JPS6039200B2 - Capsule for irradiation test - Google Patents

Capsule for irradiation test

Info

Publication number
JPS6039200B2
JPS6039200B2 JP52150480A JP15048077A JPS6039200B2 JP S6039200 B2 JPS6039200 B2 JP S6039200B2 JP 52150480 A JP52150480 A JP 52150480A JP 15048077 A JP15048077 A JP 15048077A JP S6039200 B2 JPS6039200 B2 JP S6039200B2
Authority
JP
Japan
Prior art keywords
capsule
inner cylinder
cylinder
temperature
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52150480A
Other languages
Japanese (ja)
Other versions
JPS5484199A (en
Inventor
恵造 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52150480A priority Critical patent/JPS6039200B2/en
Publication of JPS5484199A publication Critical patent/JPS5484199A/en
Publication of JPS6039200B2 publication Critical patent/JPS6039200B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は、原子炉を使って照射試験を行なうときに使用
される照射試験用カプセルの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an irradiation test capsule used when conducting an irradiation test using a nuclear reactor.

材料の放射線照射下における特性を調べるに当って、線
源として原子炉を利用する方法が考えられている。
In investigating the properties of materials under radiation irradiation, methods using nuclear reactors as radiation sources have been considered.

すなわち、原子炉内に試料と挿入し、原子炉で発生した
中性子やy線を試料に照射するのである。そして、原子
炉内へ試料を挿入するに当っては、一般にカプセル内に
試料を収納し、このカプセルを原子炉に設けられた実験
孔内に挿入するようにしている。ところで、上記のよう
に原子炉を線源として照射試験を行なう場合、特に発熱
がガンマ発熱のように少ない場合には、カプセルとして
一般に2重箇状のものが用いられている。
That is, a sample is inserted into a nuclear reactor, and the sample is irradiated with neutrons and y-rays generated in the reactor. When inserting a sample into a nuclear reactor, the sample is generally housed in a capsule, and this capsule is inserted into an experimental hole provided in the reactor. By the way, when performing an irradiation test using a nuclear reactor as a radiation source as described above, especially when the heat generation is as small as gamma heat generation, a double-walled capsule is generally used.

この理由は次のような現象に基づく。すなわち、原子炉
内でのガンマ線密度の分布は通常不均一であり、しかも
カプセル内に収納される試料の重さもそれぞれ異なる場
合が多い、このため、カプセル内の温度が均一とはなら
ず、局部的に高温であったり、あるいは低温であったり
、各試料を同一温度条件で試験できないことになる。そ
こで、カプセルを内筒と外筒とからなる2重筒状に形成
し、上記内筒と外筒との間のギャップ長を各部分に亘っ
て正確に設定し、これによって内筒内の温度分布を均一
化するようにしている。そして、従来のこの種2重筒式
カプセルは具体的には、第1図に示すように構成されて
いる。
The reason for this is based on the following phenomenon. In other words, the distribution of gamma ray density inside a nuclear reactor is usually non-uniform, and the weight of each sample stored in the capsule is also often different. Therefore, the temperature inside the capsule is not uniform, and local This means that each sample cannot be tested under the same temperature conditions, such as at high or low temperatures. Therefore, the capsule is formed into a double cylinder shape consisting of an inner cylinder and an outer cylinder, and the gap length between the inner cylinder and the outer cylinder is set accurately over each part, thereby controlling the temperature inside the inner cylinder. We are trying to make the distribution uniform. A conventional double-barrel capsule of this type is specifically constructed as shown in FIG.

すなわち、図中1は外筒であり、この外筒1は外筒本体
2と、この外筒本体2の両端を気密に閉塞する端栓3a
,3bとで構成されている。そして上記外筒1内に内節
4が収納される。内筒4は、内筒本体5と、この内筒本
体5の両端を気密に閉塞する端栓6a.6bとで構成さ
れている。内筒本体5の一部には、内筒4を外筒1内に
保持する機能と、内筒4内の温度分布を均一化させる機
能とを発揮する厚肉の突部7が形成されている。すなわ
ち、内筒4内に収納される試料Pの大きさ、重量おび炉
内y線密度の分布などに対応させて内筒4の径や突部7
の肉厚あるし・は突部7の軸万向の幅を所定に設定する
ことによって内筒4内の温度を均一化させるようにして
いるのである。なお、内筒4内には試料Pと一緒に熱伝
導率のよいナトリウムやナトリウムーカリウムなどの液
体Qが充填ごれる。しかしながら、上記のように構成さ
れた従来のカプセルにあっては、次のような問題点があ
った。
That is, in the figure, 1 is an outer cylinder, and this outer cylinder 1 includes an outer cylinder main body 2, and end plugs 3a that airtightly close both ends of this outer cylinder main body 2.
, 3b. Then, the inner section 4 is housed within the outer cylinder 1. The inner cylinder 4 includes an inner cylinder main body 5, and end plugs 6a, which airtightly close both ends of the inner cylinder main body 5. 6b. A thick protrusion 7 is formed in a part of the inner cylinder main body 5, which functions to hold the inner cylinder 4 in the outer cylinder 1 and to equalize the temperature distribution inside the inner cylinder 4. There is. That is, the diameter of the inner cylinder 4 and the protrusion 7 are adjusted according to the size and weight of the sample P stored in the inner cylinder 4, the distribution of the y-line density in the furnace, etc.
The temperature inside the inner cylinder 4 is made uniform by setting the wall thickness and/or width of the protrusion 7 in all axial directions to a predetermined value. Note that the inner cylinder 4 is filled with a liquid Q such as sodium or sodium-potassium having good thermal conductivity together with the sample P. However, the conventional capsule configured as described above has the following problems.

すなわち、前述の如く、内筒4内の温度を均一化させる
手段として、内筒4そのものを加工して、その径や突部
7の厚さ、幅などを調整することによって行なうように
している。このような手段であると、試料Pやy線密度
分布に応じて、その都度、上記条件に合致した内筒4を
製作しなければならず、実験の迅速性に欠ける不具合が
あった。また、第2図に示すごとく、ギャップ幅とギャ
ップ部の熱伝達率の関係は、ギャップ幅が水さくなると
、急に熱伝達率が大きくなり、正確に熱伝達率を制御す
るには非常に精密な加工を要する。
That is, as mentioned above, as a means to equalize the temperature inside the inner cylinder 4, this is done by processing the inner cylinder 4 itself and adjusting its diameter, the thickness, width, etc. of the protrusion 7. . With such a means, it is necessary to manufacture the inner cylinder 4 that meets the above conditions each time depending on the sample P and the y-line density distribution, which has the disadvantage of lacking the speed of the experiment. In addition, as shown in Figure 2, the relationship between the gap width and the heat transfer coefficient at the gap part is such that when the gap width becomes low, the heat transfer coefficient suddenly increases, and it is extremely difficult to accurately control the heat transfer coefficient. Requires precise processing.

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、内筒内の温度分布設定が極めて
容易に行なえ、照射試験の容易化が図れる照射試験用カ
プセルを提供することにある。以下、本発明の詳細を図
示の実施例によって説明する。
The present invention has been made in view of the above circumstances, and its purpose is to provide a capsule for irradiation tests in which temperature distribution inside the inner cylinder can be set extremely easily and irradiation tests can be performed easily. There is a particular thing. Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第3図は、長さ175柵のカプセルで、内筒と外筒との
間のギャップを0.劫伽とした場合、カプセル内部の発
熱量とカプセル内部の温度の関係を示した計算例であり
、三種の線は、ギャップ部に封入されるガスとそれぞれ
純アルゴンガス、50%アルゴン−ヘリウム混合ガス、
純ヘリウムガスとした場合である。この図からわかると
おり、ギャップ部のガスの組成及びカプセル内部発熱量
を調整する事により非常に広範囲の温度制御が行なえる
。すなわち、本発明の意図とするところは、照射試験片
の形状、量から、概略の発熱量がわかるので、その発熱
量から、必要な温度よりやや低めの温度を得るためのギ
ャップに封入するガスの組成を定める。
Figure 3 shows a capsule with a length of 175 mm and a gap between the inner and outer cylinders of 0. This is a calculation example showing the relationship between the calorific value inside the capsule and the temperature inside the capsule in the case of "Kalga". The three lines are for the gas sealed in the gap, pure argon gas, and 50% argon-helium mixture. gas,
This is the case when pure helium gas is used. As can be seen from this figure, the temperature can be controlled over a very wide range by adjusting the gas composition in the gap and the amount of heat generated inside the capsule. In other words, the purpose of the present invention is that since the approximate calorific value can be determined from the shape and amount of the irradiated test piece, from that calorific value, it is necessary to determine the gas to be filled in the gap to obtain a temperature slightly lower than the required temperature. determine the composition of

しかる後にカプセル内の余った空間部にy発熱する物質
の薄片例えばステンレス板を加えて、カプセル内の発熱
量を調整し、上記のガス組成による熱伝達率を考慮して
最終的に必要な温度を得る発熱量に合わせるのである。
本発明を実施する事により、前述の従来のカプセルの様
に、照射試験毎に発熱量に合わせた精密なギャップを有
するカプセルを製作する必要は無くなり、規格化された
カプセルを用いて、発熱量が不足したり、不均一であっ
ても所望の温度を得る事ができ、照射用カプセル製作の
簡略化を計る事が可能である。
After that, a thin piece of a material that generates heat, such as a stainless steel plate, is added to the remaining space inside the capsule to adjust the amount of heat generated inside the capsule, and the final temperature is reached by taking into account the heat transfer coefficient due to the gas composition mentioned above. It is adjusted to the amount of heat generated.
By implementing the present invention, unlike the conventional capsules mentioned above, it is no longer necessary to manufacture a capsule with a precise gap according to the calorific value for each irradiation test. Even if the temperature is insufficient or uneven, the desired temperature can be obtained, and the production of the irradiation capsule can be simplified.

本発明に係る照射用カプセルの実施例を具体的に図示し
たのが第4図および第5図である。
FIGS. 4 and 5 specifically illustrate an embodiment of the irradiation capsule according to the present invention.

第1図と同一の構成部分は同記号を付してあるので説明
は省略する。第4図は、本発明を実施したカプセルの断
面を示したもので、内筒5と外筒2の間からギャップ1
0には概略の発熱量と概略の所望温度から定めたガスが
封入されており、カプセル内部には、試験片Pと、最終
的に発熱量を調整するための薄片11が封入されている
Components that are the same as those in FIG. 1 are designated by the same symbols, and their explanations will be omitted. FIG. 4 shows a cross section of a capsule in which the present invention is implemented, and shows the gap 1 between the inner cylinder 5 and the outer cylinder 2.
0 is filled with a gas determined based on the approximate calorific value and approximate desired temperature, and the test piece P and a thin piece 11 for finally adjusting the calorific value are sealed inside the capsule.

第5図から第7図は、試験片Pの形状、照射位置でのガ
ンマ線密度の不均一等により、カプセル内に発熱量の不
均一が生じる場合をそれぞれ示すものである。
FIGS. 5 to 7 each show cases in which the amount of heat generated is non-uniform within the capsule due to the shape of the test piece P, non-uniform gamma ray density at the irradiation position, etc.

今、上記の理由により試験片Pだけの場合には、第6図
の如く発熱量が分布している場合、第5図に示す如く、
発熱量調整用の薄片11を、試験片の発熱量が少ない部
分により多くなる様に配置する事により、第7図に示す
如く、発熱量を均一にする事ができる。すなわち、本発
明によれば従来例の如くギャップの幅を精密に変化させ
る事を必要とせず、規格化されたカプセルを用いて均一
な温度を得る事ができる
Now, for the above reason, in the case of only the test piece P, if the calorific value is distributed as shown in Figure 6, as shown in Figure 5,
By arranging the thin pieces 11 for adjusting the calorific value so that the calorific value is greater in the portions of the test piece where the calorific value is lower, the calorific value can be made uniform as shown in FIG. That is, according to the present invention, it is not necessary to precisely change the width of the gap as in the conventional example, and it is possible to obtain a uniform temperature using a standardized capsule.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の照射試験用カプセルを示す断面図、第2
図は二重節カプセルのギャップ部熱伝達率とギャップ幅
の関係を示すグラフ、第3図はギャップ幅0.9廠、長
さi75肋の二重筒カプセルのカプセル内発熱量と温度
の関係を示すグラフ、第4図は本発明の1実施例を示す
断面図、第5図から第7図は発熱量の分布がある場合に
使用する本発明に係る実施例を示すもので、第5図はカ
プセルを示す断面図、第6図は試験片Pのみで発熱する
場合の長手方向の発熱量分布、第7図はこのときの発熱
量分布を示す曲線図である。 第1図 第2図 第3図 第4図 第5図 第6図 第7図
Figure 1 is a cross-sectional view of a conventional irradiation test capsule;
The figure is a graph showing the relationship between the gap heat transfer coefficient and the gap width of a double-joint capsule. Figure 3 is the relationship between the internal heat generation amount and temperature of a double-barreled capsule with a gap width of 0.9 meters and a length of i75 ribs. FIG. 4 is a cross-sectional view showing one embodiment of the present invention, and FIGS. 5 to 7 show embodiments of the present invention used when there is a distribution of calorific value. FIG. 6 is a cross-sectional view of the capsule, FIG. 6 is a longitudinal heat generation distribution when only the test piece P generates heat, and FIG. 7 is a curve diagram showing the heat generation distribution in this case. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 密閉可能な外筒と、この外筒内に収納された内部に
試料が収納される内筒と、この内筒外面と前記外筒内面
とによつたて形成される空間部に、前記内筒と外筒間の
熱伝達率を調整可能な物質を密封し、前記内筒内に、試
料の他のガンマ線を吸収して発熱する物質の薄片を収納
する事を特徴とする照射試験用カプセル。
1. A sealable outer cylinder, an inner cylinder in which a sample is housed inside the outer cylinder, and a space vertically formed by the outer surface of the inner cylinder and the inner surface of the outer cylinder. A capsule for irradiation testing, characterized in that a substance that can adjust the heat transfer coefficient between a cylinder and an outer cylinder is sealed, and a thin piece of a substance that absorbs other gamma rays of a sample and generates heat is housed in the inner cylinder. .
JP52150480A 1977-12-16 1977-12-16 Capsule for irradiation test Expired JPS6039200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52150480A JPS6039200B2 (en) 1977-12-16 1977-12-16 Capsule for irradiation test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52150480A JPS6039200B2 (en) 1977-12-16 1977-12-16 Capsule for irradiation test

Publications (2)

Publication Number Publication Date
JPS5484199A JPS5484199A (en) 1979-07-04
JPS6039200B2 true JPS6039200B2 (en) 1985-09-04

Family

ID=15497798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52150480A Expired JPS6039200B2 (en) 1977-12-16 1977-12-16 Capsule for irradiation test

Country Status (1)

Country Link
JP (1) JPS6039200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680721C1 (en) * 2018-04-19 2019-02-26 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Ampule device for the reactor studies

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231490A (en) * 1985-04-05 1986-10-15 三菱原子力工業株式会社 Surveillance aggregate
US8699651B2 (en) * 2009-04-15 2014-04-15 Ge-Hitachi Nuclear Energy Americas Llc Method and system for simultaneous irradiation and elution capsule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680721C1 (en) * 2018-04-19 2019-02-26 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Ampule device for the reactor studies

Also Published As

Publication number Publication date
JPS5484199A (en) 1979-07-04

Similar Documents

Publication Publication Date Title
JPS5853759B2 (en) Local power measurement device within the reactor fuel assembly
Smallman et al. An X-ray study of neutron irradiated lithium fluoride
JPS6039200B2 (en) Capsule for irradiation test
GB1070677A (en) Improvements in fuel elements for nuclear reactors
Jiang et al. Deuterium diffusion in γ-LiAlO2 pellets irradiated with He+ and D2+ ions
US4379118A (en) Process for measuring a continuous neutron flux and measuring apparatus for carrying out this process
US3226548A (en) Neutronic flux detector
Allisy-Roberts et al. Comparison of the standards of absorbed dose to water of the NRC, Canada and the BIPM for 60 Co γ rays
BOYER JR An analytical and experimental investigation of the thermophysical properties of a swelling, charring composite material
Grossman Ultrasonic-thermometry development for in-situ measurement of nuclear-fuel temperatures (AWBA Development Program)
Egelstaff et al. The DIDO hot source; Enhancement of 100–400 meV neutron intensities by rethermalization
Danon et al. Experiments for validation of TSL evaluations [Slides]
Clayton et al. DENSITIES OF URANIUM OXIDE IN THE REGION U0,-U, 0o z, 4 9
Walker Improvements in or relating to measuring apparatus
Gerhart The post-irradiation examination of a PuO2-UO2 fast reactor fuel
WERLE Supplementary investigation of the calculated and measured gas formation in beryllium samples irradiated in the high flux materials testing reactor BR2
Mikheev et al. Irradiation-Induced Creep and Re-Sintering of Large Grain Sized UO2 Fuel
Davidson et al. Radiation-Damage Effects in Borated Graphite
Parkes et al. Dynamic thermal stresses in a pulsed reactor
Robinson et al. Behavior of Uranium Sulfide Fast-Reactor-Type Fuel Specimens Under Transient Heating in Treat
Hunter Effect of fission recoil fragments on the thermal conductivity of graphite
Strakovskaya et al. Calorimetric calibration of pyroelectric gamma-radiation detectors
Jirousek SKODA in-core calorimeters
Cawley et al. The design and development of a target chamber for high dose rate proton irradiations
JPH0564790U (en) In-core neutron detector