JPS6042283B2 - Mixed spinning equipment - Google Patents

Mixed spinning equipment

Info

Publication number
JPS6042283B2
JPS6042283B2 JP9422076A JP9422076A JPS6042283B2 JP S6042283 B2 JPS6042283 B2 JP S6042283B2 JP 9422076 A JP9422076 A JP 9422076A JP 9422076 A JP9422076 A JP 9422076A JP S6042283 B2 JPS6042283 B2 JP S6042283B2
Authority
JP
Japan
Prior art keywords
plate
island
holes
polymer
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9422076A
Other languages
Japanese (ja)
Other versions
JPS5319421A (en
Inventor
正司 浅野
正博 貝原
昭二 黒崎
豊 二本木
正俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP9422076A priority Critical patent/JPS6042283B2/en
Publication of JPS5319421A publication Critical patent/JPS5319421A/en
Publication of JPS6042283B2 publication Critical patent/JPS6042283B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 本発明は2種以上の多成分ポリマー流を混合して紡糸
する装置に関するもので、任意な混合状態とりわけ島成
分の繊度に任意な分布を有する海島繊維を、より安定か
つすぐれた繊維均斉度でえる混合紡糸装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for mixing and spinning two or more types of multicomponent polymer streams, and the present invention relates to an apparatus for mixing and spinning two or more types of multi-component polymer streams, and allows sea-island fibers having an arbitrary distribution of fineness of the island components to be produced more stably in any mixed state. The present invention relates to a mixed spinning device that can achieve excellent fiber uniformity.

混合紡糸技術は合成繊維の改質等を目的とし従来から
よく知られている。
BACKGROUND ART Mixed spinning technology has been well known for the purpose of modifying synthetic fibers.

混合紡糸で最も一般的な方法としては、成分ポリマー
をチップ状態で混合し、これを溶融押出機を用いて紡糸
するものである。
The most common method for mixed spinning is to mix component polymers in the form of chips, and then spin this using a melt extruder.

これは最も簡便かつ経済的な方法および装置と考えられ
、最も広く利用されている。しかし、この方法、装置で
えられる非相溶性ポリマーの混合状態すなわち海島状態
にはコントロール可能な範囲に、また混合可能なポリマ
ーの組合せも制限がある。 本発明はこのような従来の
混合紡糸技術に鑑みてなされたものであり、目的とする
ところは、任意な繊度分布の島を有する海島繊維を海島
全体としては極めて均斉度よく安定にえる混合紡糸方法
およびそのような海島状態を極めて効率よくとる事がで
き、しかも構造が簡単である混合装置を提供せんとする
ものであつて、本発明者が特開昭50−36717、特
開昭50−71909、特願昭50−64735、特願
昭50−132251およびとりわけ特願昭50一J1
47661に完成した発明に対して、えられる混合紡糸
繊維の島繊度に積極的に分布をもたせる事によつて海鳥
構造の多様化を行なつたものである。
This is considered the simplest and most economical method and device and is the most widely used. However, there are limits to the controllable range of the mixed state of incompatible polymers, that is, the sea-island state obtained by this method and apparatus, and the combinations of polymers that can be mixed are also limited. The present invention has been made in view of such conventional mixed spinning technology, and the purpose is to create a mixed spinning method that allows sea-island fibers having islands with arbitrary fineness distribution to be made into sea-island fibers with extremely good uniformity and stability as a whole. It is an object of the present inventor to provide a method and a mixing device which can achieve such a sea-island state extremely efficiently and which has a simple structure. 71909, Japanese Patent Application No. 1983-64735, Japanese Patent Application No. 132251-1983, and especially Japanese Patent Application No. 1987-1 J1.
In contrast to the invention completed in 47661, the seabird structure was diversified by positively distributing the island fineness of the resulting mixed spun fibers.

つまり、本発明者がすてに提案した前記の方法及び装
置でえられる混合紡糸繊維は、1つの口金から吐出され
たヤーン全体の平均として求めたフィラメント当りの平
均島数、島繊度、さらにはフィラメント相互の島数およ
び島繊度はほとんど分布変動しない様にする事により、
えられる混合紡糸繊維はフィラメント相互で混合比率ム
ラ等の発生が解消されて均斉度の向上がなされた。本発
明は多様性に富んだ海島構造を有し、より利用価値のあ
る混合紡糸繊維であるところの島繊度がフィラメント内
で任意な分布をもつ海島繊維をえるに際し、フィラメン
ト内での島繊度を正確かつ容易に制御して分布させる事
が可能な装置を、えられる混合紡糸繊維の繊維均斉度を
全く低下せしめる事なくえるために鋭意検討を重ねた結
果完成したものである。
In other words, the mixed spun fiber obtained by the above-mentioned method and apparatus proposed by the present inventor has the following characteristics: the average number of islands per filament, the island fineness, and By ensuring that the number of islands and island fineness between filaments hardly change in distribution,
The resulting mixed spun fibers had improved uniformity by eliminating unevenness in the mixing ratio among the filaments. The present invention has a diverse sea-island structure and is a mixed spun fiber that is more useful.In order to obtain a sea-island fiber whose island fineness has an arbitrary distribution within the filament, the island fineness within the filament is adjusted. This was completed as a result of extensive research in order to create a device that can accurately and easily control distribution without reducing the fiber uniformity of the resulting mixed spun fibers.

すなわち、本発明の混合紡糸装置は上面及び下面夫々に
3個以上の溝状ポリマー流入口及び流出口が相互に平行
に穿設されかつ該上面及び下面に対応する溝が溝を連通
する多数の連通孔により連結されるA板、上面にA板か
らのポリマー流を受け入れる凹部を有し、かつ該凹部の
中心部に多数のポリマー流入孔をもち、しかもそれらの
孔からなる孔列が前記A板の溝の長さ方向と平行になる
ように、さらに当該孔は孔間で孔径又は孔長が任意の分
布をもつて穿設されたB板、及び上面にB板からのポリ
マー流を受け入れる、B板凹部に穿設された孔数より少
ない複数の凹部を有し、かつ該凹部の中心部にはそれぞ
れ1個の吐出孔を有する紡糸口金を設けたものである。
That is, in the mixing spinning device of the present invention, three or more groove-shaped polymer inlets and outlets are bored in parallel to each other on each of the upper and lower surfaces, and the grooves corresponding to the upper and lower surfaces have a large number of grooves communicating with each other. A plate connected by a communicating hole, has a recessed part on the upper surface for receiving the polymer flow from the A plate, and has a large number of polymer inflow holes in the center of the recessed part, and the hole row consisting of these holes is The holes are drilled parallel to the length direction of the grooves in the plate, and the holes have an arbitrary distribution of hole diameters or hole lengths between the holes, and the upper surface receives the polymer flow from the B plate. , a plurality of recesses smaller than the number of holes drilled in the recesses of plate B, and spinnerets each having one discharge hole are provided in the center of the recesses.

次に、本発明の混合紡糸装置における混合の原.理につ
いて説明する。本発明においてポリマー流の混合とは、
1A板とそれに続くB板によつてなされる多層化、2A
板に続くB板のポリマー流入孔によつてなされる分割と
流速分布付与、3B板に続く紡糸口金凹部.でなされる
高速に規制された集合、の3個の一連の操作の結果、A
板にA,b各々単一の成分の流れとして流入したポリマ
ー流が紡糸口金の吐出孔より流出するポリマー流となつ
たときは、a成分中にb成分が(またはb成分中にa成
分が)多数・個の微細流として分散した状態いわゆる海
島状態へと変化することをいうものである。
Next, the mixing source in the mixing spinning device of the present invention. Explain the principle. In the present invention, mixing of polymer streams means:
Multi-layering made by 1A plate followed by B plate, 2A
Division and flow velocity distribution created by the polymer inflow holes in plate B following plate 3, and spinneret recesses following plate 3B. The result of a series of three operations on the fast-regulated set, A
When the polymer flow that flows into the plate as a single component flow for each of A and B becomes a polymer flow that flows out from the discharge hole of the spinneret, the B component is present in the A component (or the A component is present in the B component). ) This refers to a change to a state in which the water is dispersed as a large number of microcurrents, a so-called sea-island state.

次に本発明の混合装置の1例とそのポリマーの流れ、つ
まり混合機構について図面によつて説明する。
Next, an example of the mixing device of the present invention and its polymer flow, that is, the mixing mechanism will be explained with reference to the drawings.

第1図は本発明にいうA板の流出口側から望んだ平面図
であり、第2図は第1図をA−A″線で切断したときの
断面図である。
FIG. 1 is a plan view of plate A according to the present invention as seen from the outlet side, and FIG. 2 is a cross-sectional view of FIG. 1 taken along line A-A''.

1,2,3,4,5,6,7,8,9,10,11はA
板に同心円状(相互に平行な状態)に穿設された円環溝
状をしたポリマー流出口であり、1″,2″,3″,4
″,5″,6′,丁,8′,9′,1『,1「は1,2
,3,4,5,6,7,8,9,10,1ノ1に対応し
たポリマー流入口であり、この図は溝状の流出口が11
個穿設されている場合を示している。
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 are A
This is a polymer outlet in the form of an annular groove that is concentrically (parallel to each other) drilled in the plate.
″, 5″, 6′, ding, 8′, 9′, 1″, 1″ is 1, 2
, 3, 4, 5, 6, 7, 8, 9, 10, 1 No. 1. In this figure, the groove-shaped outflow port is 11.
The figure shows the case where two holes are drilled.

該円環溝状の流出口と流入口は各々それらを連結する多
数の細孔1″,2″・・・・で貫通されている。第3図
はB板の平面図であり第4図は第3図・のB−B″線で
切断したときの断面図である。12は当該B板の凹部で
ありその形状は第3図、第4図に限定されるものではな
い。
The annular groove-shaped outlet and inlet are penetrated by a large number of pores 1'', 2'', . . . that connect them. Fig. 3 is a plan view of plate B, and Fig. 4 is a sectional view taken along the line B-B'' in Fig. 3. 12 is a concave portion of plate B, and its shape is shown in Fig. 3. , but is not limited to that shown in FIG.

13,14,15,16・・・・・・は孔列が前記A板
の溝状流出口のつくる円周方向と一致するように穿設さ
れた流入孔”であつて13,14,15,16の4個は
その細孔径が順に変化して相互に異なるもので、これを
1組とみなすとこの例では13,14,15,16と同
構造、同孔径の細五』動く12組、合計で48ホール穿
設されている。
13, 14, 15, 16... are inlet holes drilled so that the hole rows coincide with the circumferential direction formed by the groove-shaped outlet of the plate A, and 13, 14, 15. , 16 have pore diameters that change in order and are different from each other, and if these are considered as one set, in this example, there are 12 sets of 13, 14, 15, and 16 that have the same structure and the same pore diameter and move. A total of 48 holes have been drilled.

13″,14″,15″,16″は13,14,15,
16に対応した当該流入孔の出口であり、4個の組が1
2組つまり合計で48ホール穿設されている。
13″, 14″, 15″, 16″ are 13, 14, 15,
16, and the set of 4 is 1
There are two sets, or a total of 48 holes.

細孔の孔長はこの例では全て等しくなつている。第5図
は紡糸口金の平面図であり、第6図は当該紡糸口金のC
−C″線で切断したときの断面図である。
The lengths of the pores are all equal in this example. FIG. 5 is a plan view of the spinneret, and FIG. 6 is a C of the spinneret.
It is a sectional view taken along the line -C''.

17は当該紡糸口金の凹部であり、この例ては紡糸口金
全体に12個がB板の流入孔の出口に対応した位置に、
該凹部の1個がB板の流入孔の出口4個つまり孔径か順
に変化して相互に異なる1組ずつを受け入れる様に穿設
されている。
Reference numeral 17 indicates recesses of the spinneret, and in this example, there are 12 recesses throughout the spinneret at positions corresponding to the outlets of the inlet holes of plate B.
One of the recesses is formed so as to receive four exits of the inlet holes of the B plate, that is, a set of different holes whose diameters are changed in order.

その形状は第5図、第6図に限定されるものでなく、他
の形たとえば円管状、円錐状等が利用される。16は当
該紡糸口金凹部に穿設された吐出孔で、これらはノズル
オリフィス19へ連通している。
Its shape is not limited to those shown in FIGS. 5 and 6, and other shapes such as cylindrical, conical, etc. can be used. Reference numeral 16 indicates a discharge hole formed in the recessed portion of the spinneret, which communicates with a nozzle orifice 19 .

なお、これらの図面において多数の同構造の部分や対称
部分は、説明を害しない程度に省略した部分がある。こ
の混合装置中のポリマーの流れをA,b2成分のポリマ
ー流の場合について説明する。
In these drawings, many parts having the same structure and symmetrical parts are omitted to the extent that it does not impair the explanation. The flow of polymer in this mixing device will be explained in the case of a polymer flow of two components A and b.

各々、ギアポンプで計量されたa成分、b成分の2つの
ポリマー流はA板の1″,2″,3″,4″,5″,6
″,7″,8″,9″,1『,1「のポリマー流入ロへ
となり合せで入り1,2,3,4,5,6,7,8,9
,10,11の同円心状.に穿設された円環溝をしたポ
リマー流入口より押出されてB板凹部へa成分とb成分
がサイドバイサイドに各々a成分6層、b成分5層ずつ
、すなわちA,bll層の複合流として入る。
The two polymer flows of component a and component b, respectively, metered by a gear pump are 1″, 2″, 3″, 4″, 5″, 6
″, 7″, 8″, 9″, 1″, 1″ enter the polymer inflow hole next to each other 1, 2, 3, 4, 5, 6, 7, 8, 9
, 10, 11 concentric. The a component and the b component are extruded from the annular groove-shaped polymer inflow port drilled into the recess of the B plate and flow side by side with 6 layers of the a component and 5 layers of the b component, that is, a composite flow of the A and bll layers. enter.

このとき一般に層数の多い成分すなわちこの例ではa成
分が,海成分となる。該複合流の複合面はB板凹部の中
心部に穿設された孔の配列方向すなわちB板の円周方向
となる。この複合流はA,bll層となるが、A板の溝
状の流出口の数に対応するものであつて、当該流出口の
数を増加せしめ各成分ポリマーを1つおきの溝状の流出
口より流出せしめれば、容易に溝状の流出口の数と同数
層の複合流を極めて確実にB板部へ送ることができる。
第4図のB板凹部12へ入つた11層のポリマー流は1
3,14,15,16の4ホールからなる,細孔群と同
構造の12組の細孔群合計48個の円周状に配列された
B板のポリマー流入孔へ供給され、13″,14″,1
5″,16″の4ホールからなる細孔群と同構造の12
組の細孔群合計48個のポリマー流出孔より流出する。
At this time, generally the component with a large number of layers, that is, the a component in this example, becomes the sea component. The composite surface of the composite flow is the direction in which the holes bored in the center of the B plate recess are arranged, that is, the circumferential direction of the B plate. This composite flow becomes the A, bll layer, which corresponds to the number of groove-shaped outflow ports in the A plate, and the number of the outflow ports is increased so that each component polymer is passed through every other groove-shaped flow. If the flow is allowed to flow out from the outlet, it is possible to easily and reliably send a composite flow having the same number of layers as the number of groove-shaped outlets to the B plate portion.
The 11-layer polymer flow that entered the B plate recess 12 in Fig. 4 is 1
The polymer is supplied to the polymer inflow holes of the B plate arranged in a circumferential manner, with a total of 48 pore groups having the same structure as the pore groups, consisting of four holes 3, 14, 15, and 16, and 13'', 14″, 1
A pore group consisting of 4 holes of 5″ and 16″ and 12 holes with the same structure.
The polymer flows out from a total of 48 polymer outflow holes in the set of pore groups.

A板を通過したポリマー流はB板により多層化と分割お
よび分割されたポリマー細流間に流連分布の付与が行な
われる。次にB板を通過して形成されたポリマー細流は
B板の下に設けられた12個の紡糸口金凹部へ4個の異
なる細孔径の細孔からなる細孔群より流出した4個ずつ
のポリマー細流が各々へ正確に流入する。すなわち紡糸
口金凹部において高度に規制されて集合し、つづいて当
該紡糸口金凹部に1個ずつ穿設された吐出孔から吐出さ
れる。すなわち、本発明によればB板からのポリマー細
流を紡糸口金の上面で分流するに際し、紡糸口金上面の
複数の凹部により高度に規制して1個の吐出孔へ導くか
ら、B板よりの1つのポリマー細流が決して紡糸口金の
複数の吐出孔に分れて流れ込むことがない。以上のよう
にA,b2成分ポリマーが本発明装置を通過することに
よつてポリマー流が効率よく混合されると考えられる。
本発明の混合装置における混合の制御がいかにすれば可
能となるかについて次に記す。島数については1の多層
化したときの一方の成分(島成分)の層の数Sl2のA
板に続くB板によつてなされる分割の数すなわちB板凹
部に穿設された細孔群の合計の細孔数Ul3紡糸口金凹
部の数すなわち口金のノズルオリフィス数■とすると紡
糸口金の細孔を流れる微細流の数つまり海島状態中の島
数をIとすると、IとS,U,Vの間には(1)式の様
な関係が成立すると考えられる。
The polymer flow that has passed through the A plate is multilayered and divided by the B plate, and a continuous flow distribution is provided between the divided polymer streams. Next, the polymer trickle formed after passing through the B plate flows out into the 12 spinneret recesses provided under the B plate through a pore group consisting of 4 pores with different pore diameters. Polymer trickles flow precisely into each. That is, they gather in the spinneret recesses in a highly regulated manner, and are then discharged from the discharge holes drilled one by one in the spinneret recesses. That is, according to the present invention, when the polymer trickle from the B plate is separated on the upper surface of the spinneret, it is highly regulated by the plurality of recesses on the upper surface of the spinneret and guided to one discharge hole. A single polymer trickle never splits and flows into the spinneret's discharge holes. It is considered that the polymer streams are efficiently mixed by passing the two component polymers A and b through the apparatus of the present invention as described above.
How the mixing can be controlled in the mixing device of the present invention will be described below. Regarding the number of islands, A of the number of layers Sl2 of one component (island component) when multi-layered is 1.
The number of divisions made by the B plate following the plate, that is, the total number of pores in the pore groups drilled in the B plate recesses, Ul3. The number of spinneret recesses, that is, the number of nozzle orifices in the spinneret. Letting I be the number of fine currents flowing through the hole, that is, the number of islands in the sea-island state, it is thought that the relationship shown in equation (1) holds between I and S, U, and V.

次に図1〜図6で示す装置の場合つまりS=5,U=4
8,■=12であつて、B板の細孔は4個の異なる孔径
の細孔からなる細孔群丘組からなつている場合において
実際に海成分をポリエチレン(高圧法)とし、島成分を
ポリエチレンテレフタレートとして混合及び紡糸を行な
つた。この例でB板の細孔長は第4図に示すように等し
くなつている。その結果、各ホールの島数が正確に12
個であり、島繊度も又正確に大小4段階の分布をもつ(
1段階は島数5本からなる)海島構造の混合紡糸マルチ
フィラメントがえられた。この例でフィラメント数は1
2である。これはS,U,Vを(1)に代人して求めら
れた計算値に全く一致していた。すなわち、杢発明の装
置によつてえられる混合紡糸繊維の混合の程度すなわち
島数、海島状態つまり島繊度分布はS,U,V及びB板
の1組の細孔群中の細孔の孔径比を任意に選択する事に
よつて自在に制御てきる事がわかる。したがつて、この
混合制御は極めて容易かつ広い範囲で可能であり、本発
明混合紡糸装置の性能及び方法の優れている事がわかる
。さらに本発明の混合装置の混合の進行について示す。
1のA板でAb各々の成分゜はa成分=海成分6層、b
成分=島成分5層とな・つて、これがサイドバイサイド
にはり合わせられてA板に続くB板凹部へ流入し、B板
凹部の中心部にその孔列がA板の円環状溝の円周方向と
なるように穿設された48個のポリマー流入孔で48個
の微細な流れに分割される。
Next, in the case of the devices shown in Figures 1 to 6, S = 5, U = 4
8, ■ = 12, and the pores of plate B are composed of pore clusters consisting of pores with four different diameters, in which case the sea component is actually made of polyethylene (high pressure method), and the island component is was mixed and spun as polyethylene terephthalate. In this example, the pore lengths of plate B are equal as shown in FIG. As a result, each hole has exactly 12 islands.
, and the island fineness also has an exact distribution of four levels of size (
A mixed spun multifilament with a sea-island structure (one stage consists of five islands) was obtained. In this example, the number of filaments is 1
It is 2. This completely coincided with the calculated value obtained by substituting (1) for S, U, and V. That is, the degree of mixing, that is, the number of islands, and the sea-island condition, that is, the island fineness distribution, of the mixed spun fibers obtained by the apparatus of the Mokura invention are determined by the pore diameters of the pores in one set of pore groups of the S, U, V, and B plates. It can be seen that it can be controlled freely by arbitrarily selecting the ratio. Therefore, it can be seen that this mixing control is possible extremely easily and over a wide range, and that the performance and method of the mixing spinning apparatus of the present invention are excellent. Further, the progress of mixing in the mixing device of the present invention will be shown.
In the A board of 1, each component of Ab is a component = 6 layers of sea component, b
Component = 5 layers of island component, and these are pasted side by side and flow into the concave part of plate B following plate A, and the hole row is located in the center of the concave part of plate B in the circumferential direction of the annular groove of plate A. It is divided into 48 fine streams by 48 polymer inflow holes drilled so that

このa成分6層、b成ノ分5層ずつからなる48個の微
細な流れはB板の細孔の孔径比に応じた異なる流量比で
細孔を通過して、それぞれB板の流入孔出口からB板の
下に続く12個の紡糸口金凹部て高度に規制されて集合
する。このとき48個の微細流はB板円環溝中の細孔に
流入した直後はa成分6層、b成分5層ずつのサイドバ
イサイドにはり合わされているが、流出時にはA,b成
分ポリマーの相溶性、凝集力、流動挙動の差によつて一
方の成分中に他方の成分が分散した状態にの場合、a成
分中にb成分が分散した状態)、すなわち海島状態へと
変化を始め、B板につづく紡糸口金上部の凹部でほぼ完
全な海島構造となつて高度に規制されて合流する。この
場合、B板の流入孔の出口から流出する48個の微細流
は4個の流量の異なる流れの組が12個から構成されて
おり、さらに1個の微細流は各々5個のb成分からなる
分散相をもつているので各紡糸口金出口から流出する4
8個の微細流は各々3個のb成分からなる分散相をもつ
ているので各紡糸口金の1つの凹部にはB板の流入孔の
出口から流出する微細流は流量の異なる流れの1組つま
り4個が正確に流入するのて紡糸口金の各吐出孔に流れ
るポリマー流は5個ずつが同じ大きさで4段階の大きさ
の分布をもつ5×4=20(個)の分散相つまり島相を
有することとなる。この様な混合を実現するのに本発明
混合装置は1A板、2B板、3紡糸口金の主要なプレー
ト3枚をこの順序でノズルバックへ組込むだけでよいの
である。尚これまての説明では、島繊度分布を制御する
のに、B板での細孔の孔径比を選択することによ,つて
行なう例で示したが、B板での細孔群中の細孔の孔径は
等しくしておき、細孔の孔長比を選択する、即ち、例え
ば、B板下面側を各細孔ごとに部分的に切除して各細孔
の孔長を違え、それにより細孔間て孔長比を与えること
によつても、後述!する実施例2にも示すように、島繊
度分布が制御できるものである。
These 48 fine flows consisting of 6 layers of the a component and 5 layers of the b component pass through the pores at different flow rate ratios depending on the pore diameter ratio of the pores of the B plate, and each flow enters the inflow hole of the B plate. The 12 spinneret recesses leading from the outlet to the bottom of the B plate gather in a highly regulated manner. At this time, immediately after the 48 microflows flow into the pores in the annular groove of the B plate, they are stuck side by side with 6 layers of the a component and 5 layers of the b component, but when they flow out, the phases of the A and b component polymers are combined. When one component is dispersed in the other due to differences in solubility, cohesive force, and flow behavior, a state in which component b is dispersed in component a) begins to change to a sea-island state, and B In the recess at the top of the spinneret following the plate, it forms an almost perfect sea-island structure and merges in a highly regulated manner. In this case, the 48 fine streams flowing out from the outlet of the inflow hole of the B plate are composed of 12 sets of 4 flows with different flow rates, and each fine stream is composed of 5 b components each. 4 flows out from each spinneret outlet because it has a dispersed phase consisting of
Each of the eight microstreams has a dispersed phase consisting of three B components, so in one recess of each spinneret, the microstreams flowing out from the outlet of the inflow hole of the B plate are one set of streams with different flow rates. In other words, the polymer flow flowing into each discharge hole of the spinneret is made up of 5 x 4 = 20 (5 x 4 = 20) dispersed particles, each of which has the same size and has a size distribution of 4 stages. It has an island facies. In order to achieve such mixing, the mixing apparatus of the present invention only needs to incorporate three main plates, plate 1A, plate 2B, and spinneret 3, into the nozzle bag in this order. In the previous explanation, we have shown an example in which the island fineness distribution is controlled by selecting the pore diameter ratio of the pores in the B plate. The pore diameters of the pores are kept the same and the pore length ratio of the pores is selected. For example, by partially cutting out each pore on the bottom side of plate B and changing the pore length of each pore, Also, by giving the pore length ratio between the pores, which will be explained later! As shown in Example 2, the island fineness distribution can be controlled.

本発明の混合装置は原理的には本発明者らが先に提案し
た特開昭50−36717号、特開昭50−71909
号、特願昭50−64735号、特願昭50−1476
61号等3と任意の段階まて混合しようとするポリマー
成分の化学的物理的性質を十分に考慮し、それを利用し
ている点では全く同一てあるが、本発明は上述の如く混
合のために用いる構造プレート数が紡糸口金を含めて3
枚とこれまて提案してきた方法、4装置の場合の構成プ
レート数5〜6枚に比べて簡素化、小型化の実現を可能
にしたのに、加えてえられる混合紡糸繊維の島繊度をフ
ィラメント内で正確かつ容易に制御して分布させる事を
可能にしたもので、その結果として混合紡糸技術範囲の
拡大がなされた。
The mixing device of the present invention is based on the principles previously proposed by the present inventors in Japanese Patent Application Laid-Open No. 50-36717 and Japanese Patent Application Laid-open No. 50-71909.
No., Patent Application No. 1983-64735, Patent Application No. 1983-1476
No. 61, etc. 3, in that the chemical and physical properties of the polymer components to be mixed at any stage are fully considered and utilized, but the present invention The number of structural plates used for this purpose is 3 including the spinneret.
The previously proposed method has made it possible to achieve simplification and miniaturization compared to the 5 to 6 constituent plates in the case of 4 devices, and in addition, the island fineness of the resulting mixed spun fibers has been reduced. This made it possible to accurately and easily control the distribution within the filament, thereby expanding the scope of mixed spinning technology.

さらに特公昭44−183的号等で提案されている多芯
々鞘紡糸装置で本発明でえられるような制御された島繊
度分布をもつ海島繊維をえる事も可能と考えられるが、
その場合には芯成分ポリマーを流す部分は多数の細管か
ら構成されており、この様な細管を有する口金部分は工
作するのはもちろん保守、整備する事も通常の紡糸口金
のそれに比フして極めて多く労力を必要とするものと考
えられ、本発明の装置部品が通常の紡糸口金と全く同様
な取扱いのできるのとは大きな違いである。
Furthermore, it is thought that it is possible to obtain sea-island fibers with a controlled island fineness distribution as obtained by the present invention using the multi-core core-to-sheath spinning apparatus proposed in Japanese Patent Publication No. 44-183.
In that case, the part through which the core component polymer flows is made up of a large number of thin tubes, and the spinneret part with such thin tubes requires not only engineering but also maintenance and maintenance compared to a normal spinneret. This is considered extremely labor-intensive and is a big difference from the fact that the equipment parts of the present invention can be handled in exactly the same way as a conventional spinneret.

この改良をねらつた提案が特開昭49−19111号、
特開昭49−1911鏝でなされているところの・細管
をすべてプレートに穿つた細孔に代えたものであるが、
細孔をとりかこむ鞘成分のための分流路、細流路が各細
孔毎に必要となつて装置は大型化してしまい、スペース
の利用の効率がよくないのは明らかである。しかし、本
発明の装置では、S,V,Uを任意にかえる事で容易に
かつ正確に島数のコントロールができ又B板の細孔の孔
径と孔長を任意させるだけで島繊度に分布が付与でき、
しかも主要な構成プレート枚数は3枚で極めてコンパク
トである。
A proposal aimed at this improvement was published in JP-A-49-19111.
This is a method in which the thin tubes used in the 1911 Japanese Patent Publication Trowel are all replaced with pores made in the plate.
It is clear that a branch channel or narrow channel for the sheath component surrounding the pore is required for each pore, which increases the size of the device, and the space is not used efficiently. However, with the device of the present invention, the number of islands can be easily and accurately controlled by arbitrarily changing S, V, and U, and the island fineness can be distributed by simply changing the pore diameter and length of the pores in the B plate. can be given,
Furthermore, the number of main constituent plates is three, making it extremely compact.

これは本発明は実際に混合に供するポリマーの溶融時の
化学的、物理的性質を十分に利用して目的とする混合状
態を実現しようとしたのて装置は上述の如く簡単化でき
たもので、保守、整備は通常の溶融紡糸口金と同様な取
扱いができ、特別な配慮や困難は全くない。さらに従来
から混合紡糸繊維の海島構造に変化をもたらす事の1つ
として島繊度に分布をもたせる事が考えられていたが、
その場合十分に制御された状態で実現する方法の具体的
提案はなかつた。
This is because the present invention attempts to achieve the desired mixing state by fully utilizing the chemical and physical properties of the polymers to be mixed when they are melted, and the apparatus has been simplified as described above. , maintenance, and maintenance can be handled in the same way as ordinary melt spinnerets, and there are no special considerations or difficulties. Furthermore, one way to bring about changes in the sea-island structure of mixed spun fibers has been thought to be to create a distribution of island fineness.
In that case, there were no concrete proposals on how to achieve this in a sufficiently controlled manner.

それは混合紡糸において島繊度に分布をたらす事は海島
構造を不均一にする事を意味し、これは多くの場合繊維
均斉度の低下を生じせしめ実用性のある繊維とはならな
いとか安定にその様な紡糸をする事は不可能であるとさ
れてきたからであろう。事実、本発明者の検討において
も、多くの場合に同様な結果となつたが、その様な検討
の中から本発明者らは、本発明のように島繊度に分布を
与えるための操作をB板の細孔ての接合ポリマー流の分
割および流量分布付与で行ない、えられる流量分布のあ
る微細ポリマー流を各口金凹部へ高度に規制して集合し
てこれを口金吐出孔より紡出するならば各口金からの吐
出量と混合成分比率に全く変動を生じる事なく、安定な
混合の実現と繊維均斉度の良好な島繊度に分布を有する
混合紡糸繊維の紡糸が初めて可能となつたのである。こ
れはB板て流量分布を生じせしめても2成分の接合ポリ
マー流全体が流量分布をもつのであつて接合ポリマーを
構成する各成分ポリマー相互には何らの変化も与える事
がないので混合比率が全く安定しているためと考えられ
る。本発明の混合紡糸装置において紡糸に供されるポリ
マーの組合わせとしては、公知なあらゆる紡糸可能な2
種または2種以上のポリマーからなる組合わせである。
In mixed spinning, creating a distribution in island fineness means making the sea-island structure non-uniform, which often results in a decrease in fiber uniformity and may not result in a fiber that is of practical use, or may not be stable. This is probably because it has been thought that it is impossible to spin such yarn. In fact, similar results were obtained in many cases in the studies conducted by the present inventors, but from such studies, the present inventors conducted an operation to give a distribution to the island fineness as in the present invention. This is done by dividing the bonded polymer flow through the fine holes of plate B and giving a flow distribution, and the resulting fine polymer flow with a flow rate distribution is highly regulated and collected in each nozzle recess, and then spun out from the nozzle discharge hole. Therefore, for the first time, it has become possible to achieve stable mixing and to spin mixed spun fibers with an island fineness distribution with good fiber uniformity without causing any fluctuations in the discharge amount from each spinneret and the mixing component ratio. be. This is because even if plate B causes a flow rate distribution, the entire flow of the two component bonded polymers will have a flow rate distribution, and there will be no change in the component polymers that make up the bonded polymer, so the mixing ratio will be This is probably because it is completely stable. The combination of polymers used for spinning in the mixed spinning device of the present invention may include any known combination of spinnable polymers.
It is a species or a combination of two or more kinds of polymers.

ポリマーの代表例としてはポリエチレンおよびポリプロ
ピレンの如きポリオレフィン、アタクチツクまたはアイ
ソタクチックなポリスチレン、アルキルそしてハロゲン
置換のポリスチレン、6ナイロンおよび6,6ナイロン
の如きポリアミド、ポリエチレンテレフタレートの如き
ポリエステル、ポリメチルメタクリレートの如きポリメ
タアクリル酸エステル、各種アルデヒドにてアセタール
化したポリビニルアセタール、ポリビニルアルコール、
ポリ塩化ビニルの如きポリハロゲン化ビニル、ポリアク
リロニトリル、ポリ塩化ビニリデンの如きポリハロゲン
化ビニリデン、あるいは各種の縮合系又は重合系低分子
物質の共重合物又は各種高分子物質に対し、各種低分子
物質をグラフトしたグラフトポリマーなどである。
Typical examples of polymers include polyolefins such as polyethylene and polypropylene, atactic or isotactic polystyrene, alkyl- and halogen-substituted polystyrenes, polyamides such as 6-nylon and 6,6-nylon, polyesters such as polyethylene terephthalate, and polymethyl methacrylate. Polymethacrylic acid ester, polyvinyl acetal acetalized with various aldehydes, polyvinyl alcohol,
Various low molecular substances for polyvinyl halides such as polyvinyl chloride, polyvinylidene halides such as polyacrylonitrile, polyvinylidene chloride, copolymers of various condensed or polymerized low molecular substances, or various high molecular substances. These include grafted polymers.

本発明の混合紡糸装置でえられた混合紡糸繊維は、島成
分の相(以下島相とする)が平均0.05〜3デニール
の間で分布をもつものである。
In the mixed spun fiber obtained by the mixed spinning apparatus of the present invention, the island component phase (hereinafter referred to as "island phase") has an average distribution of 0.05 to 3 deniers.

したがつて、海成分の相(以下海相とする)を溶解又は
抽出除去することによつて通常の紡糸(混合紡糸を含む
)てはえる事が全く不可能と思われる極めて微細な10
0分の1デニールのオーダー繊度の繊維から微細な繊度
つまり0.1〜3デニール程度までの繊維が混合された
、言いかえると混繊された繊維集合体がえられる。この
ような繊維集合体は立毛タイプの人工皮革用素材として
非常に有用なものである。
Therefore, by dissolving or extracting the sea component phase (hereinafter referred to as "sea phase"), extremely fine fibers that are completely impossible to be produced by normal spinning (including mixed spinning) can be obtained.
In other words, a mixed fiber aggregate is obtained in which fibers with a fineness on the order of 1/0 denier are mixed with fibers with a fineness on the order of 0.1 to 3 deniers. Such a fiber aggregate is very useful as a material for napped type artificial leather.

すなわち、混繊の構成つまり繊度及び混合比率を任意に
変化せしめる事により、異なるタイプの製品たとえば、
鹿皮調人工皮革、スウエード調人工皮革、ベロア調人工
皮革、バックスキン調人工皮革等それぞれに最適となる
素材繊維とする事ができる。このような混繊された混合
繊維の代りとして構成島繊度が異なる通常の混合紡糸繊
維の原綿を混綿する事によつて上述の様な人工皮革をえ
ようと試みても、いずれも外観、風合とくに立毛状態、
表面毛羽の状態が全く粗悪なものにしかならなかつた。
その原因として混綿タイプでは繊度の異なる微細繊維の
混りに限界があつて混繊された混合繊維の様に均一な微
細繊維の混合状態の実現が不可能なためであると考えら
れる。また本発明の装置、方法でえられる混合繊維は海
島共存する状態においても繊維均斉度が非常に良好であ
ることから、従来の混合紡糸繊維つまり海島構造をもつ
た繊維においては不可能とされていた織物用フィラメン
ト繊維として取扱いが十分に可能である。次に本発明を
実施例を示してより具体的に説明するが、本発明はこれ
ら記載例に限定されるものではない。なお、本発明にい
うポリエチレンテレフタレートの極限粘度〔η〕(d′
/g)とは30゜Cのフエノールニテトラクロルエタン
(1:1)の混合溶媒で測定したものである。
In other words, by arbitrarily changing the composition of the mixed fibers, that is, the fineness and mixing ratio, different types of products can be produced, for example,
The material fibers can be optimally used for deerskin-like artificial leather, suede-like artificial leather, velor-like artificial leather, buckskin-like artificial leather, etc. Even if an attempt was made to obtain the above-mentioned artificial leather by blending raw cotton of ordinary mixed spun fibers with different constituent island finenesses instead of such mixed fibers, the appearance and wind Especially in the state of piloerection,
The condition of the surface fluff was completely poor.
The reason for this is thought to be that in the mixed cotton type, there is a limit to the mixing of fine fibers with different finenesses, and it is impossible to achieve a uniform state of mixing fine fibers like mixed fibers. Furthermore, the mixed fibers obtained by the apparatus and method of the present invention have very good fiber uniformity even in the presence of sea-island structures, which is considered impossible with conventional mixed spun fibers, that is, fibers with a sea-island structure. It is fully possible to handle it as a filament fiber for textiles. EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the intrinsic viscosity [η] (d'
/g) is measured using a mixed solvent of phenolnitetrachloroethane (1:1) at 30°C.

また、6ナイロンの相対粘度は6ナイロンを1/100
(g/r!Ll)の濃度96%H2SO4に溶解し30
゜Cで測定したものである。
Also, the relative viscosity of nylon 6 is 1/100 of that of nylon 6.
(g/r!Ll) dissolved in 96% H2SO4 at a concentration of 30
Measured at °C.

ポリエチレンのメルトインデックスとはJIS一K67
6Oにしたがつて測定したものてある。
What is the melt index of polyethylene? JIS-K67
6O.

・実施例1固有粘度0.68のポリエチレンテレフタレ
ートとメルトインデックス20の高圧法低密度ポリエチ
レンを別々の押出機により溶融押出し、ギアポンプで計
量してポリエチレンテレフタレート60Wtj%、ポリ
エチレン40Wt%の送液比で本発明混合装置に導入し
混合する。
・Example 1 Polyethylene terephthalate with an intrinsic viscosity of 0.68 and high-pressure low-density polyethylene with a melt index of 20 were melt-extruded using separate extruders, weighed with a gear pump, and then extruded at a liquid delivery ratio of 60 Wtj% polyethylene terephthalate and 40 Wt% polyethylene. Introduce and mix into the invention mixing device.

混合装置は第1図のようにA板が11個の同心円をなし
た円環状溝ポリマー流出口をもつものと、第3図のよう
なり板でその凹部の中心部に48個のポリマー流出孔を
穿設したフもので当該4陥の細孔は12組の細孔群から
なつていて1組の細孔群中の4個の細孔の孔径比は1:
1.19:1.38:1.56となつていて、孔長は全
て等しいものと、第6図のような構造の紡糸口金凹部1
7を12個穿設した紡糸口金とを上記の様な順に設置し
たものを用いた。もちろん1組のB板の細孔群は1つの
紡糸口金凹部に対応するように配置させてある。A板へ
のポリマーの導入は島成分であるポリエチレンテレフタ
レートが5個の円環状溝すなわち第1図の2″,4″,
6″,8″,1『に、海成分であるポリエチレンが4個
の円環状溝1″,3″,5″,7″,9″,1「になさ
れた。
As shown in Figure 1, the mixing device has a plate A with 11 concentric annular groove polymer outlet holes, and as shown in Figure 3, a plate with 48 polymer outlet holes in the center of the recess. The four pores are composed of 12 groups of pores, and the pore diameter ratio of the four pores in one group of pores is 1:
1.19:1.38:1.56 and all hole lengths are equal, and spinneret recess 1 having the structure as shown in Fig. 6.
A spinneret with 12 No. 7 holes installed in the above order was used. Of course, the pore groups of one set of B plates are arranged to correspond to one spinneret recess. Polyethylene terephthalate, which is an island component, is introduced into plate A through five annular grooves, i.e., 2″, 4″, and 4″ in Fig. 1.
6'', 8'', 1'', polyethylene as a sea component was made into four annular grooves 1'', 3'', 5'', 7'', 9'', 1''.

したがつて、本実施例てはS(すなわちA板での島成分
の層数)=5、U(B板凹部に穿設された細孔数)=4
&V(口金オリフィス数)=12である。紡糸は口金温
度は280℃とし、口金ホール数=12、吐出量=41
.5g/Min、捲取速度750rr1/Minに設定
して行なつた。冷却風は口金下2〜30cmの間を風速
0.2〜0.7m/Secで紡出糸条にクロスカレント
でふきつける様にした。えられた混合紡糸原糸はローラ
ープレート方式の延伸機で4倍に延伸し、150(1r
/12fi1の延伸糸をえた。
Therefore, in this example, S (i.e., the number of layers of island components in plate A) = 5, and U (number of pores drilled in the concave portion of plate B) = 4.
&V (number of base orifices)=12. For spinning, the spindle temperature was 280°C, the number of spindle holes = 12, and the discharge amount = 41.
.. The winding speed was set at 5 g/min and a winding speed of 750 rr1/min. The cooling air was applied to the spun yarn with a cross current at a wind speed of 0.2 to 0.7 m/Sec between 2 and 30 cm below the spinneret. The obtained mixed spun yarn was stretched 4 times with a roller plate type drawing machine, and
/12fi1 drawn yarn was obtained.

えられた混合紡糸繊維はポリエチレンテレフタレートか
らなる島相を口金全ホール、この例では12ホールの各
ホールにおいていずれも2咋すなわち1フィラメント当
り2C@有している。そして、2C@の島相は5個ずつ
が等しい繊度で4段階の分布をもつていることが繊維断
面の顕微鏡観察で認められた。さらに4段階に分布する
島相の繊度を繊維断面の顕微鏡観察から求めたところ、
0.083dr,0.194dr,0.334dr,0
.639c1rの島相が各々5本ずつ分布していた。こ
の結果から島相の繊度の変化はB板の細孔径のほぼ4.
辣に比例して変化している事が分つた。これはB板にお
けるポリマー流の流量分布の付与がえられる混合紡糸繊
維の島相の繊度分布となる事を示しており、しかも流量
分布は一般的な流体の層流における摩擦による圧損等を
あられす理論式であるハーゲン・ボアズイユの式の流量
が孔j径の4乗に比例する関係とほぼ一致して、正確に
与えられている事が分る。
The resulting mixed spun fiber has an island phase composed of polyethylene terephthalate in all the holes of the spindle, in each of the 12 holes in this example, 2 C@, that is, 2 C@ per filament. Microscopic observation of the cross-section of the fibers revealed that the 2C@ island phase had a distribution of 4 levels, with each 5 pieces having equal fineness. Furthermore, the fineness of the island phase, which is distributed in four stages, was determined from microscopic observation of the fiber cross section.
0.083dr, 0.194dr, 0.334dr, 0
.. Five island facies of 639c1r were distributed in each area. From this result, the change in the fineness of the island phase is approximately 4.5 times the pore diameter of the B plate.
I found that it changed in proportion to the hotness. This shows that the flow rate distribution of the polymer flow in plate B is the same as the fineness distribution of the island phase of the mixed spun fibers, and furthermore, the flow rate distribution is free from pressure loss due to friction in a general laminar flow of fluid. It can be seen that the flow rate of the Hagen-Boiseuille equation, which is a theoretical equation, is given accurately, almost in agreement with the relationship proportional to the fourth power of the diameter of the hole j.

実際の紡糸は10〜14日間の連続運転を繰返して行な
つた。その期間中ビス落ちによる断糸は全くなく紡糸調
子は良好であつた。また、混合紡糸繊維の混合状態は紡
糸中全クく安定であつた。混合状態すなわち海島状態は
、島数、島形状島繊度分布は、紡糸開始から紡糸の終る
まで全く変化が認められず極めて安定なものであつた。
またえられた延伸糸の均斉度は、ウースターのイーブン
ネステスターを用いたノーマルテストで求めたところU
%=0.5〜0.8%程度であり良好であつた。実施例
2 実施例1において用いたと同一のポリマーを同一の送液
比で本発明混合装置に導入し混合する。
The actual spinning was repeated in continuous operation for 10 to 14 days. During this period, there was no yarn breakage due to dropped screws, and the spinning condition was good. In addition, the mixed state of the mixed spun fibers was completely stable during spinning. The mixed state, ie, the sea-island state, was extremely stable with no change observed in the number of islands, island shape, and island fineness distribution from the start of spinning to the end of spinning.
The uniformity of the drawn yarn obtained was determined by a normal test using a Worcester evenness tester.
%=about 0.5 to 0.8%, which was good. Example 2 The same polymer used in Example 1 was introduced into the mixing device of the present invention at the same feed ratio and mixed.

混合装置は実施例1で用いたものと、B板の1組の細孔
群中の4個の細孔は孔長の比が1:2.1:3.8:6
.0となつていて孔径は全て等しくなつていフる以外全
く同一のものを用いた。紡糸条件および延伸条件は実施
例1と全く同一条件として行なつた。
The mixing device was the same as that used in Example 1, and the four pores in one set of pores on plate B had a pore length ratio of 1:2.1:3.8:6.
.. 0 and the pore diameters were all the same, but the same ones were used. The spinning conditions and stretching conditions were exactly the same as in Example 1.

えられた混合紡糸繊維の海島構造を調べるため繊維断面
の顕微鏡観察を行なつた。
In order to investigate the sea-island structure of the obtained blended spun fibers, microscopic observation of the cross section of the fibers was carried out.

この場合も1)フィラメント内にはポリエチレンテレフ
タレートからなる島相が2α瓢1段階5個ずつて4段階
の繊度分布て存在していた。各段階の1個の島相繊度は
、それぞれ0.107dr,0.194dr,0.37
8dr,0.571drとなつていて、この分布はB板
の細孔長・の比になつている。B板におけるポリマー流
の流量分布付与がやはり混合紡糸繊維の島相の繊度分布
となる事を示していて、一般的な流体の層流における摩
擦による圧損等をあられす理論式であるハーゲン・ボア
ズイユの式の流量が孔長に比例する関係とほぼ一致して
、正確に与えられている事が分かる。
In this case as well, 1) island phases made of polyethylene terephthalate were present in the filament in a fineness distribution of 4 stages with 5 pieces per 2α gourd stage. The fineness of one island phase at each stage is 0.107 dr, 0.194 dr, and 0.37 dr, respectively.
8 dr and 0.571 dr, and this distribution is the ratio of the pore length of the B plate. This shows that the flow rate distribution of the polymer flow in the B plate results in the fineness distribution of the island phase of the mixed spun fibers, which is based on the Hagen-Boiseuille theoretical formula that accounts for pressure loss due to friction in general laminar flow of fluids. It can be seen that the flow rate in the equation is given accurately, almost in agreement with the relationship in which it is proportional to the hole length.

実際紡糸は実施例1と同様に行なつたが、紡糸調子、混
合状態の安定性さらにえられた混合紡糸繊維の均斉度は
実施例1の場合と差違なく良好なものであつた。実施例
3相対粘度2.7の6ナイロンとメルトインデックス2
0の高圧法低密度ポリエチレンを別々に溶融押出し、ギ
アポンプで6ナイロン印憇%、ポリエチレン旬憇%とな
るように計量して実施例1で用いたと全く同一の本発明
混合装置に導入し、混合を行なつた。
Actually, spinning was carried out in the same manner as in Example 1, but the spinning condition, the stability of the mixing state, and the uniformity of the obtained mixed spun fibers were as good as in Example 1. Example 3 Nylon 6 with relative viscosity 2.7 and melt index 2
0 high-pressure low-density polyethylene was melt-extruded separately, weighed with a gear pump so that 6% nylon and 6% polyethylene were mixed, introduced into the same inventive mixing device as used in Example 1, and mixed. I did this.

紡糸は口金温度を250〜260℃とする以外は実施例
1と同じ条件で行なつた。延伸も実施例1と同一条件で
行なつた。えられた混合紡糸繊維は6ナイロンからなる
島相を口金全ホール、この例では12ホールの各ホール
において20fI1すなわち1フィラメント当り頷個有
している。
The spinning was carried out under the same conditions as in Example 1 except that the spindle temperature was 250 to 260°C. Stretching was also carried out under the same conditions as in Example 1. The obtained mixed spun fiber has an island phase of nylon 6 in all the holes of the base, in each of the 12 holes in this example, 20 fI1, that is, an island phase per filament.

そして頷個は島相が5ずつ等しい繊度で4段階に分布し
ていた。4段階に分布する島相の繊度は、0.08dr
,0.19dr,0.33dr,0.65drの島相か
各々5本すつ分布していて、島繊度分布とB板細孔の孔
径の分布との関係は実施例1と同様になつた。
The nod pieces were distributed in 4 stages with equal fineness of 5 islands. The fineness of the island phase distributed in four stages is 0.08 dr.
, 0.19dr, 0.33dr, and 0.65dr, and the relationship between the island fineness distribution and the pore diameter distribution of the B plate pores was the same as in Example 1. .

実際の紡糸延伸の状態を実施例1の島相がポリエチレン
テレフタレートの場合と全く変ることなく良好なもので
あつた。
The actual spinning and drawing conditions were as good as in Example 1 where the island phase was polyethylene terephthalate.

えられた繊維の均斉度も何ら変化なく良好でポリエチレ
ンを抽出除去した6ナイロンの島相からなる混繊された
微細繊度繊維は十分に商品価値のある6ナイロンフィラ
メントとなつた。実施例4 第1図のようなA板が11個の同心円をなした円環状ポ
リマー流出口をもつものと、第3図のようなり板でその
凹部の中心部に3C41のポリマー流出孔を穿設したも
ので当該あ個の細孔は帛組の細孔群からなつていて1組
の細孔群中の3個の細孔の孔径比は1:1.3:1.6
となつていて孔長は全て等しいものと、第6図のような
構造の紡糸口金凹部17を12個穿設した紡糸口金とを
上記の様な順に設置した本発明混合装置を用いて、実施
例1と全く同一のポリマー、紡糸条件、延伸条件で混合
紡糸延伸を実施した。
The uniformity of the obtained fibers was good without any change, and the mixed fine-grained fibers consisting of island phases of nylon 6 from which polyethylene had been extracted and removed became nylon 6 filaments with sufficient commercial value. Example 4 Plate A as shown in Fig. 1 has 11 concentric annular polymer outflow ports, and a plate as shown in Fig. 3 has a 3C41 polymer outflow hole in the center of the recess. The pores are made up of a set of pore groups, and the pore diameter ratio of the three pores in one pore group is 1:1.3:1.6.
The experiment was carried out using the mixing apparatus of the present invention in which a spinneret having 12 spinneret recesses 17 having the structure as shown in FIG. Mixed spinning and drawing was carried out using the same polymer, spinning conditions, and drawing conditions as in Example 1.

もちろん、1組のB板の細孔群は1つの紡糸口金凹部に
対応するように配置させる。
Of course, the pore groups of one set of B plates are arranged to correspond to one spinneret recess.

この例でえられた混合紡糸繊維はポリエチレンテレフタ
レートからなる島相を12ホールのいずれにおいても、
1陥すなわち1フィラメント当りb個有していて、そし
て托個の島相が5個ずつが等しい繊度で3段階の分布を
もつていた。さらに3段階に分布する島相の繊度は0.
1dr,0.32dr,0.83(1rの島相が各々5
本ずつ分布していた。この場合も島相の繊度分布とB板
細孔の孔径の分布との関係は実施例1の場合とほとんど
相違なく、島相の繊度分布はB板細孔の孔径のほぼ4.
5乗に比例していた。
The mixed spun fiber obtained in this example had an island phase consisting of polyethylene terephthalate in any of the 12 holes.
Each filament had b number of cavities, and each of the five islands had an equal fineness and had a three-stage distribution. Furthermore, the fineness of the island phase distributed in three stages is 0.
1 dr, 0.32 dr, 0.83 (1r island facies is 5 each
It was distributed by books. In this case as well, the relationship between the fineness distribution of the island phase and the pore size distribution of the B plate pores is almost the same as in Example 1, and the fineness distribution of the island phase is approximately 4.5 mm larger than the pore size of the B plate pores.
It was proportional to the fifth power.

図面の簡単な説明第1図は本発明にいうA板の1例の平
面図であり、第2図は第1図のA−A″線での断面図で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of an example of the A plate according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA'' in FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] 1 島成分の繊度に任意の分布を有する海島繊維を得る
混合紡糸装置において、(1)上面及び下面それぞれに
3個以上の溝状ポリマー流入口及び流出口が相互に平行
に穿設され、かつ該上面及び下面に対応する溝が溝を連
通する多数の連通孔により連結されるA板、(2)上面
にA板からのポリマー流を受け入れる凹部を有し、かつ
該凹部の中心部に多数のポリマー流入孔をもち、しかも
それらの孔からなる孔列が前記A板の溝の長さ方向と平
行になるように、さらに当該孔は孔間で孔径又は孔長が
任意の分布をもつて穿設されたB板、及び(3)上面に
B板からのポリマー流を受け入れる、B板凹部に穿設さ
れた孔数より少ない複数の凹部を有しかつ該凹部の中心
部にはそれぞれ1個の吐出孔を有する紡糸口金からなる
ことを特徴とする混合紡糸装置。
1. In a mixing spinning device for obtaining sea-island fibers having an arbitrary distribution of fineness of island components, (1) three or more groove-shaped polymer inlets and outlets are bored in parallel to each other on each of the upper and lower surfaces, and A plate in which grooves corresponding to the upper and lower surfaces are connected by a large number of communication holes that communicate the grooves; polymer inflow holes, and the holes have an arbitrary distribution of hole diameter or hole length among the holes so that the hole array consisting of these holes is parallel to the length direction of the groove of the A plate. and (3) have a plurality of recesses on the upper surface smaller than the number of holes drilled in the recesses of the B board, each of which receives the polymer flow from the B board, and one recess in the center of each of the recesses. 1. A mixing spinning device comprising a spinneret having several discharge holes.
JP9422076A 1976-08-06 1976-08-06 Mixed spinning equipment Expired JPS6042283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9422076A JPS6042283B2 (en) 1976-08-06 1976-08-06 Mixed spinning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9422076A JPS6042283B2 (en) 1976-08-06 1976-08-06 Mixed spinning equipment

Publications (2)

Publication Number Publication Date
JPS5319421A JPS5319421A (en) 1978-02-22
JPS6042283B2 true JPS6042283B2 (en) 1985-09-21

Family

ID=14104222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9422076A Expired JPS6042283B2 (en) 1976-08-06 1976-08-06 Mixed spinning equipment

Country Status (1)

Country Link
JP (1) JPS6042283B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180473U (en) * 1985-04-30 1986-11-11
JPH0339901Y2 (en) * 1987-04-30 1991-08-22

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558122Y2 (en) * 1990-02-27 1997-12-17 旭光学工業株式会社 Drip-proof camera
JP4950856B2 (en) * 2007-11-26 2012-06-13 帝人ファイバー株式会社 Sea-island composite fiber melt spinneret

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180473U (en) * 1985-04-30 1986-11-11
JPH0339901Y2 (en) * 1987-04-30 1991-08-22

Also Published As

Publication number Publication date
JPS5319421A (en) 1978-02-22

Similar Documents

Publication Publication Date Title
US4350006A (en) Synthetic filaments and the like
KR950001645B1 (en) Profiled multi-component fibers and method and apparatus for making the same
US3692423A (en) Apparatus for spinning synthetic {37 islands-in-a-sea{38 {0 type composite filaments
CN1263902C (en) Meltblown nonwoven fabric
CA2137649C (en) High speed spinning of multi-component fibers with high hole surface density spinnerettes and high velocity quench
US7501085B2 (en) Meltblown nonwoven webs including nanofibers and apparatus and method for forming such meltblown nonwoven webs
US3209402A (en) Apparatus for producing multicom-ponent filaments and yarns
RU2008105796A (en) METHOD AND DEVICE FOR PRODUCTION OF POLYMER FIBERS AND TEXTILE PRODUCTS INCLUDING MANY POLYMER COMPONENTS IN A CLOSED SYSTEM
US3459846A (en) Method and spinneret device for spinning two-component filaments
JPS6042283B2 (en) Mixed spinning equipment
EP0104081A2 (en) Spinneret assembly for multi-ingredient composite fibers
JP3970440B2 (en) Sea-island structure fiber and manufacturing method thereof
JP4249985B2 (en) Method and apparatus for producing multilayer multicomponent filaments
US3480996A (en) Spinneret for conjugate spinning
CN100549265C (en) Melt blown non-woven
JPS633047B2 (en)
JPS6031921B2 (en) Mixed spinning equipment
EP1518010A1 (en) Meltblowing apparatus employing planetary gear metering pump
JP3476259B2 (en) Sea-island fiber spinneret
CN218404526U (en) Centrifugal spinning equipment for preparing micron fibers
JP2686321B2 (en) Spinning method and spinning head used therefor
JPS5851043B2 (en) Multilayer core sheath fiber spinning method and device
JPS5825763B2 (en) Mixed spinning equipment
TW200914656A (en) Method and device for manufacturing splittable fibers and use thereof
JP4950856B2 (en) Sea-island composite fiber melt spinneret