JPS6042616A - Optical scale device - Google Patents

Optical scale device

Info

Publication number
JPS6042616A
JPS6042616A JP15188283A JP15188283A JPS6042616A JP S6042616 A JPS6042616 A JP S6042616A JP 15188283 A JP15188283 A JP 15188283A JP 15188283 A JP15188283 A JP 15188283A JP S6042616 A JPS6042616 A JP S6042616A
Authority
JP
Japan
Prior art keywords
scale
index
output
higher harmonic
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15188283A
Other languages
Japanese (ja)
Other versions
JPH0235246B2 (en
Inventor
Akiyoshi Narimatsu
成松 明壽
Akira Himuro
氷室 陽
Katsutoshi Mibu
捷利 壬生
Takamoto Yoshioka
崇元 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Magnescale Inc
Original Assignee
Sony Magnescale Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Magnescale Inc filed Critical Sony Magnescale Inc
Priority to JP15188283A priority Critical patent/JPH0235246B2/en
Priority to DE3486351T priority patent/DE3486351T2/en
Priority to US06/634,791 priority patent/US4663588A/en
Priority to EP84305094A priority patent/EP0157034B1/en
Publication of JPS6042616A publication Critical patent/JPS6042616A/en
Publication of JPH0235246B2 publication Critical patent/JPH0235246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/247Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using time shifts of pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To remove higher harmonic components which cause the distortion of an output waveform regarding displacement (x), specially, tertiary higher harmonic component by providing a main and an index scale so that their optical grating patterns are spatially out of phase with each other as specified. CONSTITUTION:When the optical gratings of the main scale 1 and index scale 2 are in 1:1 duty proportion, a scale output f(x) detected by a photodetecting element 3 is a triangular wave, and the 2nd triangular wave f(x-pi/3) which is pi/3 out of phase with the 1st triangular wave f(x) as to (x) is added to cancel the tertiary higher harmonic component, obtaining a distortion-free scale output. For the purpose, the index scale 2' has four pattens parts (a), (b), (c), and (d) each divided longitudinally into two so that the spatial phase difference is pi/6, thereby canceling the tertiary higher harmonic component.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光学スケール装置、特に検出スケール信号から
第3次高駒波成分を除去することにより歪をなくして精
度を向上させるための改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical scale device, and more particularly to an improvement for eliminating distortion and improving accuracy by removing third-order high-frequency components from a detection scale signal.

背景技術とその問題点 周知の如くディジタル位a!表示システムには。Background technology and its problems As is well known, digital rank a! For the display system.

畿気方式1元学方式、′#を磁誘導方式、容量方式等種
々の方式のものがあるが、その何れも周期的パターンを
有する基準スケールと、これに対して相対的に変位する
ピックアップ・ヘッドとを用いることによって夫々変位
に対応する磁束、光量、誘起電圧、容量等の変化を検出
して電気信号に変換する。
There are various methods such as the Kiki method, the magnetic induction method, and the capacitive method, but all of them use a reference scale that has a periodic pattern and a pickup that is displaced relative to this scale. By using the head, changes in magnetic flux, amount of light, induced voltage, capacitance, etc. corresponding to each displacement are detected and converted into electrical signals.

而して上記システム−の検出出力は分解能をあげるため
、1!気的に分割(内挿)して基準スケールのパターン
の周期よりはるかに小さくすることが多く、そのため検
出出力の波形は歪みが少なく。
Therefore, the detection output of the above system is 1! in order to increase the resolution. It is often divided mechanically (interpolated) to make the cycle much smaller than the period of the reference scale pattern, so the detected output waveform has little distortion.

できるだけ正弦波に近似していることが望まれる。It is desirable that it approximate a sine wave as much as possible.

検出出力の波形が歪んでいれば、上記の電気的な分割は
名目上はできても精度が得られない。
If the waveform of the detection output is distorted, the electrical division described above may be possible nominally, but it will not be accurate.

また6光学方式、谷量方式の場合、第1図及び第2図か
ら明らかな如く、検出出力(光量、容量の変化)の波形
は変位Xに関して、梯形波もしくは3角波となるので、
第3次高調波底分を主とする高調波成分を含んでいる。
In addition, in the case of the 6-optical method and the valley amount method, as is clear from FIGS. 1 and 2, the waveform of the detection output (changes in light amount and capacitance) becomes a trapezoidal wave or a triangular wave with respect to the displacement X.
Contains harmonic components mainly consisting of the bottom of the third harmonic.

即ち梯形波は 3角波は の数式で表示され、また歪み率は であるから、第3次高調波底分が歪みの大きな原因とな
ることがわかる。
That is, since the trapezoidal wave is expressed by the mathematical formula of the triangular wave and the distortion rate is , it can be seen that the bottom of the third harmonic is a major cause of distortion.

発明の目的 本発明の目的は光学スケール装置の変位Xに関する出力
波形の歪の原因である高調波成分、特に第3高調波成分
を除去するにある。
OBJECTS OF THE INVENTION An object of the present invention is to eliminate harmonic components, particularly third harmonic components, which are the cause of distortion in the output waveform with respect to displacement X of an optical scale device.

発明の概要 本発明は上ml目的ケ達成する定め、主スケール又ハイ
ンデックス拳スケールの光学格子パターンの夫々を空間
的に所定の位相差ン有するように設けることにより、ス
ケール出力から少くとも第3次高調波底分を除去するよ
うに構成したことを特鑓とする。
SUMMARY OF THE INVENTION The present invention achieves the above object by providing optical grating patterns of a main scale or a high index fist scale so as to have a spatially predetermined phase difference. The special feature is that it is configured to remove the bottom of the harmonic.

実施ガ 以下図面に示す実施例を参照して本発明を説明すると、
今、第1図に示す光学スケール装置において生スケール
1とインデックス・スケール20光学格子のデユーティ
が1:1とすると、受光菓子3によって検出されるスケ
ール出力f<X)は下記(0式であられされる。
Embodiment The present invention will be described below with reference to embodiments shown in the drawings.
Now, in the optical scale device shown in FIG. be done.

なお、第星図で4は光源、5はレンズ系であり。In addition, in the star map, 4 is the light source and 5 is the lens system.

またデユーティ1:1ということは光字格子において九
の透過部及び趣九部の寸法が等しいことを意味し0両者
を加えに値か格子常数である。
Also, the duty ratio of 1:1 means that the dimensions of the 9th transmitting part and the 9th part of the optical grating are equal, and the value of 0 plus both is the lattice constant.

上記f(xJは第2図に示す如く3角波であり、この第
1の3角波に対し6の位相差を有する下記(2)式であ
られされる第2の3角波f(x十g)を加え合せて成る
合成波F (x)を省えみる。
The above f(xJ is a triangular wave as shown in FIG. 2, and the second triangular wave f(x Let us consider the composite wave F (x) formed by adding 10g).

Fix)=’f(x) 十f (x十g ) ・(3)
式より第3高調波成分を零にする条件は相差を有する稟
2の3角ylf (x a ) Y加えてやれば第3高
調波成分を相殺してφみの少ないスケール出力が祷られ
光字スケール装置の精度な向上させ得ることがわかる。
Fix)='f(x) 10f (x10g) ・(3)
According to the formula, the condition for making the third harmonic component zero is the angle ylf (x a ) with a phase difference of 2. If Y is added, the third harmonic component is canceled out and a scale output with less φ distortion is expected. It can be seen that the accuracy of the scale device can be improved.

第3図乃至第5図は夫々上述した原理に基く本発明の各
実施例を示す。(これら各実施例においてn ”’−n
4は任意の整数) 第3図において、インデックス・スケール2′は第7図
に示す如き光学スケール装置に使用されるもので、その
4つのパターン部a、h、c及びdは各々縦に2分割さ
れ、そのを量的位相差か百となるように配設されること
により、前述した理由で第3高調波成分が打消される。
3 to 5 show respective embodiments of the present invention based on the principles described above. (In each of these examples, n ”'-n
(4 is an arbitrary integer) In FIG. 3, the index scale 2' is used in an optical scale device as shown in FIG. By dividing them and arranging them so that there is a quantitative phase difference of 100, the third harmonic component is canceled for the reason mentioned above.

第4図の実施例はインデックス・スケール2の各パター
ン部す横に2分割したもので、この分割方法は生スケー
ルに対して実こしても同様の効果が得られる。
In the embodiment shown in FIG. 4, each pattern part of index scale 2 is divided into two horizontally, and the same effect can be obtained even if this dividing method is applied to a raw scale.

wJ5図は第3図の実施例におけるインデックス・スケ
ール2′のパターン部の分割数64にした実施例で、こ
のように分割数を増大することによりパターンの位11
による出力差が平均化されるので。
Fig. wJ5 is an example in which the number of divisions of the pattern part of index scale 2' in the embodiment of Fig. 3 is set to 64. By increasing the number of divisions in this way, the pattern digit 11 is
Since the output difference due to is averaged out.

更に第3高調波成分による歪の打消しの効果が向上する
Furthermore, the effect of canceling distortion due to the third harmonic component is improved.

ハ0クーン 。Ha0 coon.

第6図の実施例はインデックス・佐≠〜虐2 cl)各
パターン部を縦及び横に分割したものである。
In the embodiment shown in FIG. 6, each pattern section of the index ≠ to 2 cl) is divided vertically and horizontally.

上述したようにインデックス・スケールの各パターン部
を縦及び又は横に少くとも2分割して。
As described above, each pattern portion of the index scale is divided into at least two parts vertically and/or horizontally.

、λ 夫々の空間的位相差か百(λは波長)となるよう圧すれ
ば、スケール出力から第3次高調波底分を打消すことが
できる。また生スケールlを横に分割しても同様の効果
が得られる。
, λ, the third harmonic base can be canceled out from the scale output by compressing the spatial phase difference of 100 (λ is the wavelength). A similar effect can also be obtained by dividing the raw scale l horizontally.

更に第3次高調波底分による歪みだけでなく。Furthermore, there is not only distortion due to the bottom of the third harmonic.

他の周期的な歪みについても、上記各実施例と同様にイ
ンデックス・スケール2′の各パターン部の空間的位相
差を歪みの周期なπだけずらしたものとすることにより
打消すことができる。
Other periodic distortions can also be canceled by shifting the spatial phase difference of each pattern portion of the index scale 2' by π, which is the period of the distortion, in the same manner as in each of the above embodiments.

なお、インデックス・スケール2′のパターン部が第8
図及び第9図に示す如き構造の場合でも。
Note that the pattern part of index scale 2' is the 8th
Even in the case of the structure shown in FIG.

上記各実施例と同様にして歪みの打消しを行なうことが
できる。
Distortion can be canceled in the same manner as in each of the above embodiments.

第10囚(aJ及びtb)は第1図に示す如き光学ヌケ
ール装置に本発明を適用した更に他の実施例である。
10th case (aJ and tb) is still another embodiment in which the present invention is applied to the optical nuclear device as shown in FIG.

四回に於て、6はインデックス・スケール2′のホルダ
ーで、徴鉤ネジ7を介して固定フレーム8に保管されて
いる。
In the fourth case, 6 is a holder for the index scale 2', which is stored in a fixed frame 8 via a locking screw 7.

生スケール1はインデックス・スケール2′ト平行でか
つ一定の間隔を保ちながら水平かつ左右に移動する。ま
た主スケール1と平行でインデックス・スケールの各パ
ターンと略同区間に分けて受光素子3が配置されている
The raw scale 1 moves horizontally and horizontally parallel to the index scale 2' while maintaining a constant interval. Further, light receiving elements 3 are arranged parallel to the main scale 1 and divided into approximately the same sections as each pattern of the index scale.

インデックス・スケール2′は第11図に示す如くその
各パj−ン部a = dが第1の遮光$9によって各々
上下に2分されている。第1の遮光板9は斜線で示すよ
うに中央部分の幅が広がっており。
As shown in FIG. 11, the index scale 2' has its respective pattern portions a=d divided into upper and lower halves by the first light shield $9. The first light shielding plate 9 has a wider width at the center as shown by diagonal lines.

これによりこの蓮yt1嘘を左右に微動調整することに
よりパターン部す及びCを通過する光量のバランスをと
ることができる。また第1のa元板9に対し第2の遮光
板10が重ねて配置され、パターン部a及びdを夫々上
下に分割すると共に夫々の通て僅かに傾けられて配置さ
れ、その関係は第12図に示すように遮光板(中央斜線
部)9.10の上下で舌の位相差がでるように微動調整
する。このため1例えばインデックス・スケール2′の
ホルダー6の一部を大円口で固定フレーム8に接し、こ
の大円に沿って水平に僅か移動しかつ固定できる構造と
すれば、微調ネジ6の比較的大きな回転で、上述したイ
ンデックス・スケールの方向(角度)の徽動調JIヲ容
易に行なうことができる。
Thereby, by finely adjusting the lotus yt1 to the left and right, the amount of light passing through the pattern parts A and C can be balanced. Further, a second light-shielding plate 10 is arranged to overlap the first a-base plate 9, and divides the pattern parts a and d into upper and lower parts, respectively, and is arranged with a slight inclination, and the relationship is as follows. As shown in Figure 12, fine adjustment is made so that there is a phase difference between the tongues above and below the light-shielding plate (hatched area in the center) 9 and 10. For this reason, 1. For example, if a part of the holder 6 of the index scale 2' is in contact with the fixed frame 8 at the large circular opening, and it is structured so that it can be moved slightly horizontally along this large circle and fixed, then the fine adjustment screw 6 can be compared. With a large rotation, it is possible to easily adjust the direction (angle) of the index scale described above.

以上のように構成すればインデックス・スケール2′の
各パターン部は遮光板によって上下に2分されているの
で、そこからの透過光束も2分され。
With the above structure, each pattern section of the index scale 2' is divided into two parts, upper and lower, by the light-shielding plate, so that the transmitted light beam is also divided into two parts.

夫々の元来は前記t (x)、t (x−’)に相当す
るから1両光束が1つの受光素子に入射することによπ す1国とf (x a )が合成されたF (x)の出
力が得られることになる。
Since each originally corresponds to the above t (x) and t (x-'), when both light beams are incident on one light receiving element, F is the composite of π and f (x a ). The output of (x) will be obtained.

なお、上述した各実施例の如く2つの出力を合成する方
式の外に、スケールパターンを特定の構造とすることに
より本発明と同様の効果を得ることもできる。
In addition to the method of combining two outputs as in each of the embodiments described above, it is also possible to obtain the same effect as the present invention by making the scale pattern have a specific structure.

即ち、スケール出力の波形が第13図に示す如き梯形波
であるとして、その基本式は ’ o (”’) =b ’ ”≦X≦b)である。
That is, assuming that the waveform of the scale output is a trapezoidal wave as shown in FIG. 13, the basic formula is 'o('')=b'''≦X≦b).

(5)式において、b=−とすると。In equation (5), let b=-.

(6)式から明らかな如くスケール出力の波形がb=π iであるよう?に梯形波となる光学格子のパターンとな
るようにスケールV構成すれば第3次高論波底分を除去
でさることがわかる。そのためKは。
As is clear from equation (6), the waveform of the scale output is b = π i? It can be seen that if the scale V is configured so that the optical grating pattern becomes a trapezoidal wave, the bottom of the third harmonic wave can be removed. Therefore, K.

例えば主スケールとインデックス・スケールとの一方の
元手格子パターンのデユーティが1:lの時、他方のデ
ユーティを1=2(九の透過する部分が1)とすればよ
い。
For example, when the duty of one of the original grid patterns of the main scale and index scale is 1:l, the duty of the other may be set to 1=2 (the transparent part of 9 is 1).

発明の詳細 な説明しに所から明らかなように本発明によれは、比較
的簡単な方法で、スケール出力より高−波成分1%に第
3次高論波底分ケ除去することができ、スケールの精度
は大幅に向上する。
As is clear from the detailed description of the invention, according to the present invention, it is possible to remove the third-order higher-order wave bottom to 1% of the higher-wave component than the scale output by a relatively simple method. , the accuracy of the scale is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

M1図及びm7図は光学スケール装置の基本的構成を示
す概略図、第2図は本発明の動作原理を説明するための
波形図、第3図乃至第6図は夫々本発明の各実施例の主
要部の構造を示す概略図。 第8図及び第9図は本発明の他の実施例を説明するため
の概略図、第10図(a)、 (b)、第11図及び第
12図は本発明の更に他の実施例を示す概略図、第13
図は本発明の更に他の実施例の動作を説明するための波
形図である。 1・・・生スケール1,2.2’・・・インデックス・
スケール、3川受光素子、4・・・光源、5・・・レン
ズ系。 第3図 第4図 特開日HGO−42616(6) 第5図 第6図 第12図 手続補正書 昭和58年特許願 第151882号 3 補正をする者 事件との関係 %針山願人 住所 名 称 ソニーマグネスケール株式会社4、代理人〒1
05 住 所 東京都港区芝3丁目2番14号芝三丁目ビル5
 補正の対象 本願明細書第3頁第11行を
Figures M1 and M7 are schematic diagrams showing the basic configuration of the optical scale device, Figure 2 is a waveform diagram for explaining the operating principle of the present invention, and Figures 3 to 6 are respective embodiments of the present invention. Schematic diagram showing the structure of the main parts of. 8 and 9 are schematic diagrams for explaining other embodiments of the present invention, and FIGS. 10(a), (b), 11 and 12 are further embodiments of the present invention. Schematic diagram showing the 13th
The figure is a waveform diagram for explaining the operation of still another embodiment of the present invention. 1... Raw scale 1, 2.2'... Index
Scale, 3 light receiving elements, 4... light source, 5... lens system. Figure 3 Figure 4 Japanese Patent Application Publication Date HGO-42616 (6) Figure 5 Figure 6 Figure 12 Procedural amendment document 1982 Patent Application No. 151882 3 Person making the amendment Relationship to the case % Hariyama applicant address name Name: Sony Magnescale Corporation 4, Agent: 1
05 Address: Shiba 3-chome Building 5, 3-2-14 Shiba, Minato-ku, Tokyo
The subject of the amendment is page 3, line 11 of the specification of the present application.

Claims (2)

【特許請求の範囲】[Claims] (1)主スケールと、これと平行に保持されるインデッ
クス・スケールと1両スケールの透過光を検出する受光
手段とを備え1両スケール間の相対変位に応じて両スケ
ールの光学格子パターンに対応したスケール出力を得る
ようにした装置において、上記主スケール又はインデッ
クス・スケールは複数の光学格子パターン部を有し、各
パターン部は空間的に所定の位相差を有するように設け
られ、スケール出力からTo調波成分を除去するように
構成したことを特徴とする九学スケール装置。 中 1
(1) Equipped with a main scale, an index scale held parallel to the main scale, and a light receiving means for detecting the transmitted light of both scales, and corresponds to the optical grating pattern of both scales according to the relative displacement between the two scales. In the apparatus, the main scale or the index scale has a plurality of optical grating pattern parts, each pattern part is provided to have a predetermined spatial phase difference, and A ninth grade scale device characterized in that it is configured to remove To harmonic components. Middle 1
(2) 上記位相差か百波長となるように設定されるこ
とKよりスケール出力から第3次婉調波成分を除去する
如く構成したことを特徴とする特許梢求の範囲第1項記
載の光学スケール装置。
(2) The above-mentioned phase difference is set to be 100 wavelengths, and the third harmonic component is removed from the scale output by K. Optical scale equipment.
JP15188283A 1983-07-27 1983-08-19 KOGAKUSUKEERUSOCHI Expired - Lifetime JPH0235246B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15188283A JPH0235246B2 (en) 1983-08-19 1983-08-19 KOGAKUSUKEERUSOCHI
DE3486351T DE3486351T2 (en) 1983-07-27 1984-07-26 Detector head.
US06/634,791 US4663588A (en) 1983-07-27 1984-07-26 Detector for use for measuring dimensions of an object
EP84305094A EP0157034B1 (en) 1983-07-27 1984-07-26 Detector head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15188283A JPH0235246B2 (en) 1983-08-19 1983-08-19 KOGAKUSUKEERUSOCHI

Publications (2)

Publication Number Publication Date
JPS6042616A true JPS6042616A (en) 1985-03-06
JPH0235246B2 JPH0235246B2 (en) 1990-08-09

Family

ID=15528262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15188283A Expired - Lifetime JPH0235246B2 (en) 1983-07-27 1983-08-19 KOGAKUSUKEERUSOCHI

Country Status (1)

Country Link
JP (1) JPH0235246B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237318A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp Displacement converter
JPS60237316A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp Displacement converter
JPS60237317A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp Displacement converter
JPS62274217A (en) * 1986-05-14 1987-11-28 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectric measuring device
JPH02210218A (en) * 1989-02-10 1990-08-21 Yaskawa Electric Mfg Co Ltd Magnetic encoder
JPH0348122A (en) * 1989-07-17 1991-03-01 Okuma Mach Works Ltd Optical encoder
US6965437B2 (en) 2000-04-28 2005-11-15 Dr. Johannes Heidenhain Gmbh Scanning unit for an optical position measuring device
WO2009110604A1 (en) * 2008-03-07 2009-09-11 山洋電気株式会社 Optical encoder device
EP2284498A2 (en) 2009-07-29 2011-02-16 Sanyo Denki Co., Ltd. Optical encoder device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237318A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp Displacement converter
JPS60237316A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp Displacement converter
JPS60237317A (en) * 1984-05-10 1985-11-26 Yokogawa Hokushin Electric Corp Displacement converter
JPH0663783B2 (en) * 1986-05-14 1994-08-22 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectric measuring device
JPS62274217A (en) * 1986-05-14 1987-11-28 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectric measuring device
JPH02210218A (en) * 1989-02-10 1990-08-21 Yaskawa Electric Mfg Co Ltd Magnetic encoder
JPH0348122A (en) * 1989-07-17 1991-03-01 Okuma Mach Works Ltd Optical encoder
US6965437B2 (en) 2000-04-28 2005-11-15 Dr. Johannes Heidenhain Gmbh Scanning unit for an optical position measuring device
WO2009110604A1 (en) * 2008-03-07 2009-09-11 山洋電気株式会社 Optical encoder device
US8389925B2 (en) 2008-03-07 2013-03-05 Sanyo Denki Co., Ltd. Optical encoder device comprising a moveable slit plate and a stationary slit plate
JP5171935B2 (en) * 2008-03-07 2013-03-27 山洋電気株式会社 Optical encoder device
EP2284498A2 (en) 2009-07-29 2011-02-16 Sanyo Denki Co., Ltd. Optical encoder device
US8288709B2 (en) 2009-07-29 2012-10-16 Sanyo Denki Co., Ltd. Optical encoder device

Also Published As

Publication number Publication date
JPH0235246B2 (en) 1990-08-09

Similar Documents

Publication Publication Date Title
Barrett Fresnel zone plate imaging in nuclear medicine
JPS60243514A (en) Photoelectric measuring device
JPS6250811B2 (en)
JPS6042616A (en) Optical scale device
JP5743419B2 (en) Shape measuring method and apparatus and strain measuring method and apparatus
US20170314972A1 (en) Positioning measurement device and the method thereof
US20120261562A1 (en) Encoder
US10488561B2 (en) Imaging device
Burch II The Metrological Applications of Diffraction Gratings
Grieger et al. The deconvolution of the quasar structure from microlensing light curves
JPS5845687B2 (en) Movement distance and speed measuring device
JP3304692B2 (en) Spectrometer
US3900264A (en) Electro-optical step marker
JPH01176921A (en) Fourier spectral device
US3623786A (en) Synthetic phase hologram
JPH046884B2 (en)
KR20000053779A (en) Three dimension measuring system using two dimensional linear grid patterns
US3669528A (en) Device for producing identifiable sine and cosine(fourier)transforms of input signals by means of noncoherent optics
WO2019078332A1 (en) Signal processing device and imaging device
US4804269A (en) Iterative wavefront measuring device
US3553470A (en) Apparatus for generating an approximation to a sine wave including a reading head with two spaced areas for scanning an optical grating
Equis et al. Snap-shot profilometry with the Empirical Mode Decomposition and a 3-layer color sensor
CN105103238A (en) Talbot effect based nearfield diffraction for spectral filtering
JPH0444211B2 (en)
Rhodes An optical array technique for the removal of atmospheric aberrations in astronomical imaging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees