JPS6041538A - Apparatus for preventing clouding of window - Google Patents

Apparatus for preventing clouding of window

Info

Publication number
JPS6041538A
JPS6041538A JP15008783A JP15008783A JPS6041538A JP S6041538 A JPS6041538 A JP S6041538A JP 15008783 A JP15008783 A JP 15008783A JP 15008783 A JP15008783 A JP 15008783A JP S6041538 A JPS6041538 A JP S6041538A
Authority
JP
Japan
Prior art keywords
window
reaction vessel
reaction
small hole
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15008783A
Other languages
Japanese (ja)
Other versions
JPS6231978B2 (en
Inventor
Masanobu Yoshida
吉田 公信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15008783A priority Critical patent/JPS6041538A/en
Publication of JPS6041538A publication Critical patent/JPS6041538A/en
Publication of JPS6231978B2 publication Critical patent/JPS6231978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To prevent inspection of reaction condition from becoming impossible by clouding due to clouding caused by excessive reaction product on an inspection window by providing a small hole to an inspection window of a reaction vessel and passing gas through the small hole into the reaction vessel. CONSTITUTION:A seed bar 3 is suspended in a reaction vessel and gaseous raw material for glass is ejected from an oxyhydrogen burner 2 at the bottom of the reaction vessel 1 to cause deposition of base material 4 for optical fiber on the bottom end of the seed bar 3. In this stage, He-Ne laser light is radiated to a photoreceptor 10 from an He-Ne laser light projector 9; the position 5 where deposition of the base material 4 is caused is inspected and the seed bar 3 is raised slowly. To prevent inspection of the position of the top end of the seed bar 4 from becoming impossible by clouding phenomenon of the window of a projector of He-Ne laser light by the clouding of the projector due to excessive product of the reaction in the reaction vessel, the inspection window 7' is formed to a double layered structure and a small hole 7'b is provided between the reaction vessel and the inspection window, and a small amt. of gas is supplied from a gas feeding port 7'a.

Description

【発明の詳細な説明】 本発明は反応容器の監視窓に反応余剰物等が付着堆積す
るのを防止する窓くもり防止装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a window fogging prevention device that prevents reaction surplus materials from adhering and accumulating on a monitoring window of a reaction vessel.

反応容器内に反応に必要な原料ならびに反応媒体を供給
し、所定の反応物を得るか、もしくは容器内にて加工作
業を行うことにより所定の製品を得る場合、これらの反
応条件ないし加工状況を監視するために前記反応容器に
は窓を設ける必要がある。この窓に反応余剰物、余剰原
料あるいは加工片等が付着堆積すると監視が困難あるい
は不可能となる。そこで、従来からこれら反応余剰物等
が窓に付着堆積するのを防止する窓くもり防止装置が反
応容器に設けられてさている。その代表例としてVAD
法により光ファイバ用母材ヲ製造する反応装置を第1図
に示す。しかし、同図に示す反応装置に設けた窓くもり
防止装置はガスを吹き流すことにより反応余剰物等の付
着堆積を抑えているが、その効果は十分ではなかったの
である。即ち、VAD法により光フアイバ用母材を製造
する反応装置は、反応容器1の中にシード棒3を垂直に
吊り下げ、該シード棒3に対向する酸水素炎バーナ2を
その底面に設置してなる。そして、この酸水素炎バーナ
2かもガラス原料等を噴き出してこれらを火炎加水分解
反応させ、生成したガラス微粒子をシード棒3に付着堆
積させ多孔質母材4を形成している。この場合、ガラス
微粒子堆積点5と酸水素炎バーナ2との相対位置関係が
一定となるよう、多孔質母材4の生長に伴いシード棒3
を引き上げ制御することにより、所定の屈折率分布を得
ている。このシード棒3の引き上げ制御の精度を高める
ためには、ガラス微粒子堆積点5を監視する必要があり
、通常監視装置としてHe−Neレーザ投光器9及び受
光器10が使用されている。このHe−Neレーザ投光
器9及び受光器10は反応容器10図中左右に張り出し
た透明な窓7に各々向い合せて設ゆられており、He−
Neレーザ投光器9からHe−Neレーザがガラス微粒
子堆積点5に投光され、反対側の受光器ioにて受光さ
れるようになっている。一方、反応容器1には排出口6
が設ゆられており、反応余剰物等はこの排出口6に大半
吸引され外部に設けられた余剰物処理装置(図示省略)
にて処理されている。しかし、反応容器1内に残留する
反応余剰物等はその内部に浮遊し、その内壁のいたると
ころ、もちろん前記の窓7にも余剰物堆積体1暉として
付着堆積する。そこでこの反応余剰物等の窓7に対する
付着堆積を防止するため、従来、窓7に沿ってガスを吹
き流すガス吹出口11を設け、このガス吹田口11から
ガスを吹き流していた。ところが、反応容器l内の条件
を一定に維持するには、微量のガスしか吹き出すことし
かできず、反応余剰物等の付着堆積を充分に抑えること
ができなかった。このため、窓7がくもると共にHe−
Ne レーザの出力が経時劣化し、ガラス微粒子成長点
5を監視することが困難となり、ひいてはガラス微粒子
成長点5と酸水素炎バーナ2との相対位置が変化し、所
定の屈折率分布が実現できないこととなっていた。
When supplying the raw materials and reaction medium necessary for the reaction into a reaction vessel to obtain a specified reactant, or when obtaining a specified product by performing processing operations within the vessel, these reaction conditions or processing conditions must be It is necessary to provide a window in the reaction vessel for monitoring. If reaction surpluses, surplus raw materials, processed pieces, etc. adhere to and accumulate on this window, monitoring becomes difficult or impossible. Therefore, a window fog prevention device has conventionally been provided in the reaction vessel to prevent these reaction surpluses and the like from adhering and accumulating on the window. A typical example is VAD
A reaction apparatus for producing an optical fiber preform by this method is shown in FIG. However, although the window anti-fogging device installed in the reaction apparatus shown in the same figure suppresses the adhesion and accumulation of reaction surplus materials by blowing away gas, the effect was not sufficient. That is, a reaction apparatus for manufacturing an optical fiber base material by the VAD method has a seed rod 3 suspended vertically in a reaction vessel 1, and an oxyhydrogen flame burner 2 facing the seed rod 3 installed on the bottom surface thereof. It becomes. The oxyhydrogen flame burner 2 also blows out glass raw materials and causes them to undergo a flame hydrolysis reaction, and the generated glass particles are deposited on a seed rod 3 to form a porous base material 4. In this case, as the porous base material 4 grows, the seed rod 3
A predetermined refractive index distribution is obtained by increasing and controlling the refractive index. In order to improve the accuracy of the pulling control of the seed rod 3, it is necessary to monitor the glass particle deposition point 5, and a He-Ne laser projector 9 and a light receiver 10 are normally used as monitoring devices. The He-Ne laser projector 9 and the light receiver 10 are placed facing each other in the transparent windows 7 that protrude from the left and right sides of the reaction vessel 10, respectively.
A He-Ne laser is projected from the Ne laser projector 9 to the glass particle deposition point 5, and is received by the optical receiver io on the opposite side. On the other hand, the reaction vessel 1 has an outlet 6
Most of the reaction surplus is sucked into this discharge port 6, and an external surplus processing device (not shown) is installed.
is being processed. However, the reaction surpluses remaining in the reaction vessel 1 float therein and are deposited all over the inner wall of the reaction vessel 1, as well as on the window 7 as a surplus substance deposit. In order to prevent this reaction surplus from adhering and depositing on the window 7, conventionally, a gas outlet 11 for blowing the gas away along the window 7 has been provided, and the gas has been blown out from the gas outlet 11. However, in order to keep the conditions inside the reaction vessel l constant, only a small amount of gas can be blown out, and it has not been possible to sufficiently suppress the adhesion and accumulation of reaction surpluses and the like. Therefore, the window 7 becomes cloudy and the He-
The output of the Ne laser deteriorates over time, making it difficult to monitor the glass particle growth point 5, and as a result, the relative position between the glass particle growth point 5 and the oxyhydrogen flame burner 2 changes, making it impossible to achieve a predetermined refractive index distribution. It was supposed to happen.

このように、従来では慾7が(もるため反応容器内の条
件変化を観測することができず、反応が不完全ないし不
成功となることがあった。
As described above, in the past, since the reaction mixture 7 was not observed, it was not possible to observe changes in the conditions within the reaction vessel, and the reaction was sometimes incomplete or unsuccessful.

本発明は上記実情に鑑み、わずかなガス供給量でも効果
的に余剰反応物等の付着堆積を防止できる慾くもり防止
装置dを提供することを目的とする。斯かる目的を達成
する本発明の構成は反応容器に設けられた監視用の窓を
通じ、該反応容器外部に配置された監視装置により、該
反応容器内部を監視するに際し、上記窓に反応余剰物等
が付着堆積するのを防止する装置において、前記監視装
置の監視経路となる前記窓の一部に小孔を配設すると共
に該小孔と外部ガス供給源と間に透明なガス供給路を形
成し、同一の小孔を通じて監視すると共にガス?流し込
んで反応余剰物等の付着堆積を防止することを特徴とす
る。
In view of the above-mentioned circumstances, an object of the present invention is to provide a clouding prevention device d that can effectively prevent deposition of excess reactants and the like even with a small amount of gas supplied. The configuration of the present invention to achieve such an object is such that when the inside of the reaction vessel is monitored through a monitoring window provided in the reaction vessel by a monitoring device placed outside the reaction vessel, the reaction surplus is exposed to the window. A small hole is provided in a part of the window that serves as a monitoring path for the monitoring device, and a transparent gas supply path is provided between the small hole and an external gas supply source. Gas forming and monitoring through the same pores? It is characterized in that it is poured in to prevent the adhesion and accumulation of reaction surpluses, etc.

以下、本発明を図面に示す2つの実施例に基づいて説明
する。
The present invention will be described below based on two embodiments shown in the drawings.

第2図に本発明を前述のVAD法の反応容器に適用した
第1の実施例を示す。同図の実施例に具体的に示すよう
に、本発明は監視経路と同一の個所からガスを流して1
9反応余剰物等の付着堆積を防止するようにしたもので
ある。即ち、反応容器1には透明な二重構造の窓7′が
張り出して設けられており、この二重窓7′の外部には
監視装置としてHe−Neレーザ投光器9が配置されて
いるっこΩ1(e−Neレーザ投光器9から投光される
レーザビームの進路を表す監視経路9aは、該投光器9
から二重窓9′を通じ反応容器1内部のガラス微粒子堆
積点(図示省略)に向けて直線的に伸びている。この監
視経路9aとなる二重窓7′の内側窓の個所には小孔7
/bが穿設され、二重窓7′の内部と反応容器1内部と
が小孔7’bにて連通されることとなる。勿論、He−
Neレーザビームは小孔7’bを通って容器1内に投光
されることとなる。更に、該二重窓71にはガス供給ロ
ア 7 aが突設され、このガス供給ロア’aは図示省
略のガス供給源と連通されている。
FIG. 2 shows a first embodiment in which the present invention is applied to the reaction vessel of the above-mentioned VAD method. As specifically shown in the embodiment of the figure, the present invention allows gas to flow from the same location as the monitoring path.
9. It is designed to prevent the adhesion and accumulation of reaction surpluses, etc. That is, a transparent double-walled window 7' is provided in the reaction vessel 1, and a He-Ne laser projector 9 is placed outside the double-walled window 7' as a monitoring device. Ω1 (The monitoring path 9a representing the course of the laser beam projected from the e-Ne laser projector 9 is
It extends linearly from the glass particle deposition point (not shown) inside the reaction vessel 1 through the double window 9'. A small hole 7 is provided at the inner window of the double-panel window 7' which becomes this monitoring route 9a.
/b is bored, and the inside of the double window 7' and the inside of the reaction vessel 1 are communicated through the small hole 7'b. Of course, He-
The Ne laser beam is projected into the container 1 through the small hole 7'b. Further, a gas supply lower 7a is provided protruding from the double window 71, and this gas supply lower 'a is communicated with a gas supply source (not shown).

従って、ガス供給源からガス供給ロア7aにガスを供給
すると、このガスはこの二重窓7の内部をガス流路とし
て流れ(このガス流路を図中矢印で示す)、小孔7’b
から集中して容器1内に流れ込む。
Therefore, when gas is supplied from the gas supply source to the gas supply lower 7a, the gas flows inside this double window 7 as a gas flow path (this gas flow path is indicated by an arrow in the figure), and the small hole 7'b
It concentrates and flows into the container 1.

上記構成を有する本発明の窓くもり防止装置によれば、
監視経路となる内側の個所に小孔7tを設け、この小孔
7’bからガスを集中して容器1内に流し込むので、ガ
スの流量が微少であっても、反応余剰物等、例えばガラ
ス微粒子が小孔7’bに付着堆積するのを防止すること
ができると共に反応余剰物等が二重窓7′内部に侵入す
るのを防+)−できろうこのため二重窓7′の外側もく
もることなく、He−Neレーザ投光器9による監視を
行うことができる。勿論、ガス流路は透明な二重窓7′
の内部において形成されており、He−Neレーザによ
る監視を何んら妨げることがない。尚、ガスの種類とし
ては、反応条件に影響を及ぼさないガス、例えば空気や
不活性ガスが使用でき、又ガスの供給方法としては常時
でなくても間欠的でも良い。また、上記実施例では小孔
7’bの故は単一であったが、例えば監視装置の検出部
の数に合わせ小孔7’bの数を適宜増加しても良い。尚
、本発明において反応容器とは上記実施例のように化学
反応が行なわれる容器に限られず、例えば機械加工が行
なわれる加工容器のようなものも含む。加工容器内にお
いても、機械加工により微細な加工片が発生して監視窓
に付着堆積する場合があるからである。
According to the window fog prevention device of the present invention having the above configuration,
A small hole 7t is provided on the inside that serves as a monitoring path, and the gas is concentrated and poured into the container 1 from this small hole 7'b. It is possible to prevent fine particles from adhering and accumulating in the small holes 7'b, and also to prevent reaction surpluses etc. from entering the inside of the double-glazed window 7'. Monitoring using the He-Ne laser projector 9 can be performed without any confusion. Of course, the gas flow path is made of transparent double-glazed windows 7'.
, and does not impede monitoring by the He-Ne laser in any way. As for the type of gas, any gas that does not affect the reaction conditions, such as air or an inert gas, can be used, and the gas supply method may not be constant or may be intermittent. Further, in the above embodiment, the number of small holes 7'b is single, but the number of small holes 7'b may be increased as appropriate, for example, in accordance with the number of detection sections of the monitoring device. In the present invention, the reaction vessel is not limited to a vessel in which a chemical reaction is carried out as in the above embodiments, but also includes a processing vessel in which mechanical processing is carried out, for example. This is because even within the processing container, fine workpieces may be generated due to machining and deposited on the monitoring window.

次に、第3図に示す第2の実施例について説明する。同
図に示す実施例は第1の実施例の変形例であり、第1の
実施例と同一部分には同一符号を付し、説明の重複を省
く。即ち、反応容器1に張り出して設けられる透明な窓
7“は監視経路9aに沿う直管を差し込んでなり、該直
管の先端が小孔7“bとして利用されるようになってい
る。従って、反応容器1はこの直管を通じて外部と連通
ずることとなり、勿論He−Heレーザビームはこの直
管を通じて反応容器1内に投光されることとなる。一方
、この直管には枝管7〃aが設けられると共にこの枝管
7// aは図示省略のガス供給源に接続している。従
って、ガス供給源から枝管71/ aに供給されたガス
は、枝管7// aから直管先端の小孔11bにかげて
形成されたガス流路を通り(ガス流路を図中矢印で示す
)、小孔7”bから集中して容器1内の流れこむ。
Next, a second embodiment shown in FIG. 3 will be described. The embodiment shown in the figure is a modification of the first embodiment, and the same parts as in the first embodiment are denoted by the same reference numerals to avoid redundant explanation. That is, a transparent window 7'' provided overhanging the reaction vessel 1 is formed by inserting a straight tube along the monitoring path 9a, and the tip of the straight tube is used as a small hole 7''b. Therefore, the reaction vessel 1 will communicate with the outside through this straight pipe, and of course the He-He laser beam will be projected into the reaction vessel 1 through this straight pipe. On the other hand, this straight pipe is provided with a branch pipe 7//a, and this branch pipe 7//a is connected to a gas supply source (not shown). Therefore, the gas supplied from the gas supply source to the branch pipe 71/a passes through the gas flow path formed from the branch pipe 7//a to the small hole 11b at the tip of the straight pipe (the gas flow path is shown in the figure). (indicated by an arrow), flows into the container 1 in a concentrated manner through the small hole 7''b.

上6己構成を有する本発明の窓くもり防止装置も前述し
たと同様な作用効果を奏し、微少なガス供給量でも反応
余剰物等の付着堆積を効果的に防止でき、反応容器内の
監視が困難となることはない。
The window anti-fogging device of the present invention having a six-layer structure also exhibits the same effects as described above, and can effectively prevent the deposition of reaction surplus materials even with a small amount of gas supply, and can easily monitor the interior of the reaction vessel. It won't be difficult.

以上、実施例に基づいて具体的に説明したように本発明
によれば、反応容器の窓に設けた同一の小孔を通じ監視
すると共にガスを流し込めるので、微少なガス供給量で
も反応余剰物等の付着堆積を効果的に防止することがで
き、このため、本発明をVAD法の反応装置に適用した
場合には、監視用のL(e −N eレーザの出力か経
時劣化することなく、常に一定の条件を維持することが
可能である。
As described above in detail based on the examples, according to the present invention, it is possible to monitor and pour gas through the same small hole provided in the window of the reaction vessel, so even with a small amount of gas supplied, reaction surplus Therefore, when the present invention is applied to a VAD method reaction device, the output of the monitoring L(e-N e laser) can be effectively prevented from deteriorating over time. , it is possible to maintain constant conditions at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のVAD法の反応装置の構造説明1、第2
図及び第3図は本発明の窓(もり防IF装置に係り、第
2図は第1の実施例の断面図、第3図は第2の実施例の
断面図である。 図 面 中、 11、反応容器、 7′は二重窓、 7〃は窓、 77 aはガス供給口、 7″aは枝管、 7/b、 711bは小孔、 9はHe−Ne v−ザ投光器、 9aは監視経路、 矢印はガス流路である。 特許出願 人 住友電気工業株式会社 代理人弁理士 光石士部(他1名) 第2図 第3図
Figure 1 shows structural explanations 1 and 2 of a conventional VAD method reactor.
3 and 3 relate to the window (foreign protection IF device) of the present invention, FIG. 2 is a sectional view of the first embodiment, and FIG. 3 is a sectional view of the second embodiment. 11, reaction vessel, 7' is double window, 7 is window, 77a is gas supply port, 7''a is branch pipe, 7/b, 711b is small hole, 9 is He-Ne v-za floodlight, 9a is the monitoring route, and the arrow is the gas flow path. Patent applicant: Sumitomo Electric Industries, Ltd., patent attorney Shibe Mitsuishi (and one other person) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (11反応容器に設けられた監視用の窓を通じ、該反応
d器外部に配置された監視装置により、該反応容器内部
を監視するに際し、上記窓に反応余剰物等が付着堆積す
るのを防止する装置において、前記監視装置の監視経路
となる前記窓の個所に小孔を配設すると共に該小孔と外
部ガス供給源との間に透明なガス流路を形成し、同一の
小孔を通じて監視すると共にガスを流し込んで反応余剰
物等の付着堆積を防止することを特徴とする窓くもり防
止装置、 (2)特W−f5#求の範囲第1項において、lII記
窓が二重窓であり、前記小孔は内側の窓に形成され、更
に該二重窓と前記外部ガス供給源とを連通し、該二重窓
の内側において前記透明な′ガス流路を形成することを
特徴とする窓(もつ防止装置。 (3)特許請求の範囲第1項において、前記窓は監視経
路に沿う直管を差し込んでなり、前記小孔は該直管の先
端であり、更に該直管に前記外部ガス供給源と接続する
枝管を設けて該枝管から直管にかけて透明なガス流路を
形成したことを特徴とする窓くもり防止装置。
[Scope of Claims] (11) When the inside of the reaction vessel is monitored by a monitoring device placed outside the reaction vessel through a monitoring window provided in the reaction vessel, reaction surplus etc. In the device for preventing adhesion and deposition, a small hole is provided in the window that serves as a monitoring path for the monitoring device, and a transparent gas flow path is formed between the small hole and an external gas supply source. , a window fogging prevention device characterized by monitoring through the same small hole and flowing gas to prevent the deposition of reaction surplus materials, etc. (2) In the first item of the scope of the request for special W-f5#, lII The window is a double-glazed window, and the small hole is formed in the inner window, and further communicates the double-glazed window with the external gas supply source, and the transparent gas flow path is formed inside the double-glazed window. (3) In claim 1, the window is formed by inserting a straight pipe along the monitoring route, and the small hole is formed at the tip of the straight pipe. A window fog prevention device characterized in that the straight pipe is further provided with a branch pipe connected to the external gas supply source, and a transparent gas flow path is formed from the branch pipe to the straight pipe.
JP15008783A 1983-08-16 1983-08-16 Apparatus for preventing clouding of window Granted JPS6041538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15008783A JPS6041538A (en) 1983-08-16 1983-08-16 Apparatus for preventing clouding of window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15008783A JPS6041538A (en) 1983-08-16 1983-08-16 Apparatus for preventing clouding of window

Publications (2)

Publication Number Publication Date
JPS6041538A true JPS6041538A (en) 1985-03-05
JPS6231978B2 JPS6231978B2 (en) 1987-07-11

Family

ID=15489225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15008783A Granted JPS6041538A (en) 1983-08-16 1983-08-16 Apparatus for preventing clouding of window

Country Status (1)

Country Link
JP (1) JPS6041538A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288728U (en) * 1985-11-25 1987-06-06
US5473393A (en) * 1993-12-09 1995-12-05 Nikon Corporation Illuminating system, projection apparatus and detecting apparatus
EP0941972A2 (en) * 1997-12-03 1999-09-15 Shin-Etsu Chemical Co., Ltd. Method and apparatus for producing a glass base material for an optical fiber
JP2002121045A (en) * 2000-10-10 2002-04-23 Furukawa Electric Co Ltd:The Method for producing porous preform for optical fiber, and apparatus therefor
JP2002284533A (en) * 2001-03-23 2002-10-03 Sumitomo Electric Ind Ltd Method for producing glass preform and device used for the same
US6920766B2 (en) * 1997-03-07 2005-07-26 Schott Ml Gmbh Apparatus for producing synthetic quartz glass
US7765981B2 (en) 2003-12-16 2010-08-03 Jenara Enterprises Ltd. Apparatus and method for pressure relief in an exhaust brake
JP2011148698A (en) * 2011-04-18 2011-08-04 Furukawa Electric Co Ltd:The Manufacturing method of optical fiber porous preform
JP2016188149A (en) * 2015-03-30 2016-11-04 株式会社フジクラ Manufacturing apparatus for optical fiber preform and manufacturing method for optical fiber preform

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288728U (en) * 1985-11-25 1987-06-06
US5473393A (en) * 1993-12-09 1995-12-05 Nikon Corporation Illuminating system, projection apparatus and detecting apparatus
US6920766B2 (en) * 1997-03-07 2005-07-26 Schott Ml Gmbh Apparatus for producing synthetic quartz glass
EP0941972A2 (en) * 1997-12-03 1999-09-15 Shin-Etsu Chemical Co., Ltd. Method and apparatus for producing a glass base material for an optical fiber
EP0941972A3 (en) * 1997-12-03 1999-09-29 Shin-Etsu Chemical Co., Ltd. Method and apparatus for producing a glass base material for an optical fiber
JP2002121045A (en) * 2000-10-10 2002-04-23 Furukawa Electric Co Ltd:The Method for producing porous preform for optical fiber, and apparatus therefor
JP2002284533A (en) * 2001-03-23 2002-10-03 Sumitomo Electric Ind Ltd Method for producing glass preform and device used for the same
US7765981B2 (en) 2003-12-16 2010-08-03 Jenara Enterprises Ltd. Apparatus and method for pressure relief in an exhaust brake
JP2011148698A (en) * 2011-04-18 2011-08-04 Furukawa Electric Co Ltd:The Manufacturing method of optical fiber porous preform
JP2016188149A (en) * 2015-03-30 2016-11-04 株式会社フジクラ Manufacturing apparatus for optical fiber preform and manufacturing method for optical fiber preform

Also Published As

Publication number Publication date
JPS6231978B2 (en) 1987-07-11

Similar Documents

Publication Publication Date Title
JPS6041538A (en) Apparatus for preventing clouding of window
US8133593B2 (en) Pre-form for and methods of forming a hollow-core slotted PBG optical fiber for an environmental sensor
US3887349A (en) Apparatus for manufacturing ribbon glass having a metal oxide coating
CA1179214A (en) Process for producing optical fiber preform and apparatus therefor
JP3998450B2 (en) Porous optical fiber preform manufacturing equipment
KR101110138B1 (en) Glass composition and method for producing glass article
US4816050A (en) Process and apparatus for making optical-fiber preforms
CN1938234B (en) Equipment for producing porous glass base material
BE889655A (en) PROCESS FOR THE INTERNAL COATING OF A GLASS SUBSTRATE TUBE FOR THE MANUFACTURE OF AN OPTICAL FIBER PREFORM
AU8706898A (en) Light transmission type powder and granular material measuring apparatus
US6941773B2 (en) Apparatus for manufacturing an optical fiber soot, and method for manufacturing an optical fiber soot using thereof
JPS62127470A (en) Apparatus for forming thin film
JPS5738329A (en) Controlling method for deposition of oxide powder in axial vapor deposition method
JP2000302471A (en) Production of optical fiber preform
JP2003277097A (en) Method for manufacturing porous glass preform
JPH01242431A (en) Fine glass particle depositing device
JPH07237938A (en) Method for producing hermetically coated optical fiber and apparatus therefor
JP2599451B2 (en) Manufacturing method of optical fiber base material
JPH05113403A (en) Introducing apparatus for atomized sample for spectrochemical analysis
JP2008174445A (en) Manufacturing apparatus and manufacturing process of glass preform for optical fiber
JPS6041539A (en) Apparatus for removing automatically deposited product
EE9800099A (en) Apparatus and method for forming a shell glass stream
JPH01129138A (en) Detector of particulate
JPS6135138B2 (en)
JPH0362652B2 (en)