JPS6039144B2 - High-strength aluminum alloy with excellent formability - Google Patents

High-strength aluminum alloy with excellent formability

Info

Publication number
JPS6039144B2
JPS6039144B2 JP18402381A JP18402381A JPS6039144B2 JP S6039144 B2 JPS6039144 B2 JP S6039144B2 JP 18402381 A JP18402381 A JP 18402381A JP 18402381 A JP18402381 A JP 18402381A JP S6039144 B2 JPS6039144 B2 JP S6039144B2
Authority
JP
Japan
Prior art keywords
strength
alloys
aluminum alloy
formability
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18402381A
Other languages
Japanese (ja)
Other versions
JPS57114636A (en
Inventor
和彦 浅野
吉男 浅野
権一郎 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18402381A priority Critical patent/JPS6039144B2/en
Publication of JPS57114636A publication Critical patent/JPS57114636A/en
Publication of JPS6039144B2 publication Critical patent/JPS6039144B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は成形加工性と強度を兼ねそなえたAI−Cu系
またはAI−Cu一Mg−Si系高力アルミニウム合金
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an AI-Cu or AI-Cu-Mg-Si high-strength aluminum alloy that has both formability and strength.

高力アルミニウム合金は、構造強度メンバーとして用い
られるほか、オイルタンンクにおける深絞り加工、自動
車々体における張り出しおよび曲げ加工、自動車ホイー
ルにおける絞り加工またはスピニング、野球用バットに
おけるスェージングなど、さまざまな袷間加工工程を含
む広範囲な用途に利用されている。
In addition to being used as structural strength members, high-strength aluminum alloys are used in a variety of processing processes, including deep drawing in oil tanks, stretching and bending in automobile bodies, drawing or spinning in automobile wheels, and swaging in baseball bats. It is used for a wide range of purposes including.

しかしながら、高力合金は、T4材の如き低温時効材で
あっても成形加工性が十分でないため、多くの場合、一
旦軟質化燐鈍を施し、成形加工後に焼入れ・時効の熱処
理を行っている。
However, high-strength alloys do not have sufficient formability even if they are low-temperature aged materials such as T4 material, so in many cases, they are first subjected to softening phosphorus annealing and then heat-treated for quenching and aging after forming. .

そのため、成形加工メーカ自体が焼入れ・時効等の熱処
理設備を備え、熱処理を実施しなければならず、しかも
、その熱処理操作は複雑であり、また焼入れ時の歪みに
よる変形を生ずるなど、技術的・経済的に大きな問題と
なっており、成形加工用高力合金の用途を制限する要因
となっている。かかる現状を打破するにはT4材自体に
良好な成形加工性を付与することが是非とも必要であり
、そのための試みもいくつかなされている。
For this reason, the molding manufacturer itself must have heat treatment equipment for quenching, aging, etc., and carry out the heat treatment. Moreover, the heat treatment operation is complicated, and there are technical problems such as deformation due to distortion during quenching. This is a major economic problem and is a factor that limits the use of high-strength alloys for forming processing. In order to overcome this current situation, it is absolutely necessary to impart good moldability to the T4 material itself, and several attempts have been made to this end.

たとえば、自動車々体用として最近開発され、注目をあ
びつつある熱処理型合金はいづれもこの点を指向してい
るものである。しかし、自動車々体のごとく成形条件の
厳しいものに対しては、成形性、鏡中曲げ加工性が未だ
十分でなく、結局成形条件を緩めるような設計で妥協が
図られているのが実情である。本発明は、このような実
情に鑑み、T4材の如き低温時効材における成形加工性
を飛躍的に改善し、苛酷な冷間成形加工に耐えうるN−
Cu系の高力合金を提供せんとするものである。
For example, heat-treatable alloys that have recently been developed and are attracting attention for use in automobile bodies are all aimed at this point. However, the formability and internal bending workability are still insufficient for products such as automobile bodies, which have strict molding conditions, and the reality is that a compromise is made with a design that loosens the molding conditions. be. In view of these circumstances, the present invention has been developed to dramatically improve the formability of low-temperature aged materials such as T4 material, and to develop N-
The present invention aims to provide a Cu-based high-strength alloy.

本発明者等は上記目的を蓬成すべく高力AI−Cu系合
金組成につき鋭意研究を重ねた結果、特定の低融点重金
属元素群から選ばれる元素の徴量の添加により成形性を
付与し、また他の特定の遷移金属元素およびボロン群か
ら選らばれる元素の徴量添加により肌荒れ性・強度等を
改善し得ることを見出し、本発明を完成するに到った。
In order to achieve the above object, the present inventors have conducted intensive research on high-strength AI-Cu alloy compositions, and as a result, they have imparted formability by adding features of elements selected from a specific group of low-melting heavy metal elements, Furthermore, the present inventors have discovered that rough skin properties, strength, etc. can be improved by adding other specific transition metal elements and elements selected from the boron group, and have completed the present invention.

従来の成形改善の試みが、主要合金元素量の低減化によ
り強度を蟻性にして図られてきたのに対し、本発明では
、強度低下を伴うことなく、特定元素の徴量添加により
、高強度を維持しもしくは更に高めつつ成形加工性の顕
著な改善をなし得た点に大きな特徴を有するものである
。すなわち、本発明は、 {1} N−2.0〜5.0%Cu系アルミニウム合金
または■ AI−110〜4.0%Cu一0.05〜1
.0%Mg−0.05〜1.0%Si系アルミニウム合
金であってLかつ風 Sno.01〜0.5%、Cdo
.01〜0.5%「 lno.01〜0.5%より成る
群から選ばれる1種もしくは2種以上の元素および ■ Tjo.01〜0.2%BO.001〜0.1%よ
り成る群から選ばれる1種もしくは2種以上の元素を複
合添加して成る。
In contrast to conventional attempts to improve forming by reducing the amount of main alloying elements to improve strength, the present invention achieves high strength by adding features of specific elements without reducing strength. The major feature is that the molding processability has been significantly improved while maintaining or even increasing the strength. That is, the present invention provides {1} N-2.0-5.0% Cu-based aluminum alloy or ■ AI-110-4.0% Cu-0.05-1
.. 0%Mg-0.05~1.0%Si based aluminum alloy with L and wind Sno. 01-0.5%, Cdo
.. One or more elements selected from the group consisting of lno.01-0.5% and ■Tjo.01-0.2%BO.001-0.1% It is made by adding one or more elements selected from the following in combination.

本発明合金はいづれも時効硬化型合金であり、N−Cu
合金にあってはCuを、またN−Cu−Mg−Si系合
金にあってはCu「 M8およびSiをそれぞれ時効硬
化元素として機能させるとともに、上記凶および{B猪
料こ属する元素の複合添加により成形加工性を顕著に改
善せしめたものである。
All of the alloys of the present invention are age hardening alloys, and N-Cu
In addition to making Cu function as age-hardening elements in alloys and Cu in N-Cu-Mg-Si alloys, M8 and Si function as age-hardening elements, combined addition of the above-mentioned elements and This significantly improved moldability.

以下、各元素の限定理由について詳しく説明する。The reasons for limiting each element will be explained in detail below.

本発明に係るアルミニウム合金は、Cuまたは、Cu,
MgおよびSiの各元素が時効硬化元素として機能する
The aluminum alloy according to the present invention is Cu or Cu,
Each element of Mg and Si functions as an age hardening element.

AI−Cu系合金では、Cu2.0〜5.0%、AI−
Cu−Mg−Sj系合金では、Cul.0〜4.0%、
Mg0.05〜1.0%、Sio.05〜1.0%を添
加す。いづれの合金においても、各元素が上記範囲の下
限値に満たないと十分な強度が得られず、一方上記上限
値を超えと、強度は上昇するが、反面成形加工性および
数‘性の劣化を伴なし、好ましくない。A群に属するS
n、Cdおよびlnの各元素は成形加工性を高める効果
をもたらす。この効果は次の如き機構によるものと考ら
れる。すなわち、成形加工性の良否は、成形加工により
導入される転位のすべり運動の難易に左右され、すべり
運動が容易なほど成形加工性にすぐれる。このすべり運
動を容易にするには、原子空孔の吸収を必要とする転位
の上昇運動を阻止する必要があるが、上記各元素は、原
子空孔と強く結合するため転位の上昇運動を阻止する効
果をもたらす。その結果、すべり運動が容易になり良好
な成形加工性をもたらすものであろう。かかる効果を得
るには、Sno.01〜0.5%、Cdo.01〜0.
5%、lno.01〜0.5%の1種もしくは2種以上
が添加される。
In AI-Cu alloy, Cu2.0-5.0%, AI-
In the Cu-Mg-Sj alloy, Cul. 0-4.0%,
Mg0.05-1.0%, Sio. Add 0.05 to 1.0%. In any alloy, if each element is below the lower limit of the above range, sufficient strength will not be obtained, while if the above upper limit is exceeded, the strength will increase, but on the other hand, formability and number properties will deteriorate. accompanied by, which is not desirable. S belonging to group A
Each of the elements n, Cd, and ln has the effect of improving moldability. This effect is thought to be due to the following mechanism. That is, the quality of moldability depends on the difficulty of sliding motion of dislocations introduced by molding, and the easier the sliding motion, the better the moldability. In order to facilitate this sliding movement, it is necessary to prevent the upward movement of dislocations that requires the absorption of atomic vacancies, but each of the above elements binds strongly to the atomic vacancies and prevents the upward movement of dislocations. It brings about the effect of As a result, sliding movement becomes easy and good moldability is achieved. To obtain such an effect, Sno. 01-0.5%, Cdo. 01~0.
5%, lno. 01 to 0.5% of one or more types are added.

この範囲に満たない上記効果は十分でなく、一方この範
囲を超えて添加しても、添加量の割に効果の増大は緩慢
でコスト的に不利であるばかりでなく、耐食性の劣化を
もたらし好ましくない。B群に属するTiおよびBは肌
荒性改善のほか、鍵塊の結晶粒の微細化の効果をもたら
す。これら各元素は更に、耐応力腐食割れ性の改善、強
度の向上等の副次的効果をもたらす。かかる効果を発揮
させるために、Tio.01〜0.2%またはBO.0
0i〜0.1%の各元素のうち1種もしくは2種以上が
添加される。上記範囲に満たない場合、添加効果は十分
ではなく、−方この範囲を超えると、造塊時に巨大化合
物として晶出し、成形性および数性を劣化させ好ましく
ない。不純物としてはこの種合金に通常存在する不可避
の成分および量を許容する。
The above effects below this range are not sufficient, and on the other hand, even when added beyond this range, the effect increases slowly relative to the amount added, which is not only disadvantageous in terms of cost, but also causes deterioration of corrosion resistance, which is not desirable. do not have. Ti and B, which belong to group B, have the effect of improving the roughness of the skin as well as refining the crystal grains of the key mass. Each of these elements further brings about secondary effects such as improved stress corrosion cracking resistance and increased strength. In order to exhibit such an effect, Tio. 01-0.2% or BO. 0
One or more types of each element are added in an amount of 0i to 0.1%. If it is less than the above range, the effect of addition is not sufficient, and if it exceeds this range, it will crystallize as a giant compound during agglomeration, deteriorating formability and number properties, which is not preferable. As impurities, the unavoidable components and amounts normally present in alloys of this type are allowed.

たとえば、0.9%以下のFeo.7%以下のZn等を
含んでよく、さらに山一Cu系合金においては0.05
%以下のSi等が存在してもよい。次に実施例を挙げて
本発明合金について具体的に説明する。
For example, Feo. It may contain 7% or less of Zn, etc., and in the case of Yamaichi Cu-based alloys, it may contain 0.05% or less.
% or less of Si, etc. may be present. Next, the alloy of the present invention will be specifically explained with reference to Examples.

実施例 1 第1表に示す各種成分組成のAI−Cu系合金および山
一Cu−Mg−Si系合金を溶製し、4比奴厚の錆塊を
得、これを52000で2餌時間均質化競鈍した後、直
ちに3.6柵厚まで熱間圧延し、ついで2側厚まで冷間
圧延した板材を得た。
Example 1 AI-Cu alloys and Yamaichi Cu-Mg-Si alloys having various component compositions shown in Table 1 were melted to obtain rust lumps with a thickness of 4 h, which were homogenized at 52,000 for 2 feeding hours. After being tempered, it was immediately hot rolled to a thickness of 3.6 mm, and then cold rolled to a thickness of 2 sides to obtain a plate.

この板材を525℃で29秒・間港体化処理後、水暁入
れし、室温で3ケ月間放置してT4材を絹製し、その成
形性を測定する一方「該室温3ケ月放置の処理後、更に
高温時効処理を施してT母内を製し、これについて引張
り性質を測定した。同高温時効処理は、AI−Cu系供
試合金地.1〜7については15000×24時間、N
−Cu−Mg−Si系供試合金No.8〜14について
は18000×1.虫時間の条件で行った。成形性およ
び引張り性質の測定結果を第2表に示す。なお、成形性
の評価は、180o曲げ試験における最小曲げ半径0.
1側および2肌での割れ発生状況、張出し試験(JIS
Z 2247)によるェリクセン値(伽)および肌荒
れ状況で代表させた。
This plate material was treated at 525°C for 29 seconds, then placed in water and left at room temperature for 3 months to make T4 material, and its formability was measured. After the treatment, a high temperature aging treatment was further applied to produce a T matrix, and the tensile properties were measured.
-Cu-Mg-Si based gold No. For 8 to 14, 18000 x 1. It was conducted under insect time conditions. The measurement results of moldability and tensile properties are shown in Table 2. In addition, the evaluation of formability is based on the minimum bending radius of 0.
Crack occurrence status on the 1st side and 2nd skin, overhang test (JIS
It was represented by the Eriksen value (G) according to Z 2247) and the condition of rough skin.

同表中「曲げ試験」の欄において、「A」は「割れなし
」、「B」は「微少割れJ、「C」は「割れJを表示し
、「肌荒れ性」の欄において「A」は「肌荒れなし」、
「B」は「や)肌荒れ」、「C」は「肌荒れ顕著」を表
示する。第1表 供試合金の化学成分組成くwt劣)第
2表 供試合金の成形性と引張性質実施例 2 下記第3表に示す各種成分組成の山一Cu系およびN−
Cu−Mg−Si系合金を溶製し、港体化処理を525
o0で3び分間行なう以外は実施例1と同様にして板材
を形成し、その成形性および引張り性質を測定した。
In the column of "bending test" in the same table, "A" indicates "no crack", "B" indicates "micro crack J", "C" indicates "cracking J", and "A" indicates "rough skin" column. "No rough skin",
"B" indicates "rough skin" and "C" indicates "severely rough skin." Table 1: Chemical composition of sample alloys Table 2: Formability and tensile properties of sample alloys Example 2: Yamaichi Cu-based and N-
Cu-Mg-Si alloy is melted and processed to form a port at 525
A plate material was formed in the same manner as in Example 1 except that the test was carried out at o0 for 3 minutes, and its formability and tensile properties were measured.

結果を下記第4表に示す。第3表 供試合金の化学成
分組成くwt努)第4表 供試合金の成形性および引張
性質以上の説明から明らかなように、本発明に係るN−
Cu基合金および山一Cu−Mg−Si基合金は、相反
する材料特性である加工性と強度とを共に満足せしめた
ものであり、これにより従来鰍質材にて成形加工後施こ
されていた焼入れ等の熱処理およびそれに伴う歪み矯正
等の煩雑な処理工程を省略するこができ経済的に有利で
あるだけでなく、従来製作困難とされていた寸法精度の
厳しい部材にも適用することができるなど、従釆のこの
種合金の適用上の制約を撤廃し、自動車々体、バンパー
、ホイールなどの自動車関係、オイルタンク、キャンボ
ディ、スノ−モービル車体等のほか、ヘルメット、アル
ミバットあるいは導電用ケーブル継手や事務用機械部材
、光学機械部材など、広範な用途めの適用が可能であり
、その工業的価値は極めて高いものである。
The results are shown in Table 4 below. Table 3: Chemical composition of sample alloy Table 4: Formability and tensile properties of sample alloy As is clear from the above description, N-
Cu-based alloys and Yamaichi Cu-Mg-Si-based alloys satisfy both workability and strength, which are contradictory material properties. It is not only economically advantageous because it can omit complicated processing steps such as heat treatment such as hardening and accompanying distortion correction, but it can also be applied to parts with strict dimensional accuracy that was conventionally difficult to manufacture. This eliminates the restrictions on the application of this type of alloy, and has been applied to automobile bodies, bumpers, wheels, oil tanks, can bodies, snowmobile bodies, etc., as well as helmets, aluminum bats, and conductive parts. It can be applied to a wide range of applications, such as commercial cable joints, office mechanical components, and optical mechanical components, and its industrial value is extremely high.

Claims (1)

【特許請求の範囲】 1 (a)Cu2・0〜5.0%、(b)Sn0.01
〜0.5%、Cd0.01〜0.5%またはIn0.0
1〜0.5%のうち1種以上、(c)Ti0.01〜0
.2%またはB0.001〜0.1%のうち0種以上を
含み、残部Alおよび不可避的不純物より成る成形加工
性にすぐれた高力アルミニウム合金。 2 (a)Cu1.0〜4.0%、Mg0.05〜1.
0%およびSi0.05〜1.0%、(b)Sn0.0
1〜0.5%、Cd0.01〜0.5%またはIn0.
01〜0.5%のうち1種以上、(c)Ti0.01〜
0.2%またはB0.001〜0.1%のうち1種以上
を含み、残部Alおよび不可避的不純物より成る成形加
工性にすぐれた高力アルミニウム合金。
[Claims] 1 (a) Cu2.0 to 5.0%, (b) Sn0.01
~0.5%, Cd0.01~0.5% or In0.0
One or more of 1 to 0.5%, (c) Ti0.01 to 0
.. A high-strength aluminum alloy with excellent formability, comprising zero or more of 2% or 0.001 to 0.1% of B, and the balance being Al and inevitable impurities. 2 (a) Cu1.0-4.0%, Mg0.05-1.
0% and Si0.05-1.0%, (b) Sn0.0
1-0.5%, Cd0.01-0.5% or In0.
01 to 0.5%, (c) Ti0.01 to
A high-strength aluminum alloy containing one or more of 0.2% or 0.001 to 0.1% of B, with the remainder being Al and unavoidable impurities, and having excellent formability.
JP18402381A 1981-11-16 1981-11-16 High-strength aluminum alloy with excellent formability Expired JPS6039144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18402381A JPS6039144B2 (en) 1981-11-16 1981-11-16 High-strength aluminum alloy with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18402381A JPS6039144B2 (en) 1981-11-16 1981-11-16 High-strength aluminum alloy with excellent formability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9390077A Division JPS585980B2 (en) 1977-08-04 1977-08-04 High-strength aluminum alloy with excellent formability

Publications (2)

Publication Number Publication Date
JPS57114636A JPS57114636A (en) 1982-07-16
JPS6039144B2 true JPS6039144B2 (en) 1985-09-04

Family

ID=16145986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18402381A Expired JPS6039144B2 (en) 1981-11-16 1981-11-16 High-strength aluminum alloy with excellent formability

Country Status (1)

Country Link
JP (1) JPS6039144B2 (en)

Also Published As

Publication number Publication date
JPS57114636A (en) 1982-07-16

Similar Documents

Publication Publication Date Title
US20040166017A1 (en) Age-hardening copper-base alloy and processing
JPS6167738A (en) Improved copper base alloy having strength and conductivity in combination
WO1988008042A1 (en) Silver alloys of exceptional and reversible hardness
US5147469A (en) Process for producing copper-based alloys having high strength and high electric conductivity
JPS585980B2 (en) High-strength aluminum alloy with excellent formability
JPH027386B2 (en)
US4427627A (en) Copper alloy having high electrical conductivity and high mechanical characteristics
JPS6242985B2 (en)
KR100254844B1 (en) Improved aluminum alloy
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
US4242131A (en) Copper base alloy containing manganese and iron
US4148635A (en) High temperature softening resistance of alloy 688 and modified 688 through the addition of Nb
US3366477A (en) Copper base alloys
JPS6152345A (en) Superplastic al alloy
JPS6410584B2 (en)
JPS6039144B2 (en) High-strength aluminum alloy with excellent formability
US4886641A (en) Electrical contact spring material made of copper base alloy of high strength and toughness with reduced anisotropy in characteristics
JPS58224156A (en) Manufacture of thin aluminum alloy plate for sag resistant fin
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
IE41631B1 (en) Aluminium alloys
JPH09316569A (en) Copper alloy for lead frame and its production
JPS5932538B2 (en) Medium strength AI alloy for extrusion with excellent toughness and press hardenability
JPS616244A (en) High strength alloy for forming having fine grain and its manufacture
JPH05230605A (en) Manufacture of aluminum alloy for baking and hardening formation
JPS6141751A (en) Manufacture of copper alloy material for lead frame