JPS6043010A - Insulating spacer for gas insulated electric device - Google Patents

Insulating spacer for gas insulated electric device

Info

Publication number
JPS6043010A
JPS6043010A JP58149457A JP14945783A JPS6043010A JP S6043010 A JPS6043010 A JP S6043010A JP 58149457 A JP58149457 A JP 58149457A JP 14945783 A JP14945783 A JP 14945783A JP S6043010 A JPS6043010 A JP S6043010A
Authority
JP
Japan
Prior art keywords
gas
epoxy resin
insulating
insulating spacer
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58149457A
Other languages
Japanese (ja)
Inventor
松浦 清
児玉 孝亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58149457A priority Critical patent/JPS6043010A/en
Publication of JPS6043010A publication Critical patent/JPS6043010A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はガス絶縁密閉開閉装置i”t (CIS)、管
路鋼中ケーブル(GIB)等の主に六ふつ比値N (S
Fe)ガスを絶縁媒体とするガス絶縁電器に用いられる
エポキシtfIj脂注型絶縁スペーサに門する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention mainly relates to the six-point ratio value N (S
Fe) Epoxy tfIj fat-cast insulating spacer used in gas-insulated electrical appliances using gas as the insulating medium.

〔従来技術とその間照点〕[Prior art and its points of interest]

ガス絶縁?13器では一般に、高電圧導体や絶矛マスペ
ーサあるいは絶縁スペーサの埋込電極等の形状を局部的
電界集中の少ない適切な設「1とすることにより、SF
eガスのすぐれた絶縁耐力を活かして絶縁寸法を縮小で
きる利点がある。ところがシ〃電性粒子や電極の微小突
起などの影響を受けて絶縁耐力が低下しやすい弱点があ
り、その改善がめられている。
Gas insulation? In general, in the case of 13 devices, SF
There is an advantage that the insulation dimensions can be reduced by taking advantage of the excellent dielectric strength of e-gas. However, it has a weakness in that its dielectric strength tends to decrease due to the effects of electrostatic particles and minute protrusions on the electrodes, and efforts are being made to improve this.

第1図は従来のガス絶t、i2m器の原理的な橢造図で
ある。図において、1はn駅の金?4製の密閉容器、2
は表面平滑な棒状または筒駄の高電圧導体、3はエポキ
シW脂注型された例えば円板駄の絶縁スペーサである。
FIG. 1 is a basic structural diagram of a conventional gas-free T, I2M device. In the diagram, 1 is money at n station? 4 airtight container, 2
3 is a high-voltage conductor in the form of a rod or tube with a smooth surface, and 3 is an insulating spacer in the form of, for example, a disk, which is cast with epoxy W.

絶縁スペーサ3は高電圧導体2に気密に固着されるとと
もに、その外周部は例えば密閉容器のフランジla、l
bに気密に挟持されることにより、高電圧導体2を所定
の位置に絶縁支持するとともに、密閉容器1の内部を二
つのSFsガス空間4a 、 4bに区分する働きをす
る。
The insulating spacer 3 is hermetically fixed to the high voltage conductor 2, and its outer periphery is attached to the flanges la, l of a sealed container, for example.
By being airtightly sandwiched between the SFs gas spaces 4a and 4b, the high voltage conductor 2 is insulated and supported at a predetermined position, and the inside of the closed container 1 is divided into two SFs gas spaces 4a and 4b.

このように形成されたガス絶ff1m器が前述のように
設計され、かつ金5部分の表面仕上げや金g粒子の除去
が完全に実施されていれば、製品組立完了や据付は局所
で行われる耐電圧試験に充分耐える性能を有する筈であ
る。ところが密閉容器内に予期しない金属粒子等が存在
した場合には耐電圧試験で高電圧導体2と密閉容器1と
の間のガス中でフラッジオーバが発生する危険性がある
。フラッジオーバは第1図のAのような径路でガス空間
を橋絡した場合、導電性粒子や導体の突起はアーク熱に
より蒸発してしまう場合がほとんどで、このような場合
には欠陥が除去されてその後の絶縁耐力は回復する、す
なわちガス空間の絶縁には自復性が期待できる。ところ
がフラッジオーバが第1図のBの径路のように絶縁スペ
ーサ3の沿面を介して発生した場合、アーク′M電が発
する熱によってスペーサ3のエポキシ樹脂の表面が損傷
され、経路Bにそって導電性の炭化路が形成され、その
後の絶縁耐力が低下するという問題がある。
If the gas-free FF1M device formed in this way is designed as described above, and the surface finish of the gold part and the removal of gold particles are completely performed, product assembly and installation can be completed locally. It should have sufficient performance to withstand the withstand voltage test. However, if unexpected metal particles or the like are present in the sealed container, there is a risk that a floodover will occur in the gas between the high voltage conductor 2 and the sealed container 1 during the withstand voltage test. Floodover occurs when a gas space is bridged through a path like A in Figure 1, and conductive particles and protrusions of the conductor are mostly evaporated by arc heat, and in such cases, defects are removed. After that, the dielectric strength recovers, that is, the insulation of the gas space can be expected to be self-resilient. However, if a floodover occurs along the creeping surface of the insulating spacer 3 as shown in path B in Fig. 1, the epoxy resin surface of the spacer 3 is damaged by the heat generated by the arc'M electric current, causing conduction to occur along path B. There is a problem that a carbonized path is formed and the subsequent dielectric strength decreases.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、ガス絶縁
電器の耐電圧試験において絶縁スペーサ表面でフラッジ
オーバが生じても導電性の炭化路が形成されず、絶縁の
自己回復性を有する絶縁スペーサを提供することを目的
とする。
The present invention has been made in view of the above-mentioned circumstances, and is an insulating spacer that does not form a conductive carbonized path even if flutter over occurs on the surface of the insulating spacer in a withstand voltage test of gas insulated electrical appliances, and has self-healing properties of the insulation. The purpose is to provide

〔発明の要点〕[Key points of the invention]

本発明によれば、上述の目的は、シフロアリファティッ
ク系エポキシ樹脂あるいはヒダントイン系エポキシ樹脂
等の耐トラツキング性または耐ア−り性が、従来のエピ
ビス系エポキシjN Hのそれに比べてずぐれているこ
とに着目し、絶縁スペーサを前記耐トラツキング性樹脂
を用いて注型するとともに、注型された絶縁スペーサの
表面に、フラッジオーバしやすい部分が特定できる形駄
の絶縁スペーサにおいてはその部分に、アクリルlid
 l1i(あるいはポリテトラフルオロエチレン等の非
トラッキング性+i’ll脂膜を被着することにより、
絶縁スペーサの沿面を介してフラッジオーバが発生して
も導電性の炭化路が形成されないよう4−ソ成すること
により達成された。
According to the present invention, the above-mentioned object is to improve the tracking resistance or the scratch resistance of the schifloralyphatic epoxy resin or the hydantoin epoxy resin compared to that of the conventional epibis epoxy jNH. Focusing on this fact, we cast an insulating spacer using the above-mentioned anti-tracking resin, and in the case of an insulating spacer with a shape that allows us to identify areas that are prone to flutter on the surface of the cast insulating spacer, we acrylic lid
By depositing l1i (or non-tracking property +i'll oil film such as polytetrafluoroethylene),
This was achieved by using a 4-sew method to prevent the formation of a conductive carbonized path even if a flash over occurred along the creeping surface of the insulating spacer.

〔発fillの実J角例〕[Example of real J-angle of outgoing fill]

以下本発冊の実施例を添付図面な俗間しつつ説明する。 The embodiments of this issue will be described below with reference to the accompanying drawings.

第2図は本発明の実施例を脱11L1するためのガス絶
縁SB器の原理的第1寺造図である。図において、絶縁
スペーサ13の絶縁は、エポキシ樹脂注型体14とその
表面に被着された非トラツキング性の絶縁被層15とで
約戒されている。エポキシ樹脂注型体14を購成する削
トラッキング性のすぐれたエポキシ樹脂としては、酸無
水物系硬化剤を含む1lij珂形エポキシ樹脂例えばシ
フロアリファティック系エポキシ樹脂か、あるいはヒダ
ントイン系エポキシ樹脂であり、一般に、例えば水和ア
ルミナ等のSFnガスの分解生成物に侵されない充r(
剤が配合される。このような組成の注fillet脂に
より注型された 、エポキシ樹脂注型体14は、耐亀圧
試r1において発生する可能性のある数キロジュール程
度の比較的小さなエネルギーのSFsガス中のアークJ
i(mにさらされても、アーク熱にさらされたFili
分のjI77 脂が@接低分子量の遊離した導体になっ
てガス中に飛散してしまい、導電性の炭化路を形成しな
いことが、発明者らの実験的検討により明らかにされて
いる。非トラツキング性の絶縁?l!! 4)ツ15は
、(1jえばアクリル樹脂塗料またはポリテトラフルオ
ロエチレン、ポリクロロトリフルオロエチレン等のふっ
素樹脂塗料をエポキシ樹脂注型体14の表面に被着した
もので、このように形成することにより、フラッジオー
バの繰り返しに対する自己回復性の安定度を向上するこ
とができる。
FIG. 2 is a first basic diagram of a gas insulated SB device for removing the 11L1 embodiment of the present invention. In the figure, the insulation of the insulating spacer 13 is ensured by an epoxy resin cast body 14 and a non-tracking insulating layer 15 deposited on its surface. The epoxy resin with excellent scraping tracking properties used to make the epoxy resin cast body 14 may be a 1lij type epoxy resin containing an acid anhydride curing agent, such as a ciflora aliphatic epoxy resin or a hydantoin epoxy resin. Generally, materials such as hydrated alumina that are not attacked by the decomposition products of SFn gas (
agent is added. The epoxy resin cast body 14, which is cast with a fillet resin having such a composition, is able to withstand the arc J in SFs gas with a relatively small energy of several kilojoules that may occur in the tortoise resistance test r1.
Fili exposed to arc heat even if exposed to i(m
Experimental studies by the inventors have revealed that the fat becomes a free conductor of low molecular weight and is scattered in the gas, and does not form a conductive carbonized path. Non-tracking insulation? l! ! 4) Tube 15 (for example, acrylic resin paint or fluororesin paint such as polytetrafluoroethylene, polychlorotrifluoroethylene, etc.) is applied to the surface of the epoxy resin cast body 14, and is formed in this way. This makes it possible to improve the stability of self-healing against repeated floodovers.

第3図は本発明の異なる実施例を説明するためのガス絶
縁電器の原理的構造図である。図において、絶縁スペー
サ23のうち、削トラッキング性樹脂配合のエポキシ注
型体24は箭駄の密1’51T容器1内のガス空間4a
側に凸なコーン状に形1+15され、卵トラッキング性
の絶縁被11125はエポキシ樹ni1注型体24のガ
ス空間4i側の凸側の面にのみ被着されている。第3図
のように絶縁スペー1す23がコーン状に形成されてい
る場合、密閉容器1の底部の電昇分布は等電位線40で
示すように、゛絶縁スペーサ23の凸側では高電界部A
が発生す′るのに対し、四側では低電界部Bが発生する
。ガス絶縁電器の1IillI電圧試験において、フラ
ッジオーバは主に密閉容器1内の金属粒子の電界浮上が
原因で発生する場合が多い。ところA間4b側の金RA
Nγ子はif!l縁スペーサに接近する前に低電界部B
で電!?浮上を停止して無害化するが、ガス空間4a側
では高電昇部Aで金属粒子が高く跳び上がって絶縁スペ
ーサ沿面に付着する。したがってコーン状の絶縁スペー
サにおいては凸側の沿面でフラッジA−バを生ずる危険
性が高い。それ故非トラッキング件の絶縁被七“Cを絶
縁スペーサの両面に被着しないでも、フラッジオーバの
発生確率が高い凸側の面にのみ被着しておけば、大部分
のフラッジオーバに対して導電性の炭化路の発生を阻止
することが可能で、絶縁被覆の被着に要する工数を低減
することができる利点がある。またエポキシm脂性型体
24が「1↑、+ 1−ラッキング性のエポキシ樹脂で
形成されているので、絶縁スペーサの凹側で万一フラッ
ジオーバが発生したとしても、その回数が少なければ自
己回復性が期待できる。
FIG. 3 is a diagram showing the principle structure of a gas insulated electric appliance for explaining different embodiments of the present invention. In the figure, among the insulating spacers 23, the epoxy cast body 24 containing abrasion-tracking resin is the gas space 4a in the 1'51T container 1.
It is shaped like a cone 1+15 convex on the side, and the egg-tracking insulation coating 11125 is applied only to the convex surface of the epoxy resin ni1 casting body 24 on the gas space 4i side. When the insulating spacer 1 and 23 are formed in a cone shape as shown in FIG. Part A
' occurs, whereas a low electric field part B occurs on the four sides. In the 1IllI voltage test of gas insulated electrical appliances, floodover often occurs mainly due to electric field levitation of metal particles inside the closed container 1. Gold RA on the 4b side between A and A
Nγko is if! Low electric field part B before approaching the l edge spacer
Deden! ? Although levitation is stopped and the metal particles are rendered harmless, metal particles jump high in the high voltage raising part A on the gas space 4a side and adhere to the surface of the insulating spacer. Therefore, in the case of a cone-shaped insulating spacer, there is a high risk that a fludge A-bar will occur on the creeping surface of the convex side. Therefore, even if you do not apply the non-tracking insulating cover 7 "C" to both sides of the insulating spacer, if you apply it only to the convex side where the probability of occurrence of flutter is high, it will be conductive against most of the flutter. It is possible to prevent the occurrence of carbonization paths, which has the advantage of reducing the number of man-hours required for applying the insulation coating.In addition, the epoxy m-lipid mold body 24 is Since it is made of resin, even if a floodover occurs on the concave side of the insulating spacer, self-recovery can be expected as long as the number of occurrences is small.

〔発明の効果〕〔Effect of the invention〕

本発明は、前述のように、絶縁スペーサを耐トラッキン
グ性のすぐれたエポキシ樹脂注型体と、エポキシ面層注
型体の表面に被着された非トラツキング性の絶縁被覆と
で榊成した。その結果、a・9品組立完了時の耐電圧試
験や何着局所における耐電圧試験のさいに、密閉容器内
にたまたま介在した金F4粒子等が原因で絶縁スペーサ
の沿面を介するフラッジオーバが発生しても、アーク熱
によって絶縁スペ〜すの表面に導電性の炭化路が形成さ
れるのを防止でき、耐電圧試験に才つける絶縁耐力の自
己回復性を有するガス絶縁電器用絶縁スペーサを提供で
きた。またM電圧試験時にフラッジオーバが生じても絶
縁耐力が低下しないので絶縁スペーサを交換する必要が
なくなり、従来絶縁スペーサの交換に要したガス絶縁電
器の分解および組豆費用や予備スペーサの製作費用が節
約され、力)つ交換に要する時間が短縮される等の効果
が得られた。
In the present invention, as described above, an insulating spacer is formed of an epoxy resin cast body having excellent tracking resistance and a non-tracking insulating coating coated on the surface of the epoxy surface layer cast body. As a result, during the withstand voltage test at the completion of the assembly of the A-9 product and the withstand voltage test at the various locations, a floodover occurred through the creeping surface of the insulating spacer due to gold F4 particles that happened to be present in the sealed container. However, it is possible to provide an insulating spacer for gas-insulated electrical appliances that can prevent the formation of conductive carbonized paths on the surface of the insulating space due to arc heat, and has self-recovery properties of dielectric strength that are useful for withstanding voltage tests. Ta. In addition, even if a floodover occurs during the M voltage test, the dielectric strength does not decrease, so there is no need to replace the insulating spacer, which saves the cost of disassembling and assembling the gas insulated electrical appliance that was conventionally required to replace the insulating spacer, and the cost of manufacturing spare spacers. Effects such as a reduction in the time required for replacement (power and force) were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁スペーサを説明する1こめのガス絶
縁電器の原理的な構造図、第2図(よ本発明の詳細な説
明するためのガス絶縁電器の原理0寸な構造図、第3図
は本発明の異なるIs施例を示す概念図である。 図において、1・・・密閉容器、2・・・高検I″F、
導イ本、4g+4b・・・ガス空間、3.13.23・
・・絶縁スペーサ、14゜24・・・向1トラ゛ンキン
グ性エポキシIl?ll旧Y1三型イ本、15.25・
・・ 非トラッキング性vl!3縁被覆である。 ′71図 72図 才3図
Figure 1 is a one-dimensional structural diagram of the principle of a gas-insulated electrical appliance to explain a conventional insulating spacer, and Figure 2 is a one-dimensional structural diagram of the principle of a gas-insulated electrical appliance to explain the present invention in detail. Figure 3 is a conceptual diagram showing different Is embodiments of the present invention. In the figure, 1... airtight container, 2... high inspection I''F,
Guide book, 4g+4b...gas space, 3.13.23.
...Insulating spacer, 14゜24...direction 1 tracking epoxy Il? ll old Y1 type 3 book, 15.25・
・・Non-tracking property vl! It has 3 edge coverings. '71 Figure 72 Figure 3

Claims (1)

【特許請求の範囲】 1)絶縁ガスを包蔵した箇駅のiη閉容器に内設され高
電圧導体を前記密閉容器内に絶縁支持するエポキシ4匁
11旨ン右型されたに0縁るぺ−1すにおいて、エポキ
シ樹脂注型体が充填剤を含む嗣トラッキング性エポキシ
樹脂であり、前記エポキシm If;i注型体と絶縁ガ
スとの界面の少なくとも一部分に非トラツキング性の絶
縁被覆が被着されたことをq′:?徴とするガス絶トマ
電器用絶縁スペーリ。 2、特許請求の範囲第1項記載のものにおいて、剛トラ
ッキング性エポキシTOJ I]?f i、+s 、シ
フロアリファティック系エポキシ樹脂あるいはヒダント
イン系エポキシ樹脂であることを特徴とするガス絶縁電
器用絶音スペーサ。 3)特許請求の範囲第1項86載のものにおいて、絶縁
被覆がアクリル樹脂あるいはふっ素樹脂被膜であること
を特徴とするガスに!3IW I’l!器用絶縁スペー
サ。 4)特許請求の範囲第1項から第3項のいずれかに記載
のものにおいて、エポキシ樹脂注型体が、篩状の密閉容
器の軸方向の一力側に凸なコーン状に形成され、突出し
た側のエポキシ樹脂注型体表面にのみ絶縁被覆が被着さ
れたことを特徴とするガス絶縁電器用絶縁スペー勺。
[Scope of Claims] 1) An epoxy 4/11-inch right-shaped epoxy resin which is installed inside a closed container containing an insulating gas and insulates and supports a high-voltage conductor within the closed container. -1, the epoxy resin cast body is a tracking epoxy resin containing a filler, and at least a portion of the interface between the epoxy cast body and the insulating gas is coated with a non-tracking insulating coating. q′:? Insulating spacer for gas-free electric appliances. 2. In the product described in claim 1, the rigid tracking epoxy TOJ I]? f i,+s , a soundproof spacer for gas-insulated electrical appliances, characterized in that it is made of a cyfuroaliphatic epoxy resin or a hydantoin epoxy resin. 3) The gas according to claim 1, item 86, characterized in that the insulating coating is an acrylic resin or fluororesin coating! 3IW I'l! Dexterous insulation spacer. 4) In the product according to any one of claims 1 to 3, the epoxy resin cast body is formed into a cone shape that is convex on one force side in the axial direction of the sieve-shaped closed container, An insulating spacer for gas-insulated electric appliances, characterized in that an insulating coating is applied only to the surface of the epoxy resin cast body on the protruding side.
JP58149457A 1983-08-16 1983-08-16 Insulating spacer for gas insulated electric device Pending JPS6043010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149457A JPS6043010A (en) 1983-08-16 1983-08-16 Insulating spacer for gas insulated electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149457A JPS6043010A (en) 1983-08-16 1983-08-16 Insulating spacer for gas insulated electric device

Publications (1)

Publication Number Publication Date
JPS6043010A true JPS6043010A (en) 1985-03-07

Family

ID=15475533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149457A Pending JPS6043010A (en) 1983-08-16 1983-08-16 Insulating spacer for gas insulated electric device

Country Status (1)

Country Link
JP (1) JPS6043010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292716A (en) * 1985-10-16 1987-04-28 アセア アクチ−ボラグ Dc high voltage transmission apparatus
JP2012110206A (en) * 2010-10-22 2012-06-07 Mitsubishi Electric Corp Gas-insulation switchgear and manufacturing method thereof
JP2021518731A (en) * 2018-03-23 2021-08-02 アー・ベー・ベー・パワー・グリッズ・スウィツァーランド・アクチェンゲゼルシャフトAbb Power Grids Switzerland Ag Manufacturing method of electric elements by additional manufacturing technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292716A (en) * 1985-10-16 1987-04-28 アセア アクチ−ボラグ Dc high voltage transmission apparatus
JP2012110206A (en) * 2010-10-22 2012-06-07 Mitsubishi Electric Corp Gas-insulation switchgear and manufacturing method thereof
JP2021518731A (en) * 2018-03-23 2021-08-02 アー・ベー・ベー・パワー・グリッズ・スウィツァーランド・アクチェンゲゼルシャフトAbb Power Grids Switzerland Ag Manufacturing method of electric elements by additional manufacturing technology
US11984711B2 (en) 2018-03-23 2024-05-14 Hitachi Energy Ltd Method for producing an electrical power device by additive manufacturing techniques

Similar Documents

Publication Publication Date Title
JPS60501039A (en) How to control electrical stress
JPS6043010A (en) Insulating spacer for gas insulated electric device
DE3001810A1 (en) FILM-INSULATED HIGH VOLTAGE TRANSMISSION WITH POTENTIAL CONTROL INSERTS
Hasegawa et al. DC dielectric characteristics and conception of insulation design for DC GIS
JPS5866213A (en) Insulator
Hampton et al. Outline of a flexible, SF6 insulated ehv cable
Dale et al. Effects of Particle Contamination in SF6 CGIT systems and methods of particle control and elimination
Dale Elimination of particle effects in SF/sub 6/insulated transmission systems. Fifth quarterly report, October 1, 1978-June 26, 1980
US3806626A (en) Means for reducing audible noise developed by an extra high voltage transmission line
CN111413554B (en) GIS/GIL insulator surface potential measuring device
JPS61177109A (en) Assembly of gas insulated switchgear
US3794749A (en) Method for controlling contamination in gas insulated transmission systems
US2986595A (en) Post type insulator and method of making the same
US4160870A (en) High voltage device with gas insulation
US4145101A (en) Method for manufacturing gas insulated electrical apparatus
US3001004A (en) Electrical components comprising resin cast inside a shell
Cherney et al. Development and application of a new semiconductive-glaze insulator
JPH0591630A (en) Gas-insulated bus
JPS5814125B2 (en) How to clean gas insulated switchgear
SU758264A1 (en) High-voltage device with gas insulation
Pace et al. Particle contamination in gas-insulated systems: new control methods and optimum SF 6/N 2 mixtures
JPH011411A (en) Conductor support insulator for gas insulated equipment
Natsuume et al. Development of numerical computational model for revolving metallic particles' behavior in GIS and its evaluation
JPH06351117A (en) Gas-insulated apparatus
Dale Elimination of particle effects in SF/sub 6/insulated transmission systems. Second quarterly report, January 1--March 31, 1979