JPS6042862B2 - Atmosphere control method - Google Patents

Atmosphere control method

Info

Publication number
JPS6042862B2
JPS6042862B2 JP7113380A JP7113380A JPS6042862B2 JP S6042862 B2 JPS6042862 B2 JP S6042862B2 JP 7113380 A JP7113380 A JP 7113380A JP 7113380 A JP7113380 A JP 7113380A JP S6042862 B2 JPS6042862 B2 JP S6042862B2
Authority
JP
Japan
Prior art keywords
perforated plate
water
refrigerator
cooling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7113380A
Other languages
Japanese (ja)
Other versions
JPS56168070A (en
Inventor
賢庸 松下
泰 江上
功一 増田
浩三 榛葉
達雄 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Research Laboratory Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Research Laboratory Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Research Laboratory Ltd, Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Research Laboratory Ltd
Priority to JP7113380A priority Critical patent/JPS6042862B2/en
Publication of JPS56168070A publication Critical patent/JPS56168070A/en
Publication of JPS6042862B2 publication Critical patent/JPS6042862B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Description

【発明の詳細な説明】 本発明はプレハブ冷蔵庫のような大型冷蔵庫の雰囲気
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an atmosphere control method for a large refrigerator such as a prefabricated refrigerator.

食料品の適正貯蔵条件が明らかとなるにつれ、例えば
生鮮食品類や肉類は低温(約3℃)に加えて湿度が高く
(相対湿度で90%以上)清浄かつ臭気の可及的に少な
い雰囲気のもとで貯蔵することが要求されるようになつ
てきた。
As the proper storage conditions for food products become clearer, for example, fresh foods and meat must be stored at low temperatures (approximately 3 degrees Celsius), high humidity (over 90% relative humidity), and in a clean and odor-free atmosphere. There is a growing demand for storage at the base.

しかも温度および湿度は変動巾が小さく、いわゆる恒温
恒温環境を創ることが望まれている。 しカルながらこ
のように低温且つ高湿度に庫内雰囲気(一般には空気)
を制御するうえで、特に高湿度を得ることが困難とされ
、また加湿に伴う問題点が多かつた。
Moreover, it is desired to create a so-called constant-temperature environment in which the fluctuation range of temperature and humidity is small. Although the temperature is low and the humidity is high, the atmosphere inside the refrigerator (generally air)
It is said that it is particularly difficult to obtain high humidity in controlling humidity, and there are many problems associated with humidification.

例えば通常の冷却手段に加えて従来一般に知られている
加湿器を備える方法では、加湿ミストの液滴が一般に大
きいために低温のもとでは所望の加湿効果を得られず、
相対湿度を90%以上に高めることが困難であるばかり
か、貯蔵品の表面に結露して品質を低下させる危険が高
まる。しかも従来の加湿器では熱を庫内に持込んだり、
あるいは加湿水中に含まれる溶解性不純物、細菌や塵芥
等を庫内に持込む危険があり、このために浄化装置等を
備えることは設備費等の面から実際上困難となる。また
冷却手段として冷媒の蒸発潜熱により庫内空気を直接的
に冷却する直冷方式を採用すると、蒸発器表面における
霜生長を加湿水分が増進させることになる。このために
除霜運転頻度を高めるざるを得なくなり、冷却能率を悪
化するうえ庫内温度の変動巾が大きくなつてしまう。ま
た、気液接触手段によつて冷却した水と空気とを接触さ
せることで空気を冷却且つ加湿し、これを庫内に導びく
雰囲気制御方法も提案されていた。
For example, in a method that includes a conventionally known humidifier in addition to normal cooling means, the droplets of the humidifying mist are generally large, so the desired humidifying effect cannot be obtained at low temperatures.
Not only is it difficult to increase the relative humidity to 90% or more, but there is also an increased risk of dew condensation on the surface of stored products and deterioration of quality. Moreover, conventional humidifiers do not bring heat into the refrigerator,
Alternatively, there is a risk of bringing soluble impurities, bacteria, dust, etc. contained in the humidifying water into the refrigerator, and for this reason, it is practically difficult to provide a purification device etc. from the viewpoint of equipment costs. Furthermore, if a direct cooling method is adopted as the cooling means, in which the air inside the refrigerator is directly cooled by the latent heat of vaporization of the refrigerant, the humidifying moisture will increase the growth of frost on the surface of the evaporator. For this reason, the frequency of defrosting operation has to be increased, which not only deteriorates the cooling efficiency but also increases the fluctuation range of the temperature inside the refrigerator. Furthermore, an atmosphere control method has been proposed in which the air is cooled and humidified by bringing the cooled water into contact with the air using a gas-liquid contacting means, and the air is guided into the refrigerator.

この方法は前述した如き除霜が不要となるので庫内の恒
温恒湿化の点で有利となる。しかしながら従来のこの方
法においては、庫内に設けた冷却加湿塔を通して庫内空
気を循環させ、塔内を流れる空気に対して冷却した水を
ノズルから噴霧するものである。このような単純な噴霧
方法では水滴の微細化が困難であり、しかも空気との効
率の高い接触作用が得られないことから、冷却および加
湿効果が低い欠点がある。従つて所要の冷却加湿能力を
得るためには設備を大型化して大量の冷却水を循環噴霧
する必要があり、また冷却水の圧送ポンプを高圧化して
水滴の微細化をはからねばならない等の設備上の問題が
ある。また空気の流れによつて水滴が運ばれ易く、これ
が庫内に持込まれることは避けねばならない。このため
に従来はサイクロン式除塵装置を付設し、除塵とともに
除水滴、除菌効果を得るようになされていた。しかしサ
イクロン除塵装置は空気を高速で流す必要があり、強力
なファンを必要とするうえこのファンが高い圧力損失に
原因して大きな熱的悪影響を及ぼしていた。しかもサイ
クロン除塵装置では除菌効果が低いため、これを高める
にはマルチ化等による設備の大型化が避けられず、熱的
悪影響がさらに大きくなる問題があつた。本発明はこれ
らの従来の問題点に鑑みて、冷却加湿に有利な気液接触
方式にもとづいて冷却および加湿効果が著しく向上され
る雰囲気制御方法の提供を目的とする。
Since this method does not require defrosting as described above, it is advantageous in terms of maintaining constant temperature and humidity inside the refrigerator. However, in this conventional method, air inside the refrigerator is circulated through a cooling and humidifying tower provided inside the refrigerator, and cooled water is sprayed from a nozzle onto the air flowing inside the tower. Such a simple spraying method has the drawback that it is difficult to make water droplets fine and, moreover, it is not possible to obtain highly efficient contact with air, resulting in low cooling and humidifying effects. Therefore, in order to obtain the required cooling and humidifying capacity, it is necessary to increase the size of the equipment and circulate and spray a large amount of cooling water, and it is also necessary to increase the pressure of the cooling water pump to make water droplets smaller. There is a problem with the equipment. In addition, water droplets are easily carried by air currents, and it is necessary to avoid bringing them into the refrigerator. For this purpose, conventionally, a cyclone type dust removal device has been attached to remove dust, water droplets, and sterilization effects. However, cyclone dust removers require air to flow at high speeds, require powerful fans, and these fans have a large negative thermal effect due to high pressure loss. Moreover, since the sterilizing effect of the cyclone dust remover is low, increasing the size of the equipment due to multilayering, etc., is unavoidable in order to increase the sterilization effect, which poses the problem of further increasing the adverse thermal effects. In view of these conventional problems, it is an object of the present invention to provide an atmosphere control method that is based on a gas-liquid contact method that is advantageous for cooling and humidification, and in which cooling and humidification effects are significantly improved.

このために本発明は、冷却加湿塔内に多数の開口を有す
る少くとも1枚の目皿板を水平に配置し、庫内雰囲気を
該目皿板の開口を通して上方へ噴出させるように流すと
ともに、冷却水を該目皿板の開口を通して流下させるよ
うに目皿板上方にて散布し、両流れの相互干渉により該
目皿板の上側に濃密な水滴流動層を形成させることによ
つて冷却水と雰囲気との接触効率を高めるとともに加湿
効果を高めることを特徴とする。
For this purpose, the present invention horizontally arranges at least one perforated plate having a large number of openings in the cooling and humidifying tower, and allows the internal atmosphere to flow upward through the openings of the perforated plate. Cooling is achieved by spraying cooling water above the perforated plate so that it flows down through the openings of the perforated plate, and forming a dense fluidized layer of water droplets on the upper side of the perforated plate due to the mutual interference of both flows. It is characterized by increasing the contact efficiency between water and the atmosphere as well as increasing the humidifying effect.

以下に本発明の実施例につき図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は野菜等の生鮮食料品を例えば穴開き容器等に詰
め込んだ状態のまま長期貯蔵するプレハブ冷蔵庫を示し
ている。この冷蔵庫1は庫内温度を約3℃に、且つ湿度
を90%以上に維持することを意図されたものであり、
そのための雰囲気制御装置として庫外に設置された気液
接触式の冷却加湿塔2が採用されている。この冷却加湿
塔2は上部ダクト2Aおよび下部ダクト2Bを通してそ
れぞれ冷蔵庫1の庫内上部および下部に連通されている
。下部ダクト2Bには循環ファン3が組付けられており
、矢印で示す如く庫内雰囲気ここでは空気を下部ダクト
2Bを通して冷却加湿塔2に導びき、塔内を上方へ流し
た後上部ダクト2Aから庫内へ戻すように循環させる働
きを有している。冷却加湿塔2にはまた循環ポンプ4が
備えられている。この循環ポンプ4は冷却加湿塔2内の
下部に溜められている水(第2図参照)をバイブ4Aを
通して塔上部へ矢印で示す如く導びき、適当に間隔を置
いて形成された孔4Bを通して塔内に散水するために備
えられている。これらの孔4Bによる散水は噴霧を目的
とするものでなく、塔内に大体均等に散布することを意
図している。従つて循環ポンプ4は全く高圧型とされる
必要はない。”散布された水は後述の如く塔内を流下し
つつ空気と接触され、塔下部に戻されて循環される。こ
の水は冷却機5によつて所望温度(ここでは大体1℃)
に冷却制御されるようになつており、塔内下部に溜めら
れている水中に冷却機5の冷媒との熱交換部6が配置さ
れている。冷却機5は何れの型式でもよく、周知の方法
て水温制御(冷却)を行う。勿論これ以外に、外部で冷
却した水を塔内に散布するようにもできる。本発明の特
徴として、この冷却加湿塔2には第・2図に示す如く内
部に少くとも1枚の目皿板10が水平に配置され、また
目皿板10の上方に間隔11を隔てて液滴流動層安定バ
ッフル11が配置される。
FIG. 1 shows a prefabricated refrigerator for storing fresh foods such as vegetables for a long period of time in a perforated container. This refrigerator 1 is intended to maintain an internal temperature of about 3°C and a humidity of 90% or more,
A gas-liquid contact type cooling and humidifying tower 2 installed outside the warehouse is used as an atmosphere control device for this purpose. This cooling and humidifying tower 2 is connected to the upper and lower parts of the refrigerator 1 through an upper duct 2A and a lower duct 2B, respectively. A circulation fan 3 is installed in the lower duct 2B, and as shown by the arrow, air is guided to the cooling and humidifying tower 2 through the lower duct 2B, and after flowing upward through the tower, the air is circulated through the upper duct 2A. It has the function of circulating it back into the refrigerator. The cooling and humidifying tower 2 is also equipped with a circulation pump 4. This circulation pump 4 guides the water stored in the lower part of the cooling and humidifying tower 2 (see Figure 2) through a vibrator 4A to the upper part of the tower as shown by the arrow, and through holes 4B formed at appropriate intervals. It is provided for sprinkling water inside the tower. The water sprinkling through these holes 4B is not intended to be a spray, but rather to be dispersed approximately evenly within the tower. Therefore, the circulation pump 4 does not need to be of a high pressure type at all. As described below, the sprayed water flows down the tower, comes into contact with air, and is returned to the lower part of the tower for circulation.
A heat exchange section 6 with the refrigerant of the cooler 5 is arranged in the water stored in the lower part of the tower. The cooler 5 may be of any type and performs water temperature control (cooling) using a well-known method. Of course, in addition to this, it is also possible to spray externally cooled water into the tower. As a feature of the present invention, at least one perforated plate 10 is disposed horizontally inside the cooling and humidifying tower 2, as shown in FIG. A droplet fluidized bed stabilizing baffle 11 is arranged.

ここでは1枚の目皿板10のみ示すが、複数枚の目皿板
10を備える場合も、該液滴流動層安定バッフルは目皿
板10と互いに間牌,に大体等しい間隔を隔てて設置さ
れる。また、最上段の液滴流動層安定バッフルから12
上方にはミストエリミネータ13が配置される。この目
皿板10は多数の開口10Aを有する隔壁体であり、例
えば数ミリメートル径の小孔を多数穿孔された多孔板と
される。また目皿板10は、それを通過噴出する空気が
目皿板10上に流下した水を攪乱し、この相互作用によ
つて間m1で規制される空間内に後述する如く濃密な水
滴流動域12を定常的に形成するために備えられる。従
つて開口径、開口率および間隔1はこの目的のために流
量等に応じて適当に選定される。また液滴流動層安定バ
ッフル11は例えばハニカム構造のように大きな開口率
を有し、且つ上下に厚くされて垂直壁面11Aの面積が
比較的大きいものとされる。液滴流動層安定バッフル1
1は水滴流動域12の上限レベルを規制し、水滴が空気
よつて庫内に或は、上段の目皿板10に運ばれるのを後
述の如く防止するために備えられる。このように目皿板
10液滴流動層安定バッフル11およびミストエリミネ
ータ13が備えられ、庫内空気が冷却加湿塔2内を上方
へ流されて循環される一方、冷却された水が冷却加湿塔
2内を下方へ自然流下される気液接触式の本発明による
制御方法によれば、以下の如く冷却および加湿効果が著
しく向上され、これに伴つて除塵および除菌能力も高め
られるのである。
Although only one perforated plate 10 is shown here, even when a plurality of perforated plates 10 are provided, the droplet fluidized bed stabilizing baffles are installed at approximately equal intervals between the perforated plate 10 and each other. be done. Also, from the topmost droplet fluidized bed stabilizing baffle, 12
A mist eliminator 13 is arranged above. This perforated plate plate 10 is a partition body having a large number of openings 10A, and is, for example, a perforated plate having a large number of small holes of several millimeters in diameter. In addition, the air passing through the perforated plate 10 disturbs the water flowing down onto the perforated plate 10, and this interaction creates a dense water droplet flow region in the space regulated by the space m1, as described below. 12 on a regular basis. Therefore, the aperture diameter, aperture ratio, and interval 1 are appropriately selected for this purpose depending on the flow rate and the like. Further, the droplet fluidized bed stabilizing baffle 11 has a large aperture ratio, such as a honeycomb structure, and is thickened vertically, so that the area of the vertical wall surface 11A is relatively large. Droplet fluidized bed stabilizing baffle 1
1 is provided to regulate the upper limit level of the water droplet flow area 12 and to prevent water droplets from being carried into the refrigerator by air or to the upper perforated plate 10 as described later. In this way, the perforated plate 10, the droplet fluidized bed stabilizing baffle 11, and the mist eliminator 13 are provided, and while the air inside the refrigerator is circulated upward in the cooling humidifying tower 2, the cooled water is circulated in the cooling humidifying tower 2. According to the control method of the present invention, which uses a gas-liquid contact method in which air flows naturally downward in the chamber 2, the cooling and humidifying effects are significantly improved as described below, and along with this, the dust removal and sterilization abilities are also improved.

すなわち、冷却された水が冷却加湿塔2内に散水されて
目皿板10上に流下すると、この目皿板10の開口10
A群を通して上方へ噴出する空気により水が攪乱され、
水滴化されて目皿板10の上側にて激しく流動される。
空気は水を水滴化し流動させた後液滴流動層安定バッフ
ル11ミストエリミネータ13を通つて冷蔵庫1の庫内
に戻される。この際空気とともに水滴は、液滴流動層安
定バッフル11に侵入するが、水滴は全方向へ激しく流
動されているためにこれを通過中に垂直壁面11Aに衝
突する。このようにして付着生長した水滴が再び目皿板
10上へ流下される。これにより庫内に運ばれては困る
ような水滴は液滴流動層安定バッフル11によりほとん
ど空気流から除去された上、更に上部のミストエリミネ
ータ13により完全に除去される。また目皿板上面に供
給された水は目皿板10の開口10Aを通して流下し、
再び冷却機5により冷却された後循環ポンプ4により塔
内散布されるように循環される。空気および水が引続き
供給されると、水滴量が増大し且つ相互に干渉して非常
に激しくなり、目皿板10上の間隔1で規制された空間
内に微細な水滴が濃密に充満して激しく流動する定常的
な平衡状態に至る。この状態においても液滴流動層安定
バッフル11は前述した如く水滴が空気とともに上方へ
流出するのを防止し、水滴流動域の上限レベルを定常的
に維持する。このようにして目皿板10および液滴流動
層安定バッフル11の間隔的には濃密な水滴流動域が形
成され、水滴は常に激しく流動されて維持されるので、
空気と水との安定した効率の高い接触が行われるのであ
る。
That is, when the cooled water is sprinkled into the cooling humidifying tower 2 and flows down onto the perforated plate plate 10, the opening 10 of this perforated plate plate 10
The water is disturbed by the air that blows upward through Group A,
The water is turned into droplets and flows violently above the perforated plate 10.
The air is returned to the inside of the refrigerator 1 through a droplet fluidized bed stabilizing baffle 11 and a mist eliminator 13 after turning water into droplets and making them fluid. At this time, the water droplets enter the fluidized bed stabilizing baffle 11 together with the air, but since the water droplets are being violently flown in all directions, they collide with the vertical wall surface 11A while passing through this baffle. The water droplets that have adhered and grown in this manner flow down onto the perforated plate 10 again. As a result, most of the water droplets that would be undesirable to be carried into the warehouse are removed from the air flow by the fluidized bed stabilizing baffle 11, and are further completely removed by the mist eliminator 13 located above. In addition, the water supplied to the upper surface of the perforated plate flows down through the opening 10A of the perforated plate 10,
After being cooled again by the cooler 5, it is circulated by the circulation pump 4 so as to be distributed within the tower. As air and water continue to be supplied, the amount of water droplets increases and interferes with each other, becoming very intense, and the space regulated by the interval 1 on the perforated plate 10 is densely filled with fine water droplets. A steady state of equilibrium is reached with intense flow. Even in this state, the droplet fluidized bed stabilizing baffle 11 prevents the water droplets from flowing upward together with the air, as described above, and constantly maintains the upper limit level of the water droplet flow region. In this way, a dense water droplet flow region is formed at intervals between the perforated plate plate 10 and the droplet fluidized bed stabilizing baffle 11, and the water droplets are always kept in a vigorous flow.
Stable and efficient contact between air and water takes place.

従つてこれにより水による空気の冷却効率が著しく向上
され、また空気に対する加湿が効果的に行われて飽和湿
度に近い状態にまで空気を加湿することが可能となる。
また水滴流動域における空気と水との接触が激しく且つ
水滴の庫内持込みが防止できるので、何らかの理由によ
り庫内空気に含まれた塵芥、溶解性ガスや細菌等を水に
より除去して庫内空気の浄化機能をも兼せて有すると同
時に、水に含まれている塵芥、溶解性ガスさらには細菌
等を庫内に持込む危険が解消できるのである。以上説明
したように、本発明は特に水滴流動域により気液接触効
果を向上させて前述した如き従来の問題を解消するもの
であり、この水滴流動域を目皿板およびミストエリミネ
ータの設置により空気および水の流れの相互作用で形成
させるので、簡単な構造の装置で実施できる等の実際上
多大な効果を得られる。
Therefore, this significantly improves the efficiency of cooling air with water, and also effectively humidifies the air, making it possible to humidify the air to a state close to saturated humidity.
In addition, since there is strong contact between air and water in the water droplet flow area, and it is possible to prevent water droplets from being brought into the refrigerator, the water can be used to remove dust, soluble gases, bacteria, etc. contained in the interior air for any reason. It also has the function of purifying the air, and at the same time eliminates the risk of bringing dust, soluble gas, bacteria, etc. contained in the water into the refrigerator. As explained above, the present invention solves the above-mentioned conventional problems by particularly improving the gas-liquid contact effect by using the water droplet flow area, and by installing perforated plates and mist eliminators in this water droplet flow area. Since it is formed by the interaction of the flow of water and water, great practical effects can be obtained, such as being able to be carried out with a device of simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による雰囲気制御方法を実施せる冷却装
置を備えた冷蔵庫の透視的概略斜視図。 第2図は第1図の冷却装置を示す概略的な断面図。1・
・・・・・冷蔵庫、2・・・・・・冷却加湿塔、3・・
・・・・循環ファン、4・・・・・・循環ポンプ、5・
・・・・・冷却機、6・・・・・・熱交換部、10・・
・・・・目皿板、10A・・・・・・開口、11・・・
・・・液滴流動層安定バッフル、11A・・・・・・垂
直壁面、12・・・・・・水滴流動域、13・・・・ミ
ストエリミネーター。
FIG. 1 is a schematic perspective view of a refrigerator equipped with a cooling device capable of implementing the atmosphere control method according to the present invention. FIG. 2 is a schematic sectional view showing the cooling device of FIG. 1. 1・
... Refrigerator, 2 ... Cooling and humidification tower, 3 ...
...Circulation fan, 4...Circulation pump, 5.
...Cooler, 6...Heat exchange section, 10...
...Perforated plate, 10A...Opening, 11...
... Droplet fluidized bed stabilizing baffle, 11A ... Vertical wall surface, 12 ... Water droplet flow region, 13 ... Mist eliminator.

Claims (1)

【特許請求の範囲】[Claims] 1 冷蔵庫等の庫内雰囲気を低温且つ高湿度に制御する
方法であつて、少くとも1枚の多数の開口を有する目皿
板が水平に内部に配置されている冷却加湿塔を庫外に設
け、目皿板を上方向へ通過させるように庫内気体を該冷
却加湿塔に通して循環させ、また冷却した液体を目皿板
上方にて散布して目皿板を流下させ、目皿板を通過した
気体の流れにより目皿板上方に前記液体の液滴流動域を
形成し、この液滴流動域における気液接触によつて気体
を冷却加湿することを特徴とする雰囲気制御方法。
1. A method of controlling the internal atmosphere of a refrigerator, etc. to a low temperature and high humidity, which involves installing a cooling and humidifying tower outside the refrigerator, in which at least one perforated plate with many openings is arranged horizontally inside the refrigerator. The gas inside the refrigerator is circulated through the cooling and humidifying tower so as to pass upward through the perforated plate, and the cooled liquid is sprayed above the perforated plate to flow down the perforated plate. An atmosphere control method characterized in that a droplet flow region of the liquid is formed above the perforated plate by the flow of gas that has passed through the perforated plate, and the gas is cooled and humidified by gas-liquid contact in the droplet flow region.
JP7113380A 1980-05-28 1980-05-28 Atmosphere control method Expired JPS6042862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7113380A JPS6042862B2 (en) 1980-05-28 1980-05-28 Atmosphere control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7113380A JPS6042862B2 (en) 1980-05-28 1980-05-28 Atmosphere control method

Publications (2)

Publication Number Publication Date
JPS56168070A JPS56168070A (en) 1981-12-24
JPS6042862B2 true JPS6042862B2 (en) 1985-09-25

Family

ID=13451767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7113380A Expired JPS6042862B2 (en) 1980-05-28 1980-05-28 Atmosphere control method

Country Status (1)

Country Link
JP (1) JPS6042862B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110459U (en) * 1985-12-28 1987-07-14
JPS62195885U (en) * 1986-06-04 1987-12-12
JPH0462953B2 (en) * 1985-07-23 1992-10-08 Shimizu Construction Co Ltd

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916979U (en) * 1982-07-21 1984-02-01 後藤 長司 Humidifier for refrigerators, etc.
JPS5972483U (en) * 1982-11-08 1984-05-17 大和冷機工業株式会社 high humidity refrigerator
JPS5972482U (en) * 1982-11-08 1984-05-17 大和冷機工業株式会社 high humidity refrigerator
JPS59195475U (en) * 1983-06-13 1984-12-26 サンデン株式会社 Refrigerated case
JPS6179183U (en) * 1984-10-30 1986-05-27

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462953B2 (en) * 1985-07-23 1992-10-08 Shimizu Construction Co Ltd
JPS62110459U (en) * 1985-12-28 1987-07-14
JPS62195885U (en) * 1986-06-04 1987-12-12

Also Published As

Publication number Publication date
JPS56168070A (en) 1981-12-24

Similar Documents

Publication Publication Date Title
US6055824A (en) Method and device for refrigerating a fluid
JP4972106B2 (en) Apparatus and method for dehumidifying greenhouse air and temperature
JP2009503431A (en) Convector for cooling pipe circulating fluid
JPS6042862B2 (en) Atmosphere control method
US3899553A (en) Cooling tower plume control
US3350892A (en) Two-stage air conditioning system
JP4367865B2 (en) Humidifier for refrigerator and cold storage
WO1995022724A1 (en) Improvements in and relating to atmosphere modifying units
JP3674616B2 (en) Seedling acclimatization device
JP3647591B2 (en) Humidified air manufacturing method, thawing device and air conditioner using humidified air
JP4426263B2 (en) Air conditioner
JP7095720B2 (en) Agricultural product freshness maintenance device
JP3631286B2 (en) Cooling system
JP4442996B2 (en) Gas purification device
US4123917A (en) Produce cooler
JP7224996B2 (en) clean room air conditioning system
US2390104A (en) Cooling and dehydrating apparatus
US1736408A (en) Air cooler
JP2006322669A (en) Cooling tower
CN220541461U (en) Movable fresh-keeping equipment
JP3674617B2 (en) Seedling acclimatization device
JPS6113151B2 (en)
JPH07241141A (en) Device for acclimating grafted nursery plant
KR980007953A (en) Mushroom cultivation air conditioner
JPH0334568Y2 (en)