JPS6043901B2 - Non-heat treatment type Al-Mg alloy - Google Patents

Non-heat treatment type Al-Mg alloy

Info

Publication number
JPS6043901B2
JPS6043901B2 JP55073458A JP7345880A JPS6043901B2 JP S6043901 B2 JPS6043901 B2 JP S6043901B2 JP 55073458 A JP55073458 A JP 55073458A JP 7345880 A JP7345880 A JP 7345880A JP S6043901 B2 JPS6043901 B2 JP S6043901B2
Authority
JP
Japan
Prior art keywords
alloy
strength
heat
heat treatment
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55073458A
Other languages
Japanese (ja)
Other versions
JPS56169745A (en
Inventor
美光 宮木
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP55073458A priority Critical patent/JPS6043901B2/en
Publication of JPS56169745A publication Critical patent/JPS56169745A/en
Publication of JPS6043901B2 publication Critical patent/JPS6043901B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Body Structure For Vehicles (AREA)

Description

【発明の詳細な説明】 本発明は、優れた耐応力腐食割れ性を有し且つ塗装焼付
熱や溶接熱による強度低下を起こさないAl−Mg系合
金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an Al-Mg alloy that has excellent stress corrosion cracking resistance and does not suffer from a decrease in strength due to paint baking heat or welding heat.

Al−Mg系合金は、Al基合金の中では強度が優れた
ものとして、一般構造材料や製罐材料等に広く使用され
ている。
Al-Mg alloys have excellent strength among Al-based alloys and are widely used for general structural materials, can manufacturing materials, and the like.

ところでAl−Mg系合金は非熱処理合金であ。By the way, the Al-Mg alloy is a non-heat treated alloy.

り、高い強度を得る為には冷間圧延や冷間抽伸等によつ
て加工硬化を行なわせるのが通例である。ところが加工
硬化材は、常温で長時間使用すると引張り強さ及び耐力
が低下するという欠点があり、この低下率は加工率が高
い程、またMg量が多い程(即ち強度が高い程)大きく
なる傾向がある。またこの加工硬化材を母材として溶接
すると、溶接熱の影響によつて溶接部周辺(熱影響部)
の強度が低下し、加工硬化によつて付与された高強度を
維持できない。更にAl−Mg系合金を飲料用キヤンエ
ンドおよびボディー材さらに自動J車ボディー材および
自動車用ホィール材等に使用するときは、冷間加工によ
る成形の後塗装焼付を行なうが、焼付時の熱影響で強度
が低下する。その為軽量化及びコスト低減を目的とした
薄肉化がむつかしく、また塗装焼付による強度低下を補
う為に冷間加工率を高めると成形性が低下する。本発明
者等は前述の様な事情に着目し、従来のAl−Mg系合
金の前記諸欠点即ち1長時間使用による強度劣化、2溶
接熱による強度劣化及び3塗装焼付による強度劣化をす
べて解消すべく、添加合金元素及び配合率等について詳
細な研究を進めてきた。本発明はかかる研究の結果なさ
れたものであつて、その構成とは、Mg:2〜8%及び
Zn:0.3〜3.5%を必須成分として含み、且つ下
記Si、Mn、Cr、Zr、Ti、V、Mo、B1及び
Bより成る群から選択される1種又は2種以上の元素を
含有し、Si:0.3〜1.0%残部がAl及び不可避
不純物であるところの要旨が存在する。
In order to obtain high strength, it is customary to perform work hardening by cold rolling, cold drawing, etc. However, work-hardened materials have the disadvantage that their tensile strength and yield strength decrease when used for a long time at room temperature, and this decrease rate increases as the working rate increases and the amount of Mg increases (i.e., the higher the strength). Tend. Additionally, when this work-hardened material is welded as a base material, the area around the welded area (heat-affected zone) due to the influence of welding heat
The strength of the steel decreases, and the high strength imparted by work hardening cannot be maintained. Furthermore, when Al-Mg alloys are used for beverage can ends and body materials, J-car body materials, automobile wheel materials, etc., paint baking is performed after forming by cold working, but due to the heat effect during baking. Strength decreases. Therefore, it is difficult to reduce the wall thickness for the purpose of reducing weight and cost, and if the cold working rate is increased to compensate for the decrease in strength due to paint baking, the formability decreases. The present inventors focused on the above-mentioned circumstances and eliminated all of the above-mentioned drawbacks of conventional Al-Mg alloys, namely 1. strength deterioration due to long-term use, 2. strength deterioration due to welding heat, and 3. strength deterioration due to paint burning. In order to achieve this goal, detailed research has been carried out on additive alloying elements, blending ratios, etc. The present invention was made as a result of such research, and its composition includes Mg: 2 to 8% and Zn: 0.3 to 3.5% as essential components, and the following Si, Mn, Cr, Containing one or more elements selected from the group consisting of Zr, Ti, V, Mo, B1 and B, Si: 0.3 to 1.0%, the balance being Al and inevitable impurities. A gist exists.

以下添加合金元素の種類及び含有率を限定した理由につ
いて説明する。
The reasons for limiting the type and content of the added alloying elements will be explained below.

Mgは優れた機械的強度を付与するのに不可欠の元素で
あり、目的達成の為には2%以上含有させる必要がある
Mg is an essential element for imparting excellent mechanical strength, and must be contained in an amount of 2% or more to achieve the purpose.

しかし多すぎると成形性が低下し、特にキヤンボデイー
材等としての適正を確保できなくなるので8%以下に止
めねばならない。Znは本発明において最も重要な元素
の1つで、長時間使用による強度低下を防止すると共に
、熱影響(溶接熱又は塗装焼付熱)による強度低下を防
止するのに不可欠の元素であり、これらの効果を有意に
発揮させる為には0.3%以上含有させねばならない。
しかしこれらの効果は3.5%程度で飽和状態に達し、
それを越える配合は無意味であるばかりでなく圧延加工
性および耐食性を劣化させるのて好ましくない。この他
本発明では選択元素としてSi,Mn,Cr,Zr,T
i,V,MO,Bi及びBよりなる群から選択される1
種又は2種以上の元素が配合されるが、何れの元素を選
択するかは、以下に示す各元素の作用を考慮し用途に応
じて適当に決めればよい。
However, if the amount is too high, the moldability decreases, and in particular, it becomes impossible to ensure suitability for use as a material for a vehicle body, etc., so it must be kept at 8% or less. Zn is one of the most important elements in the present invention, and is an essential element to prevent strength loss due to long-term use and also to prevent strength loss due to heat effects (welding heat or paint baking heat). In order to exhibit the effect significantly, it must be contained in an amount of 0.3% or more.
However, these effects reach saturation at around 3.5%,
A blend exceeding this range is not only meaningless, but also undesirable as it deteriorates rolling workability and corrosion resistance. In addition, in the present invention, Si, Mn, Cr, Zr, and T are selected as selected elements.
1 selected from the group consisting of i, V, MO, Bi and B
One or more elements may be blended, and which element to select may be appropriately determined depending on the intended use, taking into consideration the effects of each element shown below.

S1は溶接熱や塗装焼付熱による強度低下を防止すると
共に耐応力腐食割れ性を高める作用があり、これらの効
果は0.8%以上の配合で有意に発.揮される。
S1 has the effect of preventing strength reduction due to welding heat and paint baking heat and increasing stress corrosion cracking resistance, and these effects are significant when the content is 0.8% or more. will be demonstrated.

しカルこれらの効果は1%程度で飽和状態に達し、この
量を越えると靭性を阻害するので好ましくない。Mn,
Cr,Zr,Ti,V,MO,Bi及びBは何れも合金
の結晶組織を微細化し且つ組織を安定化して−靭性を高
める作用があり、含有率は夫々Mn:0.05〜1.5
%、Cr:0.05〜0.3%、Zr:0.05〜0.
3%、Ti:0.02〜0.2%、V:0.01〜0.
1%、MO:0.01〜0.2%、Bi:0.1以下、
B:0.0001〜0.03%の範囲から選択すべきで
ある。
These effects reach a saturated state at about 1%, and exceeding this amount is undesirable because it impairs toughness. Mn,
Cr, Zr, Ti, V, MO, Bi, and B all have the effect of refining the crystal structure of the alloy, stabilizing the structure, and increasing toughness, and their content is Mn: 0.05 to 1.5.
%, Cr: 0.05-0.3%, Zr: 0.05-0.
3%, Ti: 0.02-0.2%, V: 0.01-0.
1%, MO: 0.01 to 0.2%, Bi: 0.1 or less,
B: Should be selected from the range of 0.0001 to 0.03%.

しかして上記元素の含有率が下限値未満では上記の効果
が有意に発揮されず、一方上限値を越える当りでは上記
効果が飽和し、それ以上添加しても効果の向上は殆んど
ない。このほか本発明の合金中にFe,Sn等を混入す
る場合でも、Fe≦0.5%、Sn≦0.2%の程ノ度
であれば、本発明の性能には殆んど影響しない。以上の
様に本発明では、N−Mg系合金に含有させる他の合金
元素の種類及び含有率を特定することにより、公知のA
1−Mg系合金の特徴を留保.しつつ、その欠点とされ
ていた長時間使用による強度劣化及び熱影響(溶接熱や
塗装焼付熱)による強度劣化を大幅に改善したもので、
非熱処理材としてのA1−Mg系合金の実用性を高め得
た意義は頗る大きい。
However, if the content of the above elements is less than the lower limit, the above effect will not be significantly exhibited, while if it exceeds the upper limit, the above effect will be saturated, and even if the content exceeds the upper limit, there will be little improvement in the effect. In addition, even if Fe, Sn, etc. are mixed into the alloy of the present invention, as long as Fe≦0.5% and Sn≦0.2%, the performance of the present invention is hardly affected. . As described above, in the present invention, the known A
1-Retains the characteristics of Mg-based alloys. However, it has greatly improved its disadvantages of strength deterioration due to long-term use and heat effects (welding heat and paint baking heat).
The significance of being able to improve the practicality of the A1-Mg alloy as a non-heat treated material is significant.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 第1表に示す成分組成のAl−Mg系合金を溶融・鋳造
した後、500℃で8時間均質化処理し、その後400
〜450℃で熱間圧延を行ない、次いで所定の加効率で
冷間圧延して3Tf$t厚の板材を得た。
Example 1 After melting and casting an Al-Mg alloy having the composition shown in Table 1, it was homogenized at 500°C for 8 hours, and then homogenized at 400°C.
Hot rolling was carried out at ~450°C, and then cold rolling was carried out at a predetermined acceleration rate to obtain a plate material with a thickness of 3Tf$t.

得られた各板材の冷間圧延直後の機械的性質及び120
℃で7日間加熱(常温での3年間放置に相当する)した
後の機械的性質を測定した(JIS5号試験片)。結果
を第2表に示す。また120℃で所定時間加熱した後の
応力腐食割れ試験を行ない、第3表の結果を得た。
Mechanical properties of each plate obtained immediately after cold rolling and 120
Mechanical properties were measured after heating at ℃ for 7 days (equivalent to 3 years of standing at room temperature) (JIS No. 5 test piece). The results are shown in Table 2. Further, a stress corrosion cracking test was conducted after heating at 120° C. for a predetermined time, and the results shown in Table 3 were obtained.

〔応力腐食割れ試験〕[Stress corrosion cracking test]

厚さ3mn1幅1−、長さ10−の試験片を長手方向か
ら採取し、曲げ半径8t(t:板厚)にて180度の曲
げを行なう。
A test piece with a thickness of 3 mm, a width of 1-, and a length of 10- is taken from the longitudinal direction and bent 180 degrees at a bending radius of 8t (t: plate thickness).

その後試験片を3.5%NaCl水溶液に浸漬し、該試
験片を陽極として40n1A/Inch2の電流を流し
て割れを観察した。尚第3表において、O印及び×(α
)は下記の意味を表わしている。O印:試験時間140
紛後も割れが発生しない×(α):試験時間α分間で割
れが発生第1〜3表からも明らかな様に、本発明の漏を
満足するN−Mg系合金は加熱による強度劣化が極めて
少なく、また応力腐食割れ性の低下も殆んどみられない
Thereafter, the test piece was immersed in a 3.5% NaCl aqueous solution, and a current of 40 n1A/Inch2 was applied using the test piece as an anode to observe cracks. In addition, in Table 3, O mark and ×(α
) represents the following meaning. O mark: Exam time 140
No cracking occurs even after heating x (α): Cracking occurs after a test time of α minutes. The amount of stress corrosion is extremely small, and there is almost no decrease in stress corrosion cracking resistance.

これに対し比較合金(Znが含まれていない合金)では
、加熱(常温長時間の放置も含めて)による強度及び耐
応力腐食割れ性の劣化は双方極めて著しい。実施例2 第4表に示す成分組成のAl−Mg系合金を溶融・鋳造
した後、500℃で8時間均質化処理し、その後400
〜450℃で熱間圧延を行ない、次いで加工率70%で
冷間圧延して0.5wm厚の板材を得た。
On the other hand, in comparison alloys (alloys that do not contain Zn), both strength and stress corrosion cracking resistance deteriorate significantly due to heating (including when left at room temperature for a long time). Example 2 After melting and casting an Al-Mg alloy having the composition shown in Table 4, it was homogenized at 500°C for 8 hours, and then homogenized at 400°C.
Hot rolling was performed at ~450°C, and then cold rolling was performed at a processing rate of 70% to obtain a plate material with a thickness of 0.5 wm.

得られた各板材の冷間加工のまま機械的性質及び200
℃で30分間加熱(通常の塗装焼付条件に相当する)し
た後の機械的性質を測定した(JIS5号試験片)。結
果を第5表に示す。また各板材を下記の条件で深絞り試
験に付し、第6表の結果を得た。
The mechanical properties and 200
Mechanical properties were measured after heating at ℃ for 30 minutes (corresponding to normal paint baking conditions) (JIS No. 5 test piece). The results are shown in Table 5. Further, each plate material was subjected to a deep drawing test under the following conditions, and the results shown in Table 6 were obtained.

〔深絞り試験片〕[Deep drawing test piece]

試験板:板厚0.5 70%冷間加工板 しわ押え荷重:500k9 ポ ン チ :50TmIrLφ平頭 第5表からも明らかな様に、従来のN−Mg系合金では
加熱によつて引張り強さが大幅に低下するのに対し、本
発明の要件を充足する合金は加熱しても殆んど強度低下
を起こさない。
Test plate: Plate thickness 0.5, 70% cold-worked plate Wrinkle holding load: 500k9 Punch: 50TmIrLφ flat head As is clear from Table 5, the tensile strength of conventional N-Mg alloys is reduced by heating. On the other hand, alloys that meet the requirements of the present invention hardly experience any decrease in strength even when heated.

また第6表からも明らかな様に、本発明の合金は従来の
A1−Mg系合金に比べ深絞り性能も良好であり、中で
も選択元素としてSiを配合した合金の深絞り性能は最
も優れている。
Furthermore, as is clear from Table 6, the alloy of the present invention has better deep drawing performance than the conventional A1-Mg alloy, and among them, the alloy containing Si as a selective element has the best deep drawing performance. There is.

実施例3 第7表に示す成分組成のN−Mg系合金を、実施例1と
同様にして溶融・鋳造、均質化処理及び熱間圧延した後
、冷間圧延して厚さ6Tfrmの板材を得た。
Example 3 An N-Mg alloy having the composition shown in Table 7 was melted and cast, homogenized, and hot rolled in the same manner as in Example 1, and then cold rolled to form a plate material with a thickness of 6Tfrm. Obtained.

得られた各板材を母材とし、AA−5183を溶接,ワ
イヤとして、電流250A一電圧25V一速度50cm
/分の溶接条件で2層溶接を行ない、熱影響部と熱影響
を受けていない部分の機械的性質を比較した。
Each of the obtained plates was used as a base material, and AA-5183 was welded and wired at a current of 250 A, a voltage of 25 V, and a speed of 50 cm.
Two-layer welding was performed under welding conditions of /min, and the mechanical properties of the heat-affected zone and the non-heat-affected part were compared.

結果を第8表に示す。また合金慟.14(実施例)及び
合金褐.17(比較合″金:AA−5083)を母材と
して得た各溶接物について、溶接部からの距離と硬度の
関係を測定したところ、第1図の結果が得られた。
The results are shown in Table 8. Also, alloy. 14 (Example) and alloy brown. When the relationship between the distance from the weld and the hardness was measured for each welded product obtained using No. 17 (comparative alloy: AA-5083) as the base material, the results shown in FIG. 1 were obtained.

第8表からも明らかな様に、従来のN−Mg系合金では
溶接熱によつて機械的強度が大幅に劣化するが、本発明
の合金は溶接熱による強度低下が少ない。
As is clear from Table 8, the mechanical strength of conventional N--Mg alloys is significantly degraded by welding heat, but the alloy of the present invention exhibits little decrease in strength due to welding heat.

また第8表からも明らかな様に、従来のN−Mg系合金
では溶接部の硬度低下が大きく、且つ溶接部から約5−
の範囲に亘つて明らかな硬度低下がみられるが、本発明
の合金では溶接部の硬度低下が少なく、且つ硬度低下は
溶接部から約20TIrInの範囲に止まつている。こ
れらの結果からも、本発明の合金が溶接用構造材料とし
て極めて優れたものであることが明白である。
In addition, as is clear from Table 8, with conventional N-Mg alloys, the hardness of the welded part decreases significantly, and about 5-
However, in the alloy of the present invention, the hardness decrease is small in the weld zone, and the decrease in hardness is limited to a range of about 20 TIrIn from the weld zone. From these results, it is clear that the alloy of the present invention is extremely excellent as a structural material for welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明合金について溶接熱の硬さ分布に及ぼす
影響を従来合金と対比して示すグラフである。
FIG. 1 is a graph showing the influence of welding heat on hardness distribution for the alloy of the present invention in comparison with a conventional alloy.

Claims (1)

【特許請求の範囲】 1 Mg:2〜8%及びZn:0.3〜3.5%を必須
成分として含み、且つ下記Si、Mn、Cr、Zr、T
i及びBより成る群から選択される1種又は2種以上の
元素を含有し、Si:0.3〜1.0% Mn:0.05〜1.5% Cr:0.05〜0.3% Zr:0.05〜0.3% Ti:0.02〜0.2% B:0.0001〜0.03% 残部がAl及び不可避不純物であることを特徴とする耐
軟化特性および耐応力腐食割れ性の優れた非熱処理型A
l−Mg系合金。 2 特許請求の範囲第1項において、少なくともSi:
0.3〜1%を必須成分として含有する熱劣化の少ない
非熱処理型Al−Mg系合金。
[Claims] 1 Contains Mg: 2 to 8% and Zn: 0.3 to 3.5% as essential components, and contains the following Si, Mn, Cr, Zr, T
Contains one or more elements selected from the group consisting of i and B, Si: 0.3-1.0% Mn: 0.05-1.5% Cr: 0.05-0. 3% Zr: 0.05-0.3% Ti: 0.02-0.2% B: 0.0001-0.03% The remainder is Al and inevitable impurities. Non-heat treated type A with excellent stress corrosion cracking resistance
l-Mg alloy. 2. In claim 1, at least Si:
A non-heat treatment type Al-Mg alloy containing 0.3 to 1% as an essential component and having little thermal deterioration.
JP55073458A 1980-05-31 1980-05-31 Non-heat treatment type Al-Mg alloy Expired JPS6043901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55073458A JPS6043901B2 (en) 1980-05-31 1980-05-31 Non-heat treatment type Al-Mg alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55073458A JPS6043901B2 (en) 1980-05-31 1980-05-31 Non-heat treatment type Al-Mg alloy

Publications (2)

Publication Number Publication Date
JPS56169745A JPS56169745A (en) 1981-12-26
JPS6043901B2 true JPS6043901B2 (en) 1985-10-01

Family

ID=13518819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55073458A Expired JPS6043901B2 (en) 1980-05-31 1980-05-31 Non-heat treatment type Al-Mg alloy

Country Status (1)

Country Link
JP (1) JPS6043901B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941433A (en) * 1982-09-02 1984-03-07 Nippon Light Metal Co Ltd Aluminum-magnesium alloy for casting
JPS59143040A (en) * 1983-02-04 1984-08-16 Kobe Steel Ltd Al alloy for welded structure
JPS6050139A (en) * 1983-08-27 1985-03-19 Kobe Steel Ltd Aluminum alloy having superior screw characteristic
JPS60125346A (en) * 1983-12-12 1985-07-04 Kobe Steel Ltd High strength aluminum alloy having superior workability
EP0799900A1 (en) 1996-04-04 1997-10-08 Hoogovens Aluminium Walzprodukte GmbH High strength aluminium-magnesium alloy material for large welded structures
CN103740988B (en) * 2013-11-27 2016-01-20 余姚市吴兴铜业有限公司 A kind of preparation method of trolley part high-performance aluminium alloy
CN105543589B (en) * 2015-12-18 2018-04-06 百色学院 A kind of aluminum alloy casting rod special for hub and preparation method thereof
CN105543588A (en) * 2015-12-18 2016-05-04 百色学院 Special aluminum alloy ingot for casting hubs and preparation method of aluminum alloy ingot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122411A (en) * 1974-03-14 1975-09-26
US4081294A (en) * 1974-11-26 1978-03-28 Reynolds Metals Company Avoiding type A luder lines in forming sheet made of an Al-Mg alloy
JPS558499A (en) * 1978-07-05 1980-01-22 Alusuisse Production of aluminummmagnesium alloy sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122411A (en) * 1974-03-14 1975-09-26
US4081294A (en) * 1974-11-26 1978-03-28 Reynolds Metals Company Avoiding type A luder lines in forming sheet made of an Al-Mg alloy
JPS558499A (en) * 1978-07-05 1980-01-22 Alusuisse Production of aluminummmagnesium alloy sheet

Also Published As

Publication number Publication date
JPS56169745A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
US4094705A (en) Aluminum alloys possessing improved resistance weldability
US4261739A (en) Ferritic steel alloy with improved high temperature properties
JP2002543289A (en) Peel-resistant aluminum-magnesium alloy
JP3594272B2 (en) High strength aluminum alloy for welding with excellent stress corrosion cracking resistance
JP2003535973A (en) Cold rolled steel sheet with excellent corrosion resistance to sulfuric acid
US4062704A (en) Aluminum alloys possessing improved resistance weldability
US4043840A (en) Aluminum alloys possessing improved resistance weldability
JPS6043901B2 (en) Non-heat treatment type Al-Mg alloy
US2985530A (en) Metallurgy
JPH0114992B2 (en)
JP4564207B2 (en) Hot-pressed hot-dip aluminized steel sheet that is heated to 800 ° C or higher
JP3258704B2 (en) Hot-rolled steel sheet for enameling which has high strength after enamel firing and method for producing the same
JP3541458B2 (en) Ferritic stainless steel with excellent high-temperature salt damage characteristics
JPH1112692A (en) Ferritic stainless steel having excellent antibacterial property
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4506005B2 (en) High strength steel sheet for warm forming and forming method thereof
JP2002363692A (en) Cold rolled steel sheet having excellent workability and corrosion resistance
JP3977956B2 (en) High strength β-type Ti alloy with excellent cold workability
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JPH02228451A (en) Iron-base shape memory alloy
JP4102224B2 (en) High strength, high ductility β-type titanium alloy
JPH0441648A (en) High strength aluminum alloy for forming, excellent in baking hardenability
JPH05247576A (en) Aluminum alloy for drive mechanism parts
JPH0770647A (en) Production of hot dip galvanized steel sheet for corrosion resisting refractory structure