JPS6042831A - Semiconductor manufacturing device - Google Patents

Semiconductor manufacturing device

Info

Publication number
JPS6042831A
JPS6042831A JP15105683A JP15105683A JPS6042831A JP S6042831 A JPS6042831 A JP S6042831A JP 15105683 A JP15105683 A JP 15105683A JP 15105683 A JP15105683 A JP 15105683A JP S6042831 A JPS6042831 A JP S6042831A
Authority
JP
Japan
Prior art keywords
gas
processing chamber
inert gas
chamber
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15105683A
Other languages
Japanese (ja)
Inventor
Masanobu Ogino
荻野 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15105683A priority Critical patent/JPS6042831A/en
Publication of JPS6042831A publication Critical patent/JPS6042831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the contamination in a semiconductor processing chamber and to increase the yield of products by providing the said chamber where semiconductor substrates and the oxide and etc. coating them are etched with an inlet and an outlet of an inert gas thereby blowing the gas into the chamber after the process to blow up the generated fine particles in the chamber and to exhaust from the outlet together with the gas. CONSTITUTION:In the semiconductor processing chamber 6 provided with a lid 12 at one end, the holer 7 carrying plural substrates 8 to be processed and a manifold 5 are arranged with facing. A vacuum pump 11 is connected to the exhaust pipe 9 arranged under the holder 7 through a valve 10. Also, a gas introducing pipe 1 is connected to the manifold 5 through the applicator 2 to which a waveguide 3 is connected and a gas pipe 4. In this constitution, the gas pipe 14 comprising a plurality of gas inlets 13 is attached above the manifold 5 and a valve 15 is opened after finishing the process to blow N2 gas into the chamber 6. Thus, the fine particles generated by the process are blown up in the chamber 6 and exhausted out of the chamber through the exhaust pipe 9.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は半導体製造装置に関するもので、特に半導体基
板およびその酸化物、金)A等のエツチング、あるいは
金属、酸化物等の半導体基板への堆積に使用されるもの
である。 〔発明の技術的背景および七〇)問題点〕添付図面の第
1゛図を参照して従来装置なa明する。第1図は近年の
半導体製造工業にお℃・て使用1されているシリコン膜
、窒化シ1Jコン膜のエツチングのためのCI)E (
Cbemical Dry Btching )装置の
構成図である。ガス管1を介してアブ1ノケータ2に供
給されたCF4 +02ガスもtjjl波管3を通って
きたマイクロ波によりプラズマ化され、ガス管4を通っ
てマニホールド 室6に馬えら第1る。半導体処理室6o)下部σ)ホル
ダー7 VCは半導体基板8が載置されており、例えば
半導体基板8がシリコンの場合%i下自己の反応式でエ
ツチングされる。 CF4 + 02 + S 4 →S, F番 + (
シ02このときの反応生成物( SIF4 1 C02
 )4工、杉ト出管9およびパルプ1()を介して真空
ボ/プ11により矢印の如く外部に排出される。 ところが、上記の反応生成物の排出は必ずしも理想的に
行なわれるとは限らず、Siの微粒子が半導体処理室6
の壁面等に付着することが多い。 iのため、クリーンルームの特に半導体処理室にの近傍
が、これら微粒子によって汚染されやすい(半導体製造
装置の近傍の汚染は、離れたところの数十倍にも及ぶ)
。なぜなら、半導体処理室6q)蓋12を開けて半導体
基板8を取り出す際に、壁面に句着していた微粒子がク
リーンルーム内ニ飛敗するからである。 上記の如き微粒子の飛散によるクリーンルームの汚染は
CDB装置に限らず、例えばアルミニウムやモリブデン
シリサイド等の堆積装置、RIE( Reacfiue
 Ion Etcbing)装置等Vc オイテも見ら
れる。 このような微粒子の飛散によるクリーンルームの汚染は
、半導体処理室における半m1体基版への微粒子の付着
とも相まって、エツチングの不均一、堆積膜の不均一等
をもたらし,製品の歩留りを低下させる賛因となってい
る。そして、この欠点な取り餘くために従来は、処理室
を定期的に拭(・たり、処理室をエツチングしたり(処
理室力1石英製のとぎはフッばと硝酸の根合液でエツチ
ング)しているが、いずれによっても十分で&まなく,
また拭く回数なj・シ加させるとスルーフ゛ットカ1イ
氏下するといり欠点が新たに生じる。 〔発明の目的〕 本発明は上61の問題点を克服するためになさitだも
ので、半導体処理室に生じた微粒子を効率よく除去し、
微粒子の飛散によるり1ノーンルームの汚染を防止−r
ると共に、製品t/)歩留りを+n+上させることので
きる半導体製造装置を提供することを目的とする。 〔発明の概振〕 一1h己の目的を実現するため本発明レエ、半導体処理
室に不活性カスを導入するガス導入口とガス排出「1を
設け、不活性ガスを尋人することによって微粒子を片害
9;処理冨中に斜(・上らせて=ガスVF出[1から不
活性ガスと共に微粒子をtJP LHイる半導状111
.’i A恥1−・程供するものである。°*f.:、
不活aガスの導入、排出の際に、半導体基板を半導体処
理室から隔離するための予備室を設けた半導体製造装置
をも提供するものである。 〔発明の実施例〕 以下、添付図面の誌2図乃至繞4図を参1(工して本発
明のい(つ°かの実施例を説明する。第2図をi一実施
例の構成図で、第1図と同一要素は同一符号で示しであ
る。半導体処理室6内VC−+M数σ)ガス導入口13
を有するガス管14を配設し、ノ(ルブ15を介して不
活性ガス(例えばN2 )を与えることカーできるよう
にする。まtこ、排出管9の一端にノくパルプ16を設
け、これを介して半導体処理室6内σ)ガスを外部に排
出できるようにする。 次に、第2図に示j装置の動作を説すJする。ドライエ
ツチングが終了したときには、マニホールド5からのガ
スの供給は停゛止し、半導体処理室6は真空に保たれ、
ノ(ルプ10 、 15 、 16は共に閉になってい
る。そこで、パルプ15を開にし、ガス導,入口13か
らN2ガ“スな半導体処理室6に導入すると、壁面等に
付層していた微粒子が舞い上F)、半導体処理室内の気
圧が除々に上昇する。そして、半導体処理室6内の気L
Eがバルブ16の外側の気圧よりも同くなった後にバル
ブ16を開くと、舞い上っていた微粒子はN2ガスと共
に外部に排出される。 その後、バルブ16を閉に
[Technical Field of the Invention] The present invention relates to a semiconductor manufacturing device, and is particularly used for etching semiconductor substrates and their oxides, gold, etc., or for depositing metals, oxides, etc. on semiconductor substrates. . [Technical Background of the Invention and 70) Problems] A conventional apparatus will be explained with reference to FIG. 1 of the accompanying drawings. Figure 1 shows CI) E
1 is a configuration diagram of a chemical dry butching) device. The CF4+02 gas supplied to the ablation unit 1 nocator 2 through the gas pipe 1 is also turned into plasma by the microwaves passing through the tjjl wave tube 3, and passes through the gas pipe 4 into the manifold chamber 6. Semiconductor processing chamber 6o) Lower part σ) Holder 7 A semiconductor substrate 8 is placed on the VC. For example, if the semiconductor substrate 8 is silicon, it is etched using a self-reaction formula under %i. CF4 + 02 + S 4 →S, F number + (
SIF4 1 C02 Reaction product at this time (SIF4 1 C02
) 4, the pulp is discharged to the outside through the cedar outlet pipe 9 and the pulp 1 () by the vacuum pipe 11 as shown by the arrow. However, the discharge of the reaction products described above is not always carried out ideally, and Si fine particles may be discharged from the semiconductor processing chamber 6.
Often adheres to walls, etc. Because of this, the clean room, especially the area near the semiconductor processing room, is likely to be contaminated by these particles (contamination near the semiconductor manufacturing equipment is several dozen times greater than in areas far away).
. This is because, when the semiconductor processing chamber 6q) lid 12 is opened and the semiconductor substrate 8 is taken out, the particulates stuck to the wall surface are blown away into the clean room. Contamination of clean rooms due to the above-mentioned scattering of fine particles is not limited to CDB equipment, but also occurs in deposition equipment such as aluminum and molybdenum silicide, and RIE (Reacfiue).
Ion Etcbing) equipment, etc.Vc Oite can also be seen. Contamination of the clean room due to the scattering of such fine particles, combined with the adhesion of fine particles to the semi-millimeter substrate in the semiconductor processing room, causes non-uniform etching, non-uniform deposited films, etc., which reduces product yield. This is the cause. In order to overcome this drawback, conventional techniques have been to periodically wipe the processing chamber or to etch the processing chamber. ), but none of them are sufficient & not enough,
Furthermore, if the number of times of wiping is increased, the throughput will be reduced by 1 degree, and a new drawback will occur. [Object of the Invention] The present invention was made to overcome the above-mentioned 61 problems, and to efficiently remove fine particles generated in a semiconductor processing chamber,
Prevents contamination of 1-none room due to scattering of fine particles-r
It is an object of the present invention to provide a semiconductor manufacturing apparatus capable of increasing the product yield by +n+. [Summary of the Invention] In order to realize the object of the present invention, a gas inlet for introducing inert gas into a semiconductor processing chamber and a gas exhaust port are provided, and by discharging the inert gas, fine particles can be removed. Side damage 9; Inclined during processing (・rise = gas VF output [from 1 to tJP LH semiconducting particulates together with inert gas
.. 'i A shame 1-・It is something to offer. °*f. :,
The present invention also provides a semiconductor manufacturing apparatus provided with a preliminary chamber for isolating the semiconductor substrate from the semiconductor processing chamber when introducing and discharging inert a gas. [Embodiments of the Invention] Hereinafter, some embodiments of the present invention will be explained with reference to Figures 2 to 4 of the attached drawings. In the figure, the same elements as in FIG.
A gas pipe 14 having a gas discharge pipe 14 is provided so that an inert gas (for example, N2) can be supplied through a valve 15. A pulp 16 is provided at one end of the discharge pipe 9. Through this, the gas inside the semiconductor processing chamber 6 can be discharged to the outside. Next, the operation of the apparatus shown in FIG. 2 will be explained. When the dry etching is finished, the supply of gas from the manifold 5 is stopped, and the semiconductor processing chamber 6 is kept in a vacuum.
The pulp 15 is opened and introduced into the N2 gas semiconductor processing chamber 6 through the gas inlet 13. The fine particles fly up (F), and the air pressure inside the semiconductor processing chamber gradually increases.Then, the air L inside the semiconductor processing chamber 6
When the valve 16 is opened after E becomes equal to the atmospheric pressure outside the valve 16, the floating particles are discharged to the outside together with the N2 gas. Then close valve 16.

【2、バルブlOを開にして
真空ポンプ11により半導体処理室6内に残ったN2カ
スおよび微粒子を外部に排出する。 次に、第3図を参照して第2図の実施例によるクリーン
ルームの汚染度を、第1図の従来装置によるクリーンル
ームの汚染度と比較して説明する。 第3図は、CI)E装置による繰り返しエツチング回数
とクリーンルームの微粒子数の関係を示すグラフである
。その際、CI+1】は次のような茶汁で行った。すな
わち、100市φのシリコンウェーハ上に形rtされた
二献化シリコン膜上の厚さ5000 A の多結晶/リ
コン膜を、毎回10枚づつエツチングする。 エツチングのに4ミの処理室内の気圧はQ、4 tor
r、CF4.o2のガス流量は共に129cc/min
、エツチング速度は2300λ/minで、第2図の装
置における微粒子排出のための時間は1回あたり5分で
ある。また、クリーンルーム内の微粒子の測定は、76
x+zφのシリフンウェーハをCI) E % Il:
#、 カラ2m離れたところにi4に置し、各最終エツ
チング回数から1時間内に付属゛シた微才」“1.子を
測定することによって行う。 このよ5にL、て微粒子数をdIIj定した結果、第1
図に示′1″従来装置と第2図に示す木・発明の冥施回
の間には、第3図に示1−ような顕著なAe違が見られ
た。すなわち、従来装置を用いろと微粒子数はゝゝד
印で示¥j:うにエツチング回数の増加に伴って急、速
に増加1−ろ。これに対し、本発明の装置を用いるとイ
、改粒子パ孜は、′○”で示すようにゅるやかに増加す
るにとどまる。 なお、ガス導入口13は互、いに異った方向を同くよう
にした力が、乱流を起こして微粒イを舞い士けるのに都
会がよい。また、ガス尋人口13の方向を可動にしても
よい。 第4図は本発明の他の実施列の4〜成図で、第1図およ
び第2図と同−璧索ヲ了同−符号で示しである。予価室
17はケートバルカ8を介して半導体処理室6と互いに
連通ずるように設けてあり、また半導体基板8を半導体
処理室6から予備室17に搬送する搬送手段が設けられ
ている。なお、)・備室17は真空ポンプ19によって
バルブ20を介して真空にされる。 次に、々ル4図に示′1′夾施゛例の動作を説明イる。 ドライエツチングが終了したときは、バルブ10゜15
 、16 、20およびゲートバルブ18は全て閉にな
っており、ず導体処理室6」6よび予備室17は真空に
保たれている。そこで、ゲートパルプ18を開にして図
示しない搬送手段により半導体基板8な予備に?17に
搬送する。次に、ゲートパルプ18を閉にして、バルブ
15を開に【7てN2ガスを半導体処理室6に導入する
。半導体処理室6の気圧がバルブ16の夕1側の気圧よ
り置くなった時点でバルブ16を開にし、I〜2 カス
と共に微粒子を排出する。 このように半導体処理室6から半導体基板8を隔離する
ための予(1m17を設けると、N2ガスによって微粒
子を舞い上げる際の半導体基板8への微粒子の付着を防
止できるので、製品の歩留りなより向上することかでき
る。 なお、アルミニウム、モリブデンシリサ・イドク、qの
堆積装置や、RIE装置の如く外気と遮断された半導体
処理室を有する半導体製造装置Uこおいても、本発明を
適用できることはいうまでもない。 〔発明の効果〕 上記の如く本発明によれば、半導体処理室にカス尋人口
を設け、ここから不活性ガスを導入することによって壁
面婢に0旭している微粒子を舞い上け、ガス排出口から
不活性ガスと共に微粒子を排出できるようにしたので、
半導体処理室に生じた微粒子を効率よく除去し、クリー
ンルームの汚染を防止できるだけでな(、製品の歩留り
の向上をも笑現することができる。また、不活性ガスの
尋人・排出の際に、半導体基板を半導体処理室から隔離
1−る予備室を設けると、微粒子を半導体処理室から排
出する際の半導体基板への付着を防止でき、製品の歩留
りを史に向」ニさせることができる。
[2. Open the valve lO and discharge the N2 residue and particles remaining in the semiconductor processing chamber 6 to the outside using the vacuum pump 11. Next, referring to FIG. 3, the degree of contamination of the clean room according to the embodiment shown in FIG. 2 will be explained in comparison with the degree of contamination of the clean room according to the conventional apparatus shown in FIG. FIG. 3 is a graph showing the relationship between the number of repeated etchings performed by the CI)E apparatus and the number of fine particles in the clean room. At that time, CI+1] was performed using the following tea juice. That is, each time, 10 polycrystalline/recon films having a thickness of 5000 A on a silicon dioxide film formed on a silicon wafer having a diameter of 100 mm are etched. The atmospheric pressure inside the processing chamber for etching is Q, 4 torr.
r, CF4. Both o2 gas flow rates are 129cc/min.
, the etching rate was 2300λ/min, and the time for ejecting fine particles in the apparatus of FIG. 2 was 5 minutes per time. In addition, the measurement of fine particles in the clean room is 76
x + zφ silicon wafer CI) E % Il:
This is done by placing the i4 at a distance of 2 m and measuring the attached microparticles within 1 hour after each final etching. As a result of determining dIIj, the first
There was a remarkable difference in Ae as shown in Figure 3 between the ``1'' conventional device shown in the figure and the inventive ritual cycle shown in Figure 2. In other words, when using the conventional device, The color and number of particles are ゝゝד
Indicated by the mark ¥¥: Increases rapidly as the number of times of sea urchin etching increases. On the other hand, when the device of the present invention is used, the particle modification rate only increases slowly as shown by '○'. A city is a good place for a similar force to cause turbulent flow and cause fine particles to fly around.In addition, the direction of the gas flow 13 may be made movable.Figure 4 shows another example of the present invention. The figures from 4 to 4 in the actual row are indicated by the same reference numerals as in FIGS. Further, a conveying means for conveying the semiconductor substrate 8 from the semiconductor processing chamber 6 to the preliminary chamber 17 is provided.The preliminary chamber 17 is evacuated by a vacuum pump 19 via a valve 20. Next, we will explain the operation of the '1' application example shown in Figure 4. When the dry etching is completed, the valve 10°15
, 16, 20 and the gate valve 18 are all closed, and the conductor processing chamber 6''6 and the preliminary chamber 17 are kept in vacuum. Then, the gate pulp 18 is opened and the semiconductor substrate 8 is transferred to a spare by a transport means (not shown). 17. Next, the gate pulp 18 is closed and the valve 15 is opened [7] to introduce N2 gas into the semiconductor processing chamber 6. When the atmospheric pressure in the semiconductor processing chamber 6 becomes lower than the atmospheric pressure on the side of the valve 16, the valve 16 is opened and the fine particles are discharged together with the dregs. By providing a preparatory space (1 m 17) to isolate the semiconductor substrate 8 from the semiconductor processing chamber 6 in this way, it is possible to prevent fine particles from adhering to the semiconductor substrate 8 when the fine particles are stirred up by the N2 gas, thereby improving the product yield. It should be noted that the present invention can also be applied to deposition equipment for aluminum, molybdenum silica, Idoku, and q, and semiconductor manufacturing equipment U that has a semiconductor processing chamber that is isolated from the outside air, such as an RIE equipment. Needless to say. [Effects of the Invention] As described above, according to the present invention, by providing a dust hole in the semiconductor processing chamber and introducing an inert gas from there, the fine particles that are lying on the wall surface can be dispersed. On top of that, we made it possible to exhaust particulates along with inert gas from the gas exhaust port.
Not only can it efficiently remove particulates generated in semiconductor processing rooms and prevent clean room contamination (it can also improve product yields). By providing a preliminary chamber that isolates the semiconductor substrate from the semiconductor processing chamber, it is possible to prevent fine particles from adhering to the semiconductor substrate when they are discharged from the semiconductor processing chamber, and to improve product yields. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は往来装置の一構成例の構成図、第2図は本発明
の一実施例の構成図、第3図は第1図および第2図に示
す装置によって繰り返し工、ツチングしたときのクリー
ンルームの微粒子数の変化を示″1〜グラフ、褐4図は
本発明の他の実施例の構成図である。 1.4.14・・・ガス曾、2・・・アプリケータ、3
・・・尋波官、5・・マニホールド、6・・・半畳体処
理室、7・・・ホルダー、8・・・半導体基板、9・・
・排出管、10 、15 、16 、20・・・パルプ
、11 、19・・・X全ポンプ、12・・・藝、13
・・・ガス導入口、17・・・予備室、18・・・ゲー
トバルブ。 出願入代押入 猪 股 清
FIG. 1 is a block diagram of an example of the structure of a moving device, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 1 to graph showing changes in the number of particulates in a clean room, brown 4 diagram is a configuration diagram of another embodiment of the present invention. 1.4.14... gas generator, 2... applicator, 3
...Hyunpo Kan, 5...Manifold, 6...Semi-fold body processing chamber, 7...Holder, 8...Semiconductor substrate, 9...
・Discharge pipe, 10, 15, 16, 20...Pulp, 11, 19...X total pump, 12...Art, 13
...Gas inlet, 17...Preliminary chamber, 18...Gate valve. Application fee Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 1千尋体基板、はよびこれに堆積された酸化物、金kA
等をエツチングし、あるいは金属、酸化物等を半導体基
板に堆積させるための半導体処理室と、 この半導体処理室に不活性ガスを導入する不活性ガス導
入手段と、 b11記不活住ガスの4人により前記半導体処理室内に
拡散された微粒子を、この不活性ガスと共に外@vc 
4Jl−出する微粒子排出手段とを備える半導体製造装
置。 2不活性ガス導人手段(工、半導体処理室内で不を6性
ガスが^1.流をおこすように互いに向きの異なった1
反数のガ・ス導入口を有する特許請求の範囲第1項記載
の半導体製造装置。 3半導体基板およびこれに堆積された酸化物、金属等を
エツチングし、あるいは金属、酸化物等を半導体基板に
堆積させるための半導体処理室と、 この半導体処理室に不活性ガスを導入する不活性ガス導
入手段と、 前す己不活性ガスの尋人により前記半導体処理室内に拡
散された微粒子を、この不活性ガスと共に外部に排出す
る微粒子排出手段と、ゲートパルプを介して前記半導体
処理室に連通し、前記微粒子の拡散時に半導体基板を移
送させる予備室とを備える半導体製造装置。 4不活性ガス導入手段は、半導体処理室内で不活性ガス
が乱流をおこすように互いに向きの異なった枚数のガス
尋入口を有する特許請求の範囲第3項記載の半導体製造
装置。
[Claims] A 1,000-square-foot substrate, an oxide deposited thereon, and a gold kA
a semiconductor processing chamber for etching metals, oxides, etc., or depositing metals, oxides, etc. on a semiconductor substrate; an inert gas introducing means for introducing an inert gas into the semiconductor processing chamber; and 4 of b11 inert gas. The fine particles diffused into the semiconductor processing chamber by people are removed from the outside @vc along with this inert gas.
A semiconductor manufacturing apparatus comprising a particulate discharge means for emitting 4Jl. 2 Inert gas conductor means (1) in different directions so as to cause inert gas to flow in the semiconductor processing chamber.
The semiconductor manufacturing apparatus according to claim 1, having an inverse number of gas inlet ports. 3. A semiconductor processing chamber for etching the semiconductor substrate and oxides, metals, etc. deposited thereon, or for depositing metals, oxides, etc. on the semiconductor substrate, and an inert chamber for introducing an inert gas into the semiconductor processing chamber. a gas introducing means; a particulate discharge means for discharging the particulates diffused into the semiconductor processing chamber by the inert gas gas to the outside together with the inert gas; A semiconductor manufacturing apparatus comprising: a preliminary chamber in communication with which a semiconductor substrate is transferred during diffusion of the fine particles. 4. The semiconductor manufacturing apparatus according to claim 3, wherein the inert gas introducing means has a number of gas inlets oriented in different directions so as to cause a turbulent flow of the inert gas in the semiconductor processing chamber.
JP15105683A 1983-08-19 1983-08-19 Semiconductor manufacturing device Pending JPS6042831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15105683A JPS6042831A (en) 1983-08-19 1983-08-19 Semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15105683A JPS6042831A (en) 1983-08-19 1983-08-19 Semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JPS6042831A true JPS6042831A (en) 1985-03-07

Family

ID=15510329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15105683A Pending JPS6042831A (en) 1983-08-19 1983-08-19 Semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JPS6042831A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196538A (en) * 1985-02-27 1986-08-30 Hitachi Ltd Vacuum processing and apparatus thereof
JPS6411684A (en) * 1987-07-06 1989-01-17 Hitachi Ltd Method and device for cleaning sample carrying-in chamber
JPH0250423A (en) * 1988-08-12 1990-02-20 Nec Kyushu Ltd Semiconductor manufacturing apparatus
JPH03147317A (en) * 1989-10-23 1991-06-24 Internatl Business Mach Corp <Ibm> Method for suppressing contamination in plasma treatment
JPH0684853A (en) * 1992-06-16 1994-03-25 Applied Materials Inc Reduction of fine-particle contamination in semiconductor-device treatment
US5622595A (en) * 1992-06-16 1997-04-22 Applied Materials, Inc Reducing particulate contamination during semiconductor device processing
US5902494A (en) * 1996-02-09 1999-05-11 Applied Materials, Inc. Method and apparatus for reducing particle generation by limiting DC bias spike
US6139923A (en) * 1996-02-09 2000-10-31 Applied Materials, Inc. Method and apparatus for reducing particle contamination in a substrate processing chamber
US6291028B1 (en) 1996-02-09 2001-09-18 Applied Materials, Inc. Method and apparatus for improving the film quality of plasma enhanced CVD films at the interface

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196538A (en) * 1985-02-27 1986-08-30 Hitachi Ltd Vacuum processing and apparatus thereof
JPH0476492B2 (en) * 1985-02-27 1992-12-03 Hitachi Ltd
JPS6411684A (en) * 1987-07-06 1989-01-17 Hitachi Ltd Method and device for cleaning sample carrying-in chamber
JPH0250423A (en) * 1988-08-12 1990-02-20 Nec Kyushu Ltd Semiconductor manufacturing apparatus
JPH03147317A (en) * 1989-10-23 1991-06-24 Internatl Business Mach Corp <Ibm> Method for suppressing contamination in plasma treatment
JPH0684853A (en) * 1992-06-16 1994-03-25 Applied Materials Inc Reduction of fine-particle contamination in semiconductor-device treatment
US5622595A (en) * 1992-06-16 1997-04-22 Applied Materials, Inc Reducing particulate contamination during semiconductor device processing
US5902494A (en) * 1996-02-09 1999-05-11 Applied Materials, Inc. Method and apparatus for reducing particle generation by limiting DC bias spike
US6139923A (en) * 1996-02-09 2000-10-31 Applied Materials, Inc. Method and apparatus for reducing particle contamination in a substrate processing chamber
US6291028B1 (en) 1996-02-09 2001-09-18 Applied Materials, Inc. Method and apparatus for improving the film quality of plasma enhanced CVD films at the interface
US6289843B1 (en) 1996-02-09 2001-09-18 Applied Materials, Inc. Method and apparatus for improving the film quality of plasma enhanced CVD films at the interface
US6465043B1 (en) 1996-02-09 2002-10-15 Applied Materials, Inc. Method and apparatus for reducing particle contamination in a substrate processing chamber

Similar Documents

Publication Publication Date Title
EP0630990B1 (en) Method of limiting sticking of body to a susceptor in a deposition treatment
JP2003197615A (en) Plasma treatment apparatus and method for cleaning the same
JPS6042831A (en) Semiconductor manufacturing device
JPH02125876A (en) Exhausting mechanism for cvd equipment
JP2002025988A (en) Plasma etching system
KR102584068B1 (en) Cleaning method and substrate processing device
JP3118737B2 (en) Processing method of the object
JP4116149B2 (en) Single wafer load lock device
JPH0456770A (en) Method for cleaning plasma cvd device
JP2000173927A (en) Parallel plate type cvd film formation equipment and method of forming the film
JP4733856B2 (en) Remote plasma cleaning method for high density plasma CVD apparatus
JPH06275533A (en) Vertical cvd device
JPH0637074A (en) Cleaning method for semiconductor manufacturing apparatus
JPH08195382A (en) Semiconductor manufacturing device
JP3432722B2 (en) Plasma film forming method and plasma processing apparatus
JP3173681B2 (en) Evacuation apparatus and method
JPH04254349A (en) Multichamber process apparatus
WO2001071790A1 (en) Method of manufacturing semiconductor device
JP3807957B2 (en) Plasma processing method
JPS631035A (en) Method and apparatus for reduced pressure processing
JPH09129611A (en) Etching
JP2002025914A (en) Substrate treatment device
JPH11330063A (en) Method for cleaning plasma processor
JPH07211645A (en) Plasma processing system
JP3595508B2 (en) Semiconductor manufacturing equipment