JPS6043438A - Method for cooling metallic strip with cooling roll - Google Patents

Method for cooling metallic strip with cooling roll

Info

Publication number
JPS6043438A
JPS6043438A JP14885383A JP14885383A JPS6043438A JP S6043438 A JPS6043438 A JP S6043438A JP 14885383 A JP14885383 A JP 14885383A JP 14885383 A JP14885383 A JP 14885383A JP S6043438 A JPS6043438 A JP S6043438A
Authority
JP
Japan
Prior art keywords
cooling
strip
roll
stress
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14885383A
Other languages
Japanese (ja)
Other versions
JPS631381B2 (en
Inventor
Shuzo Fukuda
福田 脩三
Yasushi Ueno
康 上野
Naotake Yoshihara
吉原 直武
Masaharu Jitsukawa
実川 正治
Naoki Matsui
直樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14885383A priority Critical patent/JPS6043438A/en
Publication of JPS6043438A publication Critical patent/JPS6043438A/en
Publication of JPS631381B2 publication Critical patent/JPS631381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To prevent the occurrence of defects in shape such as ear (vertical creases in the direction of a line) by cooling the central part of a strip in the lateral direction immediately before contact with each cooling roll. CONSTITUTION:Each nozzle 10 for cooling the central part of a metallic strip X in the lateral direction is placed at a position just before a point at which the strip X begins to contact with a cooling roll 1. A gas or a liq. such as water or liq. nitrogen is spouted from the nozzle 10 to cool the central part of the strip X in the lateral direction. By the cooling the stress in the central part in the direction of the line is made higher than the stress in both edges. The strip X is then passed by the roll 1. By this method the occurrence of defects in shape such as ear is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は冷却ロールによる金属ストリップの冷却方法
に関し、絞り等の形状不良を解消することを目的とする
。 冷却ロールによるストリップの冷却は連続焼鈍設備等に
おいて使用されているが、冷却過程で生ずる熱応力のた
めストリップの形状がくず扛やすく、甚だしい場合には
「絞り」と称するライン方向の縦じわが生じ、製品不良
やストリップの破断なと重大なトラブルを引起す問題が
あった。 この絞りの原因は、冷却ロールにストリップが接触する
接触開始点付近の板幅中央に板幅方向の圧縮応力が発生
し、これが「絞り」の引金に外る座屈を起させるためで
あることが知られている。 そのため、上記板幅方向の圧縮応力を除去するために種
々の工夫がなされ捉案さnている。 しかし、本発明者らが実験研究を重ねた結果、幅方向応
力だけではなくライン方向応力も座屈の発生に大きな影
響を及lましていることが明らかと力ってきた。 第1図は2軸応力場における薄板の座屈条件を示すもの
で、座屈の有無はライン方向及び板幅方向の応力の両者
の状態で決することがわかる。通常、冷却ロール接触開
始点でのストリップ応力状態は節1図のA点であるが、
もしライン方向応力がB点よりも小さくなると、座屈が
生じ、「絞り」につながる危険が極めて高くなる。 この第1図が示すものと現場における経験則とは良く一
致している。 即ち現場操業においてはストリップが必ずしも完全にフ
ラットではなく耳波、中伸び形状またはエツジドロップ
および急冷時の熱応力による板幅宙央郡のたるみなどの
ため冷却ロールへのストリップ接触が不均一になシやす
い。そして、不均一接触によシ、板幅中火の高い温度分
布では実際に非常に絞シやすいこ七を経1)・へしてい
る。 このような現象は、結局板幅中央の高い温度分布状態で
はライン方向応力が中央部で大幅に低下した状態となり
、2軸応力状態が第1図に示ず座屈発生領域に入るため
と考えられる。 本発明は上記した知見に基づいてなされたもので、金属
ス) IJツブが冷却ロールにiMする直前に金属スト
リップの幅方向中央部を冷却し、該中央部のライン方向
応力を板幅両端よシも高めた状態で冷却ロールに通板せ
しめるようにしたものである。 ここで冷却ロールに接触する直前としたのは次の理由に
よる。 即ち本発明者らは、現場操業の経験から、「絞り」の対
策として、原板をむしろ耳波傾向にさせ板幅中央部のラ
イン張力を高めたフする試みや、また、連続焼鈍におい
てロール冷却装置の前段にあるガス強制冷却帯で板幅中
央部をより強く冷却して板幅中央部のライン方向応力を
高める実験を行ってきた。 これらの方法によ扛ばある程度の効果は得られるものの
、絞9発生を防止するには至らない。その理由は、一度
、板幅中央部のライン方向応力を高めて′おいても、ロ
ール接触開始点までの時間が長いと、せっかくつけたラ
イン方向応力の幅方向分布が緩和してしまうからである
。第2図は鋼の応力緩和現象を示すグラフであシ、薄鋼
板をある応力レベルまで引張って停止した後の応力の時
間的変化を示している。このグラフから10〜20秒後
には1/2〜1/3の応力レベルまでに減少することが
わかる。 連続焼鈍においては、ロール冷却帯の前段にガスジェッ
ト冷却帯があシ、通常700℃から6 (1(1℃まで
冷却を行っている。このガスジェット帯で板幅中火をよ
シ強く冷却し、絞シ防止のため、板幅中火の高いライン
張力分布を与えても、10〜20秒後にロール冷却が行
われるため、第2図に示すような応力緩和現象によpそ
の効果は半減さねてしまうわけである。 第2図のグラフから、応力緩和による応力低下の郊が比
較的小さいのはおよそ2,3秒以内であると考えられる
。従って、板幅中央冷却強化で板幅中火の高いライン張
力分布を与えて、2.3秒以内に冷却ロールに接触させ
て冷却すれば、応力緩和による板幅中央ライン張力の低
下はほとんど起らず、絞り防止効果が十分に発揮される
。 これが本発明において直前と限定した理由である。 ストリップ幅方向中央を冷却する手段としては種々のも
のが可能であるが、気体又は液体噴射による冷却がその
冷却範囲の制御が容易であることから好ましい。 1だストリッツ幅方向中央の冷却は、各冷却ロールの直
前においてすべて行う必要はなく、少くとも1つの冷却
ロールの直前において行えば効果がある。この場合前段
側、即ち111温側の冷却ロールはど強度、座屈延払が
低く、冷却速度が速く熱応力が大きいことから絞ルが発
生しやすいため、なるべく前段側の冷却ロール直前にお
いて本発明を実施するのが望ましい。 第3図に本発明法を連続焼鈍設備におけるロール冷却装
置に適用した場合の装置例を示す0 1中(1)が#lから4#5までの冷却ロールであり、
(X)か銅帯である。各冷却ロール(υの銅帯(X)と
の接触開始点直前に、銅帯(X)の幅方向中央部な冷却
するためのノズルOCJが凰lからtt 5 ”gで設
置されている。この各ノズル(llllilニライン方
向に3段に並んだノズルから構成され、ノズル先端から
鉤帯(X)まで50目離して並べらnている。そしてこ
の実施例において各ノズルの板幅方向長さは120鮎と
なっている。 ノズル(11から111
The present invention relates to a method of cooling a metal strip using a cooling roll, and an object of the present invention is to eliminate shape defects such as apertures. Cooling of the strip with a cooling roll is used in continuous annealing equipment, etc., but the thermal stress generated during the cooling process tends to cause the strip to break up, and in extreme cases, vertical wrinkles in the line direction called ``squeezing'' may occur. However, there were problems that could cause serious problems such as product defects and strip breakage. The cause of this squeezing is that a compressive stress is generated in the strip width direction at the center of the strip near the contact start point where the strip contacts the cooling roll, and this causes buckling that releases the "squeezing" trigger. It is known. Therefore, various efforts have been made to eliminate the compressive stress in the width direction of the plate. However, as a result of repeated experimental research by the present inventors, it has become clear that not only the width direction stress but also the line direction stress has a large influence on the occurrence of buckling. FIG. 1 shows the buckling conditions of a thin plate in a biaxial stress field, and it can be seen that the presence or absence of buckling is determined by the state of stress in both the line direction and the plate width direction. Normally, the strip stress state at the point where the cooling roll starts contacting is point A in Section 1.
If the stress in the line direction becomes smaller than point B, there is an extremely high risk that buckling will occur and lead to "throttling". There is good agreement between what this Figure 1 shows and the empirical rules in the field. In other words, in on-site operations, the strip is not necessarily completely flat, and strip contact with the cooling roll may be uneven due to waving, elongation, edge drops, or sagging in the center of the strip due to thermal stress during rapid cooling. Easy to use. In addition, due to uneven contact, the plate width is actually very easy to squeeze due to the high temperature distribution of medium heat. This phenomenon is thought to be due to the fact that in the high temperature distribution state at the center of the plate width, the stress in the line direction is significantly reduced at the center, and the biaxial stress state enters the buckling generation region, which is not shown in Figure 1. It will be done. The present invention has been made based on the above-mentioned knowledge, and includes cooling the center part of the metal strip in the width direction immediately before the IJ tube is transferred to the cooling roll, and reducing the stress in the line direction at the center part from both ends of the strip width. The plate is passed through the cooling roll with the steel plated at a high level. The reason for setting the time immediately before contacting the cooling roll is as follows. In other words, based on our experience in on-site operations, the present inventors have attempted to prevent "squeezing" by making the original sheet more prone to ear waves and increasing the line tension at the center of the sheet width, and also by using roll cooling during continuous annealing. We have been conducting experiments to increase the stress in the line direction at the center of the sheet width by cooling the center of the sheet width more strongly using a gas forced cooling zone in the front stage of the equipment. Although these methods can provide some effect, they cannot prevent the occurrence of the diaphragm 9. The reason for this is that even if the line stress at the center of the sheet width is increased, if the time until the roll contact start point is long, the width distribution of the line stress will be relaxed. be. FIG. 2 is a graph showing the stress relaxation phenomenon of steel, and shows the temporal change in stress after a thin steel plate is pulled to a certain stress level and stopped. It can be seen from this graph that the stress level decreases to 1/2 to 1/3 after 10 to 20 seconds. In continuous annealing, there is a gas jet cooling zone in front of the roll cooling zone, which normally cools from 700℃ to 1℃. However, even if a high line tension distribution with a medium heat across the board width is applied to prevent shrinkage, the rolls cool down after 10 to 20 seconds, so the stress relaxation phenomenon shown in Figure 2 reduces the effect. From the graph in Figure 2, it is thought that the stress reduction due to stress relaxation is relatively small within about 2 to 3 seconds. If a high line tension distribution with medium heat is applied and the sheet is cooled by contacting the cooling roll within 2.3 seconds, there will be almost no decrease in the line tension at the center of the sheet width due to stress relaxation, and the drawing prevention effect will be sufficient. This is the reason why in the present invention, it is limited to just before. Various methods are possible as a means for cooling the center in the width direction of the strip, but cooling by gas or liquid jet is the most effective since it is easy to control the cooling range. It is preferable because the cooling of the center in the width direction of the 1st strip does not have to be performed immediately immediately before each cooling roll, but it is effective if it is performed immediately before at least one cooling roll. Since the cooling rolls on the side have low gutter strength, low buckling roll, fast cooling rate, and large thermal stress, constrictions are likely to occur, so it is desirable to carry out the present invention immediately before the cooling roll on the front side. Fig. 3 shows an example of a device in which the method of the present invention is applied to a roll cooling device in a continuous annealing facility.
(X) or copper band. Immediately before the contact start point of each cooling roll (υ) with the copper strip (X), a nozzle OCJ for cooling the copper strip (X) at the center in the width direction is installed at a distance of tt 5 ''g from the bottom. These nozzles are composed of three rows of nozzles lined up in the line direction, and are lined up 50 times apart from the tip of the nozzle to the hook band (X).In this embodiment, the length of each nozzle in the plate width direction is is 120 sweetfish. Nozzle (11 to 111

【射する媒体は、この実施例に
おいては雰囲気カス(R25襲を含むN2ガス)を使用
しており、冷却室(2)内からブロア(1υにより導出
し、クーラαりによシ冷却した上ノズル叫からこのガス
を噴射するようにしている。 噴射媒体としては、他のガス或いは水や液体窒素燭の液
体を使用してもよく、またこれら液体を噴侘するように
しても良い。 なお、ノズル叫は絶えず全数を使用する必要はなく、ス
トリップザイズや通板条件雪に応じてノズルQOを使い
わけ肚は良い。プ辷とえは板厚が薄く、板幅の広いもの
ほど一般に絞りやすい傾向があるから、このような場合
は、冷却ロール全数につき、その直前のノズルからガス
噴射し、一方、板が厚く、板幅の狭いものになるに従っ
て順次後段の冷却ロール側からガスIy4射を停止して
行く。このようにずれば冷却用ノズルガスの流量は少な
くて済みそれだけ循環用ブロワ−電力負荷が軽減さ才り
るから、運転コスト上も有利である。ここで後段側の冷
却用ノズルからの噴射を停止するとしたのは上記したよ
うに高温側つまり前段t111はど[絞り−1やすいか
らである。 次に実施例合示す。 実施例 第3図に示す装置を用いてまず初めに冷却ロールだけで
ストリップを600℃から400℃寸で冷却したところ
、ストリップ中央に縦ずじ状のIFj′、シが弗化じた
。その時の通板条件は、ラインa度100mr’m−ス
トリップサイズ0.6喘厚X12“00+++m幅であ
った。絞り防止効果を調べるため、均熱帯直後のガスジ
ェット帯で板幅中央部を周りより約20℃低く冷却した
が、「絞り」はほとんど改善されなかつた。 次に、このガスジェット帯での板幅中央冷却強化をやめ
、その代りにロール冷却帯で第1番目の冷却ロール直前
に設置したNIL 1ノズルからのみぢj−囲気ガスを
全流量400 Nm3/h噴射した。その結果、「絞シ
」は解消された。 次にノズル(10)による冷却後、冷却ロール(1)に
接触するまでの時間とストIJツブ形状不良の発生との
関係をil、1べた。 即ち、第3図において、1ffllノズルと#】冷却ロ
ールを用いてLを変化させて操業を行った。雰囲気ガス
は全流量4 (10Nm3/hをNa 1ノズルのみか
ら噴射し、その他の榮件も上記条件と同じとした。 この結果を第4図に示す。ここで時間tは距離りの通過
時間である。 このグラフかられかるように、時間t=2〜3秒の範囲
では、「絞p」は発生せず、軽度の中伸び状態でロール
冷却帯を通過し、この時は、過時効処理後、スキンバス
で十分形状矯正できるものであった。時間tが2秒以下
であれば板は全くフラットに冷却ロールに接触し、非常
に良好な形状の!、を過時効処理帯に入り、良形状の製
品が得られた。 外お、冷却ロール直前のガス冷却の板幅方向範囲は、板
幅中央、板幅の1/3〜]/15であれは効果が十分に
発揮されることが現楊実験で確認さオt1ね。
[The irradiating medium used in this example is atmospheric gas (N2 gas containing R25 gas), which was brought out from inside the cooling chamber (2) by a blower (1υ) and cooled by a cooler α. This gas is injected from the nozzle. As the injecting medium, other gases or liquids such as water or liquid nitrogen lamps may be used, and these liquids may also be ejected. It is not necessary to use all the nozzle QOs constantly, and it is convenient to use the nozzle QO depending on the strip size and threading conditions.In general, the thinner the plate thickness and the wider the plate width, the more the nozzle QO is used. In such a case, the gas is injected from the nozzle just in front of all the cooling rolls, and on the other hand, the gas Iy4 is injected sequentially from the cooling roll side of the later stage as the plate becomes thicker and narrower. By shifting in this way, the flow rate of the cooling nozzle gas is reduced, which reduces the power load on the circulation blower, which is advantageous in terms of operating costs. The reason for stopping the injection from the nozzle is that, as mentioned above, the high temperature side, that is, the front stage t111, is easy to throttle down.Next, an example will be shown. When the strip was cooled from 600°C to 400°C using only a cooling roll, a vertical strip IFj' was fluorinated in the center of the strip. The strip size was 0.6mm thick x 12"00+++m wide. To examine the effect of preventing shrinkage, the central part of the strip width was cooled approximately 20°C lower than the surrounding area in a gas jet zone immediately after the soaking period, but there was almost no "squeezing". There was no improvement.Next, we stopped strengthening the cooling at the center of the sheet width in this gas jet zone, and instead started supplying ambient air gas from the NIL 1 nozzle installed just before the first cooling roll in the roll cooling zone. A total flow rate of 400 Nm3/h was injected. As a result, the "throttling" was eliminated.Next, after cooling by the nozzle (10), the time until contact with the cooling roll (1) and the occurrence of defective IJ tube shape were investigated. In other words, in Fig. 3, the operation was carried out by changing L using a 1ffll nozzle and a cooling roll.The atmospheric gas had a total flow rate of 4 (10 Nm3/h with Na 1 nozzle). The other conditions were the same as above.The results are shown in Figure 4.Here, time t is the distance passing time.As can be seen from this graph, time t= In the range of 2 to 3 seconds, "squeezing p" did not occur, and the material passed through the roll cooling zone in a light and medium elongated state, and at this time, the shape could be sufficiently corrected in the skin bath after overaging treatment. . If the time t is less than 2 seconds, the plate will contact the cooling roll completely flat, and will have a very good shape! , entered the over-aging treatment zone, and a product with good shape was obtained. On the other hand, it has been confirmed in the current experiment that the effect is fully demonstrated when the range of gas cooling in the sheet width direction immediately before the cooling roll is at the center of the sheet width, from 1/3 to ]/15 of the sheet width. hey.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は絞り発生の説明図、第2図は応力緩和状態を示
すグラフ、第3図は本発明方法を実施するための装置例
を示す構成図、第4図はストリップ幅方向中央部冷却後
の経過時間と形状不良の発生との関係を示すグスフであ
る。 (1)・・・冷却ロール、(2)・・・冷却室、(10
・・・ノズル、 (11)・・・プロア、a4・・・ク
ーラ。 特許出願人 日本鋼管株式会社 発 明 者 福 1) 脩 三 第3図 第4図 時閉(t)(抄)
Fig. 1 is an explanatory diagram of the occurrence of throttling, Fig. 2 is a graph showing the state of stress relaxation, Fig. 3 is a configuration diagram showing an example of an apparatus for carrying out the method of the present invention, and Fig. 4 is cooling of the central part in the width direction of the strip. This graph shows the relationship between the elapsed time and the occurrence of shape defects. (1)...Cooling roll, (2)...Cooling chamber, (10
...Nozzle, (11)...Proa, A4...Cooler. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Fuku 1) Shuzo Figure 3 Figure 4 Closing time (t) (excerpt)

Claims (1)

【特許請求の範囲】[Claims] 少くとも1つの冷却ロールの直前において、ストリップ
の板幅中央部を冷却することを特徴とする冷却ロールに
よる金属ストリップの冷却方法。
1. A method of cooling a metal strip using cooling rolls, the method comprising cooling the widthwise center of the strip immediately before at least one cooling roll.
JP14885383A 1983-08-16 1983-08-16 Method for cooling metallic strip with cooling roll Granted JPS6043438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14885383A JPS6043438A (en) 1983-08-16 1983-08-16 Method for cooling metallic strip with cooling roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14885383A JPS6043438A (en) 1983-08-16 1983-08-16 Method for cooling metallic strip with cooling roll

Publications (2)

Publication Number Publication Date
JPS6043438A true JPS6043438A (en) 1985-03-08
JPS631381B2 JPS631381B2 (en) 1988-01-12

Family

ID=15462198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14885383A Granted JPS6043438A (en) 1983-08-16 1983-08-16 Method for cooling metallic strip with cooling roll

Country Status (1)

Country Link
JP (1) JPS6043438A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100633A (en) * 1981-12-08 1983-06-15 Nippon Kokan Kk <Nkk> Variable crown water cooled roll

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100633A (en) * 1981-12-08 1983-06-15 Nippon Kokan Kk <Nkk> Variable crown water cooled roll

Also Published As

Publication number Publication date
JPS631381B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
EP0815268B1 (en) Primary cooling method in continuously annealing steel strip
WO1999050464A1 (en) Continuous heat treating furnace and atmosphere control method and cooling method in continuous heat treating furnace
US4052235A (en) Method of preventing oxidation during water quenching of steel strip
JPS6043438A (en) Method for cooling metallic strip with cooling roll
JPS6360817B2 (en)
EP0803583B1 (en) Primary cooling method in continuously annealing steel strips
JP2004162167A (en) Cooling unit for steel strip
JP2820359B2 (en) Atmosphere adjustment method for continuous annealing furnace
JPH04103725A (en) Oxygen-free quenching device for continuous annealing furnace
JPS58213833A (en) Continuous annealing furnace
JPS63241123A (en) Cooling method for steel strip
JPH04103726A (en) Quenching device for continuous annealing furnace
JPS6240086B2 (en)
JPH0765119B2 (en) Beryllium copper alloy continuous annealing equipment
JPS6050124A (en) Method for cooling steel strip with roll
JPS63145722A (en) Cooling apparatus for continuous annealing line
JPS5967323A (en) Cooler of steel strip
JPH04160120A (en) Rapid cooling device in continuous annealing furnace
JPH05263148A (en) Method for controlling cooling furnace for strip continuous heat treating device
JPS6237699B2 (en)
JPS58151429A (en) Continuous heat treatment furnace for metallic strip
JPS61295328A (en) Cooler for steel strip
JPS59166629A (en) Cooling method of steel strip
JPH0711336A (en) Method for restraining canoeing of belt steel
JPS6241298B2 (en)