断面図である。 尚、図面中1は中子、2は表層、3は中間層、4は中心
層である。 特許出願人 本田技研工業株式会社 代理人 弁理士 下 1) 容一部 間 弁理士 大 橋 邦 意 向 弁理士 小 山 有
Figure 1 is a graph showing the relationship between molding pressure, transverse rupture strength and density, Figure 2 is a graph showing the relationship between drying time and the thickness of the surface dense layer, and Figure 3 is a graph showing the relationship between drying temperature and transverse rupture force. A graph showing the relationship, and FIG. 4 is a cross-sectional view of the core. In the drawings, 1 is a core, 2 is a surface layer, 3 is an intermediate layer, and 4 is a center layer. Patent Applicant Honda Motor Co., Ltd. Agent Patent Attorney 2) Part 1 Patent Attorney Kuni Ohashi Intention Patent Attorney Yu Koyama

Claims (1)

【特許請求の範囲】[Claims] 石こう、硫酸マグネシウムの水木口物及び耐火物を含む
混合物に水を加えてスラリーとし、このスラリーを型内
に圧力を加えて射出成形して鋳型形状の成形物を作り、
次いでこの成形物を120℃以下の温度で一次乾燥せし
めた後、更に200℃以上の温度で二次乾燥せしめるよ
うにしたことを特徴とする水溶性鋳型の製造方法。
Water is added to a mixture containing gypsum, magnesium sulfate water-grain material, and refractory to form a slurry, and this slurry is injection molded by applying pressure in a mold to make a mold-shaped molded product.
A method for producing a water-soluble mold, characterized in that the molded product is first dried at a temperature of 120°C or lower, and then secondarily dried at a temperature of 200°C or higher.
JP58151105A 1983-08-19 1983-08-19 Production of water soluble casting mold Granted JPS6044150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58151105A JPS6044150A (en) 1983-08-19 1983-08-19 Production of water soluble casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151105A JPS6044150A (en) 1983-08-19 1983-08-19 Production of water soluble casting mold

Publications (2)

Publication Number Publication Date
JPS6044150A true JPS6044150A (en) 1985-03-09
JPH0249818B2 JPH0249818B2 (en) 1990-10-31

Family

ID=15511453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151105A Granted JPS6044150A (en) 1983-08-19 1983-08-19 Production of water soluble casting mold

Country Status (1)

Country Link
JP (1) JPS6044150A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132745A (en) * 1986-11-25 1988-06-04 Honda Motor Co Ltd Production of water soluble casting mold
EP1449601A1 (en) * 2003-02-21 2004-08-25 Mazda Motor Corporation Water-soluble casting mold and method for manufacturing the same
JP2006175510A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Method and device for molding water-soluble core
JP2009195962A (en) * 2008-02-23 2009-09-03 Toyama Prefecture Molding core
JP2011041973A (en) * 2009-08-24 2011-03-03 Daito Kogyo Kk Method for molding water soluble mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151508A (en) * 1978-05-22 1979-11-28 Hitachi Ltd Gypsum mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151508A (en) * 1978-05-22 1979-11-28 Hitachi Ltd Gypsum mold

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132745A (en) * 1986-11-25 1988-06-04 Honda Motor Co Ltd Production of water soluble casting mold
JPH0371932B2 (en) * 1986-11-25 1991-11-15 Honda Motor Co Ltd
EP1449601A1 (en) * 2003-02-21 2004-08-25 Mazda Motor Corporation Water-soluble casting mold and method for manufacturing the same
JP2006175510A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Method and device for molding water-soluble core
JP4485343B2 (en) * 2004-12-24 2010-06-23 トヨタ自動車株式会社 Method and apparatus for forming water-soluble core
JP2009195962A (en) * 2008-02-23 2009-09-03 Toyama Prefecture Molding core
JP2011041973A (en) * 2009-08-24 2011-03-03 Daito Kogyo Kk Method for molding water soluble mold

Also Published As

Publication number Publication date
JPH0249818B2 (en) 1990-10-31

Similar Documents

Publication Publication Date Title
US2494403A (en) Mold composition
KR890004247B1 (en) Slip casting forming method and mold
JPS6044150A (en) Production of water soluble casting mold
JPS58179558A (en) Precision casting method using water-soluble casting mold
US4106945A (en) Investment material
JPH0824996B2 (en) Water-soluble core and method for producing the same
US3259948A (en) Making fine grained castings
JPS58179539A (en) Production of water soluble casting mold
US3548914A (en) Soluble core fabrication
JPH0636954B2 (en) Composition for easily disintegrating mold
JPH0371932B2 (en)
US2639478A (en) Process of preparing patterns
RU2385782C1 (en) Mix for manufacturing of shapes and rods in precision casting and method of its manufacturing
RU2051008C1 (en) Method of manufacturing special ingots according to removable patterns
JPH09192777A (en) Gypsum mold
JPS59229253A (en) Production of sand core for high pressure casting
JPS6015418B2 (en) Manufacturing method of sand core for pressure casting
JP2000117415A (en) Method for removing molding material and manufacture of network structure of metallic body
SU906640A1 (en) Self-hardenable mixture for producing casting moulds and cores at casting chemically active metals
JP2511926B2 (en) Simplified manufacturing method of molding die
JP3327604B2 (en) Manufacturing method of metal products and core material used for the same
JPH0335469Y2 (en)
JPS5939445A (en) Core for casting and its casting method
JPS5832540A (en) Production of core for die casting
JPH01130833A (en) Manufacture of water soluble mold