JPS6038718A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS6038718A
JPS6038718A JP58145073A JP14507383A JPS6038718A JP S6038718 A JPS6038718 A JP S6038718A JP 58145073 A JP58145073 A JP 58145073A JP 14507383 A JP14507383 A JP 14507383A JP S6038718 A JPS6038718 A JP S6038718A
Authority
JP
Japan
Prior art keywords
layer
recording medium
magnetic
magnetic layer
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58145073A
Other languages
Japanese (ja)
Other versions
JPH0262890B2 (en
Inventor
Takashi Tomie
崇 冨江
Masato Sugiyama
杉山 征人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58145073A priority Critical patent/JPS6038718A/en
Publication of JPS6038718A publication Critical patent/JPS6038718A/en
Publication of JPH0262890B2 publication Critical patent/JPH0262890B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a large and satisfactory output of reproduction by setting the coercive force of a soft magnetic layer at a level less than the prescribed value in the intra-face direction of said magnetic layer and also keeping the ratio of the maximum sloping value to the minimum sloping value at a level less than the prescribed value for a tangent line at an intersecting point between the increasing magnetic curve of a magnetization curve in the intra-face direction and a magnetic field axis. CONSTITUTION:A vertical magnetic recording medium has a double layer structure containing a soft magnetic layer of an Ni-Fe alloy thin film, etc. and a vertical magnetic anisotropic layer of a Co-Cr alloy thin film, etc. laminated on a nonmagnetic substrate. For such a recording medium, the coercive force of a soft magnetic layer is set at <=15Oe in the intra-face direction of said magnetic layer. At the same time, the maximum sloping value is kept at >=2.5 times as much as the minimum sloping value for a tangent line at an intersecting point between a magnetic field axis and the increasing magnetic curve of a magnetization curve measured in each direction of said intra-face direction. In this case, MD, TD, Hce and Hch show the transfer direction of the substrate, the direction orthogonal to the transfer direction of the substrate, the coercive force in the direction of a magnetization facilitating axis and the coercive force in the direction of a magnetization unfacilitating axis respectively. Thus the anisotropy of a reproduction output is eliminated with a high reproduction output level for a vertical magnetic recording medium just by controlling the sloping of a tangent line. Such recording medium is suited to a disk recording medium such as a floppy disk, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリエチレンテレフタレート(PET)フィル
ム等の非磁性の支持基板にNi Fe合合金薄情9の軟
磁性層とCoC’r合金薄膜等の垂直磁気異方性層を順
次積にりした二円構造を右1°る垂直11気記録媒体に
関し、特にポリエチレンテレフタレート(PET)フィ
ルム等の可撓性基板を用(1だフロッピーディスク等の
ディスク型記録媒体にah適なものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is based on a non-magnetic support substrate such as a polyethylene terephthalate (PET) film, and a soft magnetic layer of Ni-Fe alloy thin film 9 and a CoC'r alloy thin film or the like perpendicular to each other. Concerning a perpendicular 11-degree recording medium in which a two-circle structure in which magnetically anisotropic layers are sequentially stacked is oriented 1 degree to the right, a flexible substrate such as a polyethylene terephthalate (PET) film is particularly used (1 degree is a disk-type recording medium such as a floppy disk). It is suitable for recording media.

[従来技術] 従来の強磁性微粉末をバインダー樹脂中にfNBtせし
めた記録層を有する@ イ1i型磁気中己録媒体にIJ
sねり、近年、高密度記録への要望【こともな(1、垂
直磁気記録方式の媒体がさかん【こ研究さ才しており、
’IHこフロッピーディスクl\の馴uがWJ侍され、
41でも上述の2層構造の垂直磁気記録媒4本力<注目
されている。(特公昭58−91号1日経エレク1−〇
二クス 1982年10月25日号9.141等参照)
上述の垂直磁気記録媒体の基本構成【よ、+1寺公昭5
8−’It号公報等で公知の通り、支持基板上にスノ\
ツク等の手段で作製される磁束集中層として作用1」る
0、2〜1.0μm11程度の厚さのNi Fe合金λ
9膜qからなる軟磁性層と記録層どして作用する0、1
〜0.7μmn程度の厚さのCo Cr合金薄膜等から
なる垂直磁気異方性層を順次積層したもので、高5J、
度、高密度記録が可能Cある。
[Prior art] IJ is applied to a type 1i magnetic recording medium having a recording layer made of conventional ferromagnetic fine powder and fNBt in a binder resin.
In recent years, the demand for high-density recording has increased.
'The IH floppy disk l\ was used by WJ Samurai,
In 41, the above-mentioned two-layer perpendicular magnetic recording medium is attracting attention. (Refer to Special Publication No. 58-91, Nikkei Elec 1-〇Nix, October 25, 1982, No. 9.141, etc.)
Basic configuration of the above-mentioned perpendicular magnetic recording medium
8-' As is known from the It publication, etc., snow \ is placed on the support substrate.
Ni-Fe alloy λ with a thickness of about 0.2 to 1.0 μm11 which acts as a magnetic flux concentration layer and is made by a method such as
0 and 1 act as a soft magnetic layer consisting of 9 films q and a recording layer.
It consists of sequentially laminated perpendicular magnetic anisotropic layers made of CoCr alloy thin films, etc. with a thickness of ~0.7 μm.
High-density recording is possible.

F問題点] ところで前述の2層WJ造の垂直磁気記録媒体は、支持
基板を回転させながら作製したフロッピーディスクぐは
問題とならなかったが、長尺のフィルムを連続的に送行
させながら作製しドーナツ状に1]抜いたフロッピーデ
ィスクぐは再生出力が同一1−ラック内の一周期で変化
することがわかり、それが軟磁性層の面内磁気異方性に
基づくものぐあることがわかった。
[Problem F] By the way, with the above-mentioned two-layer WJ structure perpendicular magnetic recording medium, there was no problem with the floppy disk produced while rotating the support substrate, but when the floppy disk was produced while continuously feeding a long film. It was found that the playback output of the floppy disk pulled out in a donut shape changed in one cycle within the same rack, and that this was due to the in-plane magnetic anisotropy of the soft magnetic layer. .

ずなわら、第1図に示した様な面内磁気異方性(MD1
3板移送板曲送方向I):是板移送方向と直交する方向
)を右り−る軟磁性層と−する垂直磁気記録媒体のフロ
ッピーディスクにおいては、ヘッドがTD力方向通過J
る時は出力電圧が高く、MD力方向通過りる時は出ノj
電圧が低くなり、ヘッドが1−ラックを一周する間に再
生比ツノのエンベロープに山が2つ、谷が2つ存在り−
ることか観察された。これは、JIS C6290のモ
ジュレーションが10%以下という規定からも大きな問
題Cある。
However, in-plane magnetic anisotropy (MD1) as shown in Figure 1
3. In a floppy disk with a perpendicular magnetic recording medium having a soft magnetic layer with a soft magnetic layer extending to the right in the direction perpendicular to the direction of plate movement I), the head passes in the TD force direction J.
The output voltage is high when the MD force is flowing, and the output voltage is high when the MD force is passing in the direction of the MD force.
As the voltage decreases, there are two peaks and two valleys in the envelope of the playback ratio horn while the head goes around the 1st rack.
It was observed that. This is a big problem because of the JIS C6290 regulation that modulation is 10% or less.

本発明は、2層構造の垂直磁気記録媒体においてフロッ
ピーディスクに適した上記のにうな問題のない垂直磁気
記録媒体を目的としたもので、再生出力の変化が実用に
供し得る変化幅にある垂直磁気記録媒体を目的としたも
のである。
The present invention aims at a perpendicular magnetic recording medium having a two-layer structure, which is suitable for floppy disks and which does not have the above-mentioned problems. It is intended for magnetic recording media.

[光用の)7M成及び作用効果] 上)ホの目的は、以下の本発明により達成される。[7M formation and effects for light] The object (a) above is achieved by the present invention as described below.

りなわら、本発明は、前述の非磁性の基板上に軟磁性層
と垂直磁気異方性層を形成した垂直磁気記録媒体にδ3
いて、前記軟磁性層がその面内方向の保磁力が151ル
スデツド(OO)以下であり、且つその面内方向の各方
向で測定した磁化曲線の増磁曲線の磁界軸どの交点にお
【ノる接線の勾配の最大値がその最小値の2.5倍以下
であることを特徴とする垂直磁気記録媒体である。
However, the present invention provides a perpendicular magnetic recording medium in which a soft magnetic layer and a perpendicular magnetic anisotropic layer are formed on the above-mentioned non-magnetic substrate.
The soft magnetic layer has a coercive force in the in-plane direction of 151 lusdead (OO) or less, and has a magnetic field axis of the magnetization curve measured in each direction in the in-plane direction. The perpendicular magnetic recording medium is characterized in that the maximum value of the slope of the tangent line is 2.5 times or less the minimum value.

上述の本発明は軟磁性層が面内磁気異方性を有しつつも
、上述の特性具体的にはその磁化曲線、づなわらM−1
1ループが第2図に示り一様な特定の形状を有りる時に
は、再生出力の方向による変化がきわめて小さくモジュ
レーションが良好になり、実用上支障のなくなることを
見出しなされたものである。
In the present invention described above, although the soft magnetic layer has in-plane magnetic anisotropy, the above-mentioned characteristics, specifically its magnetization curve, M-1
It has been discovered that when one loop has a specific uniform shape as shown in FIG. 2, the change due to the direction of the reproduction output is extremely small, the modulation is good, and there is no problem in practical use.

以下、本発明に至った経緯と、本発明の詳細な説明りる
Hereinafter, the circumstances leading to the present invention and a detailed explanation of the present invention will be given.

本発明者らは、後述の第8図に概略図を示した巻取式ス
パッタ装置を用い、基板の長尺のP E 1−フィルム
を支持ロールに添って連続的に移送さμながらスパッタ
法によりNiFoMo合金よりなる軟磁性層とCo C
r合金よりなる垂直磁気異方性層の記録層を順次積層し
、2層構造の垂直磁気記録媒体を作製しできたが、得ら
れる軟磁性層のM −14ループの形状が、スパッタに
よる膜作製中P E Tフィルムの温度(支持キトン温
度)、張ツバ及びその他のスパッタ条件により大きく変
化づること、ぞして使用1゛るPETフィルムの物性(
厚さ、ヤング率、熱収縮率1等)によっても変化づるこ
とが判明した。またPETフィルム上にすでに形成され
た軟磁性層も、後で加熱すれば、その温度と張力と時間
等のある条件下でM−Hループが変化り−ることも判明
した。すなわち、軟磁性層上に記録層をスパッタする時
の温度どフィルム張力により軟磁性層の磁気特性が変化
J゛ることが十分に推察される。
The present inventors used a winding type sputtering device as shown schematically in FIG. Soft magnetic layer made of NiFoMo alloy and CoC
A two-layer perpendicular magnetic recording medium was fabricated by sequentially laminating recording layers of perpendicular magnetic anisotropy layers made of r alloy, but the M-14 loop shape of the resulting soft magnetic layer was different from that of the sputtered film. During production, the temperature of the PET film (support chiton temperature), tension, and other sputtering conditions can greatly change the physical properties of the PET film used.
It was found that it also varies depending on the thickness, Young's modulus, thermal shrinkage rate, etc.). It has also been found that if a soft magnetic layer already formed on a PET film is heated later, the M-H loop changes under certain conditions such as temperature, tension, and time. That is, it is fully inferred that the magnetic properties of the soft magnetic layer change depending on the temperature and film tension when sputtering the recording layer onto the soft magnetic layer.

実際に、ベースフィルムの表裏に各々軟磁性層と記録層
の2病を積層した両面フロッピーディスクにおいては、
表裏の計4層の積層順序によっても軟磁性層の面内磁気
異方性が変化することか観察された。
In fact, in a double-sided floppy disk that has two layers, a soft magnetic layer and a recording layer, on the front and back sides of a base film,
It was observed that the in-plane magnetic anisotropy of the soft magnetic layer changed depending on the stacking order of the four layers on the front and back sides.

・りなわち、2層構造の垂直磁気記録媒体では下層の軟
磁性層の磁気特性は、上層の垂直磁気異方性層を製膜す
ることによって変化し、たとえ製膜条件が同じであって
も上層の有無で異なった値を示すことを見出した。従っ
て垂直磁気記録媒体としての電磁変換特性は垂直磁気異
方性層を形成したあとでの軟磁性層の磁気特性によって
規定される。
・In other words, in a two-layer perpendicular magnetic recording medium, the magnetic properties of the lower soft magnetic layer change by forming the upper perpendicular magnetic anisotropic layer, even if the forming conditions are the same. It was also found that the values showed different values depending on the presence or absence of the upper layer. Therefore, the electromagnetic conversion characteristics of a perpendicular magnetic recording medium are defined by the magnetic characteristics of the soft magnetic layer after forming the perpendicular magnetic anisotropic layer.

ところが、従来は、上)ホの軟磁性層の磁気特性は、垂
直磁気媒体の作’N詩と同条件で基板上に軟磁性層のみ
を形成した4ノンプル′CM −1−1ループを測定し
、その測定値を用いていた。上)ホの点から、かかる従
来の測定方法では軟磁性層の2層174造での磁気特性
の正確な把1屋は困11[である。
However, conventionally, the magnetic properties of the soft magnetic layer (above) were measured using a 4 non-pull CM-1-1 loop in which only the soft magnetic layer was formed on the substrate under the same conditions as those for perpendicular magnetic media. and used the measured values. From the above point, it is difficult to accurately estimate the magnetic properties of a two-layer soft magnetic layer using such conventional measurement methods.

以上の理由ににす、2層媒イホにおりる軟磁性層の磁気
性↑4.特に面内磁気異方性の程度を正確に把握できる
測定方法を検関し、本発明者らは以下の測定方法を見出
した。その手順を1)〜3)に示り−0 1)表裏の両面に軟1.1目1層と記録層を形成した両
面媒体にJ3いては、まずハ面に耐酸レジスI〜を塗布
し、片面を酸く塩化第2鉄と塩酸の混合水溶液。
For the above reasons, the magnetic properties of the soft magnetic layer in the two-layer medium ↑4. In particular, the present inventors investigated a measurement method that can accurately determine the degree of in-plane magnetic anisotropy, and found the following measurement method. The procedure is shown in 1) to 3).-0 1) For J3 double-sided media with a soft 1.1 layer and a recording layer formed on both the front and back sides, first apply acid-resistant resist I~ on the front and back sides. , a mixed aqueous solution of ferric chloride and hydrochloric acid acidified on one side.

等)で溶解し、基板の片面にのみ2層が形成された1層
成とりる。
etc.) to form a single layer with two layers formed only on one side of the substrate.

2)以上の構成(ハ面2層媒体)の面内各り向のM −
1−1ループを測定する。第3図にその代表的なM−1
4ループを示した。第3図は飽和さりに十分な磁界を加
えて測定したM−日ループの低磁界の所を拡大して示し
たものであり、実線はMDh向に測定したもので保磁力
が最大であり、点線はTDD方向測定したもので保磁力
が最小である。その他のjj向はこの間にある。
2) M − in each in-plane direction of the above configuration (C-plane two-layer medium)
1-1 Measure the loop. Figure 3 shows a typical M-1
4 loops were shown. Figure 3 shows an enlarged view of the low magnetic field area of the M-day loop measured by applying a magnetic field sufficient to reach saturation, and the solid line is measured in the MDh direction, where the coercive force is maximum. The dotted line indicates the minimum coercive force measured in the TDD direction. Other jj directions are between this.

ここでMDh向とは第4図(a)に示すごとく、連続的
に作製した試わ1の長手I)向(膜作製時の基板フィル
ムの送行方向)を云い、T D方向とはM[) 方向に
直交する面内方向を云う。また周知の通り図の縦軸は磁
化M、横軸は磁界Hである。
Here, the MDh direction refers to the longitudinal I) direction (the direction in which the substrate film is fed during film fabrication) of the continuously fabricated samples 1, as shown in FIG. 4(a), and the TD direction refers to the M[ ) refers to the in-plane direction perpendicular to the direction. Further, as is well known, the vertical axis of the figure is the magnetization M, and the horizontal axis is the magnetic field H.

3)第3図のM−1−1ループにおいて、チA・−ト上
で増磁曲線をR3/2だけ上方に平行移動し、減磁曲線
をR8/2だけ下方に平行移動し、第1図に示した軟磁
性層のみM−Hループを臂る。そしC1これを2層構造
での軟磁性層の磁化曲線とづる。なお、MDh向と−1
−D方向ともにR8/27どけ平行移動する為に、第1
図のMDh向がP、Q点イ]近でも口が問いた形状とな
る。
3) In the M-1-1 loop of Fig. 3, the magnetization curve is translated upward by R3/2 on chart A, the demagnetization curve is translated downward by R8/2, and the Only the soft magnetic layer shown in Figure 1 has an M-H loop. C1 This is called the magnetization curve of the soft magnetic layer in the two-layer structure. In addition, for MDh and -1
- In order to move in parallel by R8/27 in both the D direction, the first
Even if the direction of MDh in the figure is P and point Q is close to A], the mouth will have the desired shape.

上述の測定り法により2筋構造での軟磁性層の正確な磁
化曲線が得られたのは、次の理由による。
The reason why an accurate magnetization curve of a soft magnetic layer with a two-wire structure was obtained by the above-mentioned measurement method is as follows.

すなわら、手順2)で1!1られる2層構造の軟磁性層
のM−11ループは一般にそのループが第3図のPQ、
R3の様に閉じないで口が開いた形状どなるが、これは
主に記録層の残留磁化にJ、るものでぞの磁化分だり口
が開くことになる。これは、基板フィルムのハ面に記録
層のみを設【ノIこものの面内のM−1−1ループを測
定すると、第5図に示すように、低磁界領域Cは図示の
ごとく磁化Mは磁界軸に平行に1vF、移づるのみで、
残留磁化の値で一定であり、その大きさEFは第3図の
R3と概略一致することから明らかである。従って、手
順3)により記録層の残留磁化分が補正され、2層4,
11造の軟磁性層のM −1−1ループが寄られる。
In other words, the M-11 loop of the soft magnetic layer of the two-layer structure, which is 1!1 in step 2), is generally PQ in Fig. 3,
Although it has an open shape like R3, this is mainly due to the residual magnetization of the recording layer, and the gap opens due to the residual magnetization of the recording layer. This is because only the recording layer is provided on the C side of the substrate film.If the M-1-1 loop in the plane of the object is measured, as shown in Figure 5, the low magnetic field region C is the magnetized M is only shifted by 1vF parallel to the magnetic field axis,
It is clear that the value of residual magnetization is constant, and the magnitude EF approximately coincides with R3 in FIG. 3. Therefore, the residual magnetization of the recording layer is corrected by step 3), and the two layers 4,
The M-1-1 loop of the soft magnetic layer of No. 11 is gathered.

以上説明した本測定手法にJこり、前)ホした従来方法
では不可能ぐあった2層構造の垂直磁気記録媒体の軟磁
性層の磁気特性、特に面内磁気界方性の程度を正確にめ
ることが可能どなった。
The present measurement method described above allows accurate measurement of the magnetic properties of the soft magnetic layer of a two-layer perpendicular magnetic recording medium, especially the degree of in-plane magnetic field orientation, which was impossible with the conventional method described above. What is it possible to do?

本発明の軟磁性層の磁気特性は全て上述の測定方法によ
り測定したデータに基づくものぐある。
The magnetic properties of the soft magnetic layer of the present invention are all based on data measured by the above-mentioned measuring method.

次に前述の本発明の414成について説明する。Next, the above-mentioned 414 configuration of the present invention will be explained.

ところで、2層構造の垂直磁気媒体で前述した再生出力
のエンベロー1が変動するものの軟磁性層は、第1図に
示Jような磁気特性を承り。第1図の例においては、1
5〜250e!!i!度の外部磁界に対してM−14ル
ープが閉じないIj向はMDh向であり、図の如く明白
に磁化容易軸となっていることがわかる。そしU、M−
Hループが閉じるlノ向はr D方向であり、磁化困難
軸となつCいる。それぞれの保磁力をl−1ce、トl
chとする。本例においてはMDh向、TD方向以外の
任が、の面内の他の方向で測定した保磁力はい一す゛れ
もl−1eeとl−1ct+の中間の値を示し、Hce
が最大値であり、1〜IC11か最小値であった。
By the way, although the above-mentioned envelope 1 of the reproduction output fluctuates in the perpendicular magnetic medium having a two-layer structure, the soft magnetic layer has magnetic characteristics as shown in FIG. In the example of Figure 1, 1
5~250e! ! i! It can be seen that the Ij direction in which the M-14 loop does not close against an external magnetic field of 20°C is the MDh direction, which is clearly the axis of easy magnetization as shown in the figure. So U, M-
The direction in which the H loop closes is the rD direction, which is the axis of difficult magnetization. The respective coercive forces are l-1ce and tol
Ch. In this example, all coercive forces measured in other directions within the plane of the MDh direction and the TD direction show intermediate values between l-1ee and l-1ct+, and Hce
was the maximum value, and 1 to IC11 was the minimum value.

これに対して、実用上再生出力の変動が問題とならない
本発明の垂直磁気記録媒体は、その軟磁性層が第2図の
如さM−Hループをイjりるしのである。以下、そのM
 −1−1ループを第2図の例についC説明Jる。第2
図は第1図J、り類推するなら実線のMDh向を磁化容
易軸とし、点線のTDD方向磁化困難軸とする若干の異
方性を有しつつも、第1図より、はるかに改善された等
方向な磁気特性をイ1している。そして、このJ:うな
軟磁性層におい(は、第6図に示り−ごと< M−1−
1ループの増(6曲線Aの磁界軸どの交点、具体的には
保磁力1−ICを示り点にaハノる接Fil Lの勾配
を面内の(■意の各方向でめた場合、これがいずれも似
た値を承り場合、再生出力が安定Jることがわかった。
On the other hand, in the perpendicular magnetic recording medium of the present invention, in which variations in reproduction output do not pose a problem in practice, the soft magnetic layer eliminates the M-H loop as shown in FIG. Below, that M
-1-1 loop will be explained using the example of FIG. Second
The figure is much improved from Figure 1, although it has some anisotropy, with the solid line MDh direction being the easy axis of magnetization and the dotted line being the TDD direction hard magnetization axis. It also has isotropic magnetic properties. And this J: soft magnetic layer (is shown in FIG. 6).
1 loop increase (6 Which intersection point of the magnetic field axis of curve A, specifically, if you set the slope of Fil L tangent to the point indicating coercive force 1-IC in each direction in the plane (■) , it has been found that when these values are all similar, the playback output is stable.

そして、面内の任意の各方向で測定した接線l−の勾配
の最大値1−aと最小値Lbとの比が2.5以下であれ
ば、再生出力の変動を実用上8′(容箱υ11内とり゛
ることができる。具体的には前述のJIS規格をクリア
できる。
If the ratio between the maximum value 1-a and the minimum value Lb of the slope of the tangent line l- measured in each arbitrary direction within the plane is 2.5 or less, the variation in the reproduction output can be reduced to 8' (approximately 8') in practical terms. It can be carried out within the box υ11.Specifically, it can clear the above-mentioned JIS standard.

一方、大きな再生出力を得るためには、上述の軟磁性層
の保磁力1−1cは後述の通り150o以1;であるこ
とが好ましい。な(13、その膜JF;iは通常0.2
〜1.0μnL程度である。第7図は本発明に特有な形
状のM−1−4ループを石りる電磁11層の保磁力1−
ICと再生出力(IEII )との関係を2 K F 
RP Iど45K[RPIにおいて示したものであり、
保磁力1−ICが小さい程再生出力が大きく良好どなる
。保磁力Hc150e以下であれば」−分であるが、よ
り好ましくは1000以下の方が良い。なお、第7図の
軟磁性層は厚さ約0.44μmnのNi FeMo合金
薄膜であり、記録層のCo Cr合金薄膜(Cr :2
0νit%)の特性と、電磁変換特性の測定条件をそれ
ぞれ表−1と表−2に示覆。なお表−1の八〇(7)は
X線回折の六方最密構造(hcp)の(002)面のロ
ッキング曲線の半fiQ中である。
On the other hand, in order to obtain a large reproduction output, it is preferable that the coercive force 1-1c of the above-mentioned soft magnetic layer is 150° or more as described later. (13, the film JF; i is usually 0.2
~1.0 μnL. Figure 7 shows the coercive force 1- of the 11 electromagnetic layers forming the M-1-4 loop with the unique shape of the present invention.
The relationship between IC and playback output (IEII) is 2K F
RP Ido 45K [shown in RPI,
The smaller the coercive force 1-IC, the greater the reproduction output and the better. If the coercive force Hc is 150e or less, it is "-min", but it is more preferably 1000 or less. The soft magnetic layer in FIG. 7 is a NiFeMo alloy thin film with a thickness of about 0.44 μm, and the recording layer is a CoCr alloy thin film (Cr:2
Table 1 and Table 2 show the measurement conditions for the characteristics of 0 νit%) and the electromagnetic conversion characteristics, respectively. Note that 80(7) in Table 1 is the half-fiQ of the rocking curve of the (002) plane of the hexagonal close-packed structure (hcp) in X-ray diffraction.

(以下余白) 表−i :Co Qr合金薄膜の特性 表−2:電磁変換特性の測定条件 以上の通り本発明によれば前述の勾配を規定するのみC
再生出力に異方性がなく、且つ再生出力レベルも高い垂
直磁気記録媒体が実現される。
(Leaving space below) Table-i: Characteristics of Co Qr alloy thin film Table-2: Measurement conditions for electromagnetic conversion characteristics As described above, according to the present invention, only C
A perpendicular magnetic recording medium with no anisotropy in reproduction output and a high reproduction output level can be realized.

さらに、第2図のもので特徴的なことは15〜25Qe
程度の外部磁界においてM −1−1ループの閉じる一
FD方向、換言り−れば磁化困ff1lL軸方向の保磁
力l−1cl+はM−Hループの閉じないMD力方向J
9!言り一れば磁化容易軸方向の保磁ツノl−1ccよ
り大きく、第1図の保磁力の関係りなわちHce > 
l−1chどは逆の関係をイボしていることである。す
なわら、異方性材料の一般的傾向であるl−I ce>
 1−1 ct+なる明瞭な関係をこの軟磁性層はイj
していない。そして、トIce< 1,2Hchにおい
て、再生出力の異方性による変動は低下しており、再生
出力の均一化により一層の好ましい結果を生じる。さら
に第2図の様にトICo≦ト1chFある方がより好ま
しい。
Furthermore, the characteristic feature of the one in Figure 2 is 15 to 25 Qe.
In an external magnetic field of about
9! In other words, it is larger than the coercive force l-1cc in the direction of the easy axis of magnetization, and the coercive force relationship in Figure 1 is Hce >
The 1-1 channel has the opposite relationship. That is, l-I ce>, which is a general tendency of anisotropic materials.
This soft magnetic layer has a clear relationship of 1-1 ct+.
I haven't. When Ice < 1,2Hch, the variation due to the anisotropy of the reproduced output is reduced, and a more favorable result is produced by making the reproduced output uniform. Furthermore, as shown in FIG. 2, it is more preferable that tICo≦t1chF.

更に、面内の各方向で測定した保磁力1−ICの最大値
と最小(+fjどの比を検ijL、たところ、その比が
1.6以下のものでは前述のものにおい−Cより好まし
い結果が得られることがわかった。
Furthermore, we examined the ratio between the maximum and minimum coercive force 1-IC measured in each direction in the plane (+fj, ijL), and found that when the ratio was 1.6 or less, the result was more preferable than the above-mentioned odor-C. was found to be obtained.

ところC′、本発明の垂直磁気記録媒体は1¥公昭、5
8−91号で開示されCいる2層媒体であり、記録層は
通常CI・を1o〜25■量%含右りるCo Cr合金
薄膜が使用されるが、他にバ1戸ンムフlライト薄膜や
Go−1ylrメツキ膜やバ1戸シムフェライ[・微粉
末の塗布膜CあっCもがよりない。又、軟磁性層は通常
NiFe系合金(一般にパーマロイといわれる)薄膜が
一般に用いられ、本発明におい(ム、IJli 1ll
liな々A 11ぐあること、及びスパッタ用ターゲッ
1〜どして加工性にツぐれ経済的であることによりNi
Fe系台金薄膜が好ましいが、他にCO,FQをt\−
7,とし、7r、Nb、1−a、W、 B、 si等を
添加したア七ルノアス合金膜等も使用され得る。要は保
磁ツノの小さい材料(がっ、適当な飽和磁化Ms(!−
右りる)であればにり、更に)fi磁率の大ぎいものが
好ましく用いられる。
However, C', the perpendicular magnetic recording medium of the present invention is 1 yen Kimiaki, 5
It is a two-layer medium disclosed in No. 8-91, and the recording layer is usually a CoCr alloy thin film containing 10 to 25% of CI. Thin films, Go-1ylr plating films, and simferai coatings of fine powder do not move easily. In addition, a thin film of a NiFe-based alloy (commonly called permalloy) is generally used as the soft magnetic layer, and in the present invention (mu, IJli 1lll
Due to the fact that there are 11 types of li, and because the sputtering target has poor processability and is economical, Ni
Fe-based base metal thin film is preferable, but CO and FQ may also be used.
7, and an aryl nois alloy film to which 7r, Nb, 1-a, W, B, si, etc. are added may also be used. The key is to find a material with a small coercive horn (gah, appropriate saturation magnetization Ms(!-
It is preferable to use a material with a large fi magnetic coefficient.

[実施例] 特開昭58−158380@公報等で、公知の対向ター
グツ1へ式スパッタ法を用いた後述Jる第8図の巻取式
の対向ターグツ1〜スパツタ装置を用い、約0、AAμ
mnのNi Fc M’o (Ni ニア9. Fe 
:16゜MO;5重量%)合金薄膜の軟磁性層と、約0
.45amのCOCr (Cr : 2Oi量%)合金
薄膜の記録層をPETフィルムの両面に形成した。用い
た2軸延伸PETフイルムは50μ7+1厚さC中心線
平均粗ざRaが0.01μ?+1の表面粗度のもの(A
)と、75t17n厚さ′cRa = 0.006μm
のもの(B)の2種類である。
[Example] In Japanese Unexamined Patent Publication No. 58-158380@, etc., a known sputtering method was used to sputter a sputtering sputtering method to a sputtering sputtering device as shown in FIG. AAμ
mn Ni Fc M'o (Ni near 9. Fe
:16°MO; 5% by weight) alloy thin film soft magnetic layer and about 0
.. A recording layer of a 45 am COCr (Cr: 2 Oi amount %) alloy thin film was formed on both sides of the PET film. The biaxially stretched PET film used had a thickness of 50μ7+1 and a center line average roughness Ra of 0.01μ? +1 surface roughness (A
), 75t17n thickness 'cRa = 0.006μm
There are two types (B).

ところで、巻取式の対向ターグツ1〜式スパッタ装置は
、良民の基板フィルムの両面に2層構造の垂直磁気記録
媒イホを)W続的に製造Cきるように第8図に示づ41
11成どなっている。す゛なわら、図の11゜12は温
度コンl−L:I−ル可能なキIIン、13は巻出しロ
ール、14は巻取ロール、15はガイトロール、20は
真空槽、21はアルゴンガスシ9人系、22は排気口ひ
ある。Fは基板フィルムであり、P1〜P4は330n
m+ W X 1.5On+mLのターゲット2枚を対
向させた対向ターゲット陰極ひ、遮蔽板Sにより不要部
への粒子飛散を防止しである。PI、P3はNiFeM
O合金ターゲッl−+ P2 、PJはC0Cr合金タ
ーグツl−を設置しである。なJ5 N対向ターグツ1
一式スパッタ法は前述の通り公知であり、イ]帯設備の
真空ポンプ、ターグツ1〜冷II水系統、ターゲットへ
の電力供給電源及び配線系統は図示省略しIこ。又、そ
のスパッタ作用の説明も省略する。
By the way, the winding-type opposed tag type sputtering apparatus is shown in FIG.
11 is yelling. In other words, 11 and 12 in the figure are temperature control keys II, 13 is an unwinding roll, 14 is a winding roll, 15 is a guide roll, 20 is a vacuum tank, and 21 is an argon gas cylinder. 9 people, 22 has an exhaust port. F is the substrate film, P1 to P4 are 330n
A facing target cathode in which two targets of m+ W PI and P3 are NiFeM
O alloy target l-+ P2, PJ is set with C0Cr alloy target l-. J5 N opposing tags 1
The one-set sputtering method is well known as described above, and the vacuum pump, target 1 to cold water systems, power supply to the target, and wiring system of the equipment in zone A are omitted from illustration. Further, explanation of the sputtering effect will also be omitted.

イしく、この対向ターゲット式スパッタ法圃により、目
的の垂直磁気記録媒体を以下のように作成した。すなわ
ら、基板フィルムFを巻出しロール13にしットしたフ
ィルムロールより送り出し、巻取りl」−ル14に巻取
る。この間にターゲットP11−)3によりNi Fc
1yjo薄膜を基板フィルムFの両1n1に形成した。
Using this facing target sputtering method, the intended perpendicular magnetic recording medium was fabricated as follows. That is, the substrate film F is fed out from a film roll set on an unwinding roll 13 and wound onto a winding roll 14. During this time, Ni Fc was produced by target P11-)3
A 1yjo thin film was formed on both 1n1 of the substrate film F.

又は、まず片面にのみl’+′C″Ni FcMo薄膜
を形成し巻取りロール14に巻取っ1、:後に、リベC
のキレン、ロールを逆転さu11’3 C:N i F
OMO薄膜を他の面に形成しロール13に巻取っIc0
いずれにしでも、二1:Pン11.12の謁I哀を90
℃どし、アルゴンガス圧0.5pa 、平均111積速
痕0.3μm / minでNiFeMo合金ターグツ
1〜のスパッタを行い、まず基板フィルムFの両面にN
iFcMo薄膜を形成し、しかる後に、同様の方法で、
キ17ン1i、 12の温度を150℃とし、Co Q
r 薄膜を両面に形成した。このようにしく軟磁性層の
特性の異なる8種類の垂直磁気記録媒体を形成した。
Alternatively, first, a l'+'C'' Ni FcMo thin film is formed only on one side, and then the film is wound on the winding roll 14.
Killen reverses the roll u11'3 C:N i F
An OMO thin film is formed on the other surface and wound on a roll 13 Ic0
In any case, the audience of 21:Pn11.12 is 90
℃, an argon gas pressure of 0.5 pa, and an average stacking velocity of 0.3 μm/min, NiFeMo alloy tags 1 to 1 were sputtered, and first N was applied to both sides of the substrate film F.
Form an iFcMo thin film, and then, in the same manner,
The temperature of keys 17 and 1i and 12 was set to 150℃, and CoQ
r Thin films were formed on both sides. In this way, eight types of perpendicular magnetic recording media with different characteristics of the soft magnetic layer were formed.

そして、前述した測定方法通り、片面を酸で溶解し、片
面にのみ2層が積層されたザンブルを作製し、各方向の
軟磁性層の磁気特性を評価した。
Then, according to the measurement method described above, one side was dissolved in acid to produce a zumble in which two layers were laminated on only one side, and the magnetic properties of the soft magnetic layer in each direction were evaluated.

また、第4図(b)のにうにMD力方向T D方向J:
す0.5インヂI11に切り出し、表−2の条(!+で
再生出力を測定した。なお、Co Cr膜の垂直方向保
411力はいずれし395〜490QOT”あった。
In addition, as shown in Fig. 4(b), MD force direction T D direction J:
A 0.5-inch I11 piece was cut out, and the reproduction output was measured using the strips shown in Table 2 (!+).The vertical retention force of the CoCr film was 395 to 490QOT'' in each case.

M D方向と丁り方面の中間の方向の軟磁性層の1jj
性(1(1はりへ−(’ tvl D方向1JI竹11
cfと−「D方向fj性値の中間の値を示した為に、軟
磁性11)jのMDプノ向とI−[) 方向の特性値の
み表−3に示した。そして再生出力値Ep (llVo
−p )どその変化率を表−4に示した。
M 1jj of the soft magnetic layer in the middle direction between the D direction and the center direction
Sex (1 (1 beam - (' tvl D direction 1 JI bamboo 11
cf and −D direction fj characteristic values, only the characteristic values of soft magnetic 11)j in the MD direction and I−[) direction are shown in Table 3.The reproduction output value Ep (llVo
-p) Table 4 shows the rate of change.

変化率は(F pmax−(三pmin) −r (l
Epmax+、 E pmin) x ioo%でめI
c。
The rate of change is (F pmax-(3 pmin)-r (l
Epmax+, E pmin) x ioo%
c.

表〜3:軟11計1層の■)1気特性 表−4:再生出力(’Ep )とMD/TD変化率表変
化率衣−4の実施例1〜4の結果から磁化曲線の増磁曲
線の磁界軸との交点に(13fjる接線の勾配の最大値
I−aと最小値Lbとの比La /Lbが1.9以下で
あれば、再生出力の変化率は2 K FlくPl及びn
5KFIIPlにおいで6.3%以下となり、実用上全
く問題のない再生出力が胃られることがわかる。
Table 3: Soft 11 total 1 layer ■) 1 characteristic Table 4: Reproduction output ('Ep) and MD/TD change rate table From the results of Examples 1 to 4 of Change rate clothes 4, the increase in magnetization curve If the ratio La/Lb between the maximum value I-a and the minimum value Lb of the slope of the tangent to the intersection of the magnetic curve with the magnetic field axis (13fj) is 1.9 or less, the rate of change of the reproduction output is 2K Fl Pl and n
It can be seen that the reproduction output is 6.3% or less at 5KFIIPl, which is no problem for practical use.

なd3、再生出力の変化率はJISp格等から約10%
程度よ?’ i’r容されるので、比較例6の結果等か
らもわかるように、前述の通り、比La /l bは2
.5以下C−あれば実用上問題ない。
d3, the rate of change in playback output is approximately 10% from JISp rating, etc.
What's the extent? 'i'r, so as can be seen from the results of Comparative Example 6, the ratio La /l b is 2.
.. If C- is 5 or less, there is no practical problem.

更に実施例1.2J:り上述の条件下で、磁化容易軸方
向の保磁)Jl−1ceど磁化困難軸方向の保磁力1(
cl+どの比1−1 cc/ I−1ahが0.9以下
であれば、再生出力の変化率は両記録密痘で3.2%以
下となり、非゛7:(に均一な1[■生出力b(得られ
る。
Furthermore, Example 1.2J: Under the above conditions, coercive force in the direction of the easy axis of magnetization) Jl-1ce and coercive force in the direction of the hard axis of magnetization 1 (
If the ratio 1-1 cc/I-1ah is less than 0.9, the rate of change in reproduction output will be less than 3.2% for both records, and if the non- Output b (obtained.

なお、前述の比La/Lbど(111!、実用上の前記
基準からは、110述の通り比1−1 cc/ l−l
 ct+は1.2以下であれば十分である。
In addition, the above-mentioned ratio La/Lb (111!), from the above-mentioned practical standard, the ratio is 1-1 cc/l-l as described in 110.
It is sufficient that ct+ is 1.2 or less.

また、比較例8の結果から保磁力Hcが15Q Qを越
えると再生用]Jレベルの低下が大ぎく、前述の通り保
磁力HCは150e以下にする必要があることがわかる
Furthermore, from the results of Comparative Example 8, it can be seen that when the coercive force Hc exceeds 15Q, the reduction in the reproduction]J level is significant, and as mentioned above, the coercive force HC needs to be 150e or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較例の代表的な面内のM −1−1ループの
グラフ、第2図は実施例の代表的な面内のM−(」ルー
プのグラフ、第3図は2層構造の垂直磁気記録媒体の面
内のM−Hループのグラフ、第4図は長尺フィルムのM
Dh向と−[D方向の説明図。 第5図は記録層のみの面内のM−Hループの±150e
の部分を示したグラフ、第6図はM−14ループの保磁
力を示り点にお(〕る接線りの説明図、第7図は転磁↑
1層の保磁力(1−1c)と再生出力(El))との関
係を示リーグラフ、第8図は巻取式スパッタ装置の概略
図である。 11、12:ギ17ン、13:巻出しロール。 14:巻取りロール、1〕1〜P4 :対抗ターゲット
陰極、20:真空槽 オl酬 −〉 」 (0,) オ斗図
Figure 1 is a graph of a typical in-plane M-1-1 loop of a comparative example, Figure 2 is a graph of a typical in-plane M-('' loop of an example, and Figure 3 is a two-layer structure Figure 4 is a graph of the in-plane M-H loop of a perpendicular magnetic recording medium.
Explanatory diagram of Dh direction and -[D direction. Figure 5 shows the in-plane M-H loop of the recording layer only, ±150e.
Graph showing the part of , Figure 6 shows the coercive force of the M-14 loop and is an explanatory diagram of the tangent line at the point, Figure 7 shows the magnetic change ↑
A graph showing the relationship between coercive force (1-1c) and reproduction output (El) of one layer, and FIG. 8 is a schematic diagram of a winding type sputtering apparatus. 11, 12: Gin 17, 13: Unwinding roll. 14: Winding roll, 1] 1 to P4: Opposing target cathode, 20: Vacuum tank orifice -> (0,)

Claims (1)

【特許請求の範囲】 1)非磁性の基板上に軟磁性層と垂直磁気異方性層を形
成しI、:垂直磁気記録媒体において、前記軟磁性層が
その面内方向の保磁力が15エルステツド以下であり、
且つその面内方向の磁化曲線の増磁曲線の磁界軸との交
点における接線の勾配の最大値がその最小値の2.5倍
以下であることを特徴とりる垂直磁気記録媒体。 2)前記軟磁性層の磁化容易軸方向の保磁ツノが該方向
に直交−りる磁化困難軸方向の保磁力の1.2倍以下で
ある特許請求の範ti11第1項記載の垂直磁気記録媒
体。 3)前記軟磁性層がNiとFeを主成分とした合金薄膜
である特許請求の範囲第1項若しくは第2項記載の垂直
磁気記録媒体。
[Claims] 1) A soft magnetic layer and a perpendicular magnetic anisotropic layer are formed on a non-magnetic substrate. less than ersted,
A perpendicular magnetic recording medium characterized in that the maximum value of the gradient of the tangent at the intersection of the magnetization curve in the in-plane direction with the magnetic field axis is 2.5 times or less of the minimum value. 2) The perpendicular magnetism according to claim 11, wherein the coercive force in the direction of the easy axis of magnetization of the soft magnetic layer is 1.2 times or less the coercive force in the direction of the hard axis of magnetization perpendicular to the soft magnetic layer. recoding media. 3) The perpendicular magnetic recording medium according to claim 1 or 2, wherein the soft magnetic layer is an alloy thin film containing Ni and Fe as main components.
JP58145073A 1983-08-10 1983-08-10 Vertical magnetic recording medium Granted JPS6038718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145073A JPS6038718A (en) 1983-08-10 1983-08-10 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145073A JPS6038718A (en) 1983-08-10 1983-08-10 Vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6038718A true JPS6038718A (en) 1985-02-28
JPH0262890B2 JPH0262890B2 (en) 1990-12-26

Family

ID=15376749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145073A Granted JPS6038718A (en) 1983-08-10 1983-08-10 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6038718A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197028A (en) * 1987-02-12 1988-08-15 Tdk Corp Perpendicular magnetic recording medium
JPH02104374U (en) * 1989-02-07 1990-08-20
JPH03226786A (en) * 1990-01-31 1991-10-07 Matsushita Electric Ind Co Ltd Pitch display device
JPH0489983U (en) * 1990-11-27 1992-08-05
JPH04270390A (en) * 1991-01-16 1992-09-25 Ricos:Kk Stress comparing display device
JPH04270392A (en) * 1991-01-16 1992-09-25 Ricos:Kk Stress indicating device
JPH04270391A (en) * 1991-01-16 1992-09-25 Ricos:Kk Musical interval comparing display device
JPH04270393A (en) * 1991-01-16 1992-09-25 Ricos:Kk Musical interval instructing device
JPH04270389A (en) * 1991-01-16 1992-09-25 Ricos:Kk Vocal data display device
JPH0535181A (en) * 1991-07-30 1993-02-12 Victor Co Of Japan Ltd Orchestral accompaniment reproduction device with image display function
SG95701A1 (en) * 2001-09-27 2003-04-23 Toshiba Kk Perpendicular magnetic recording/reading apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023543156A (en) 2020-09-14 2023-10-13 マス・イノベイション・(プライベイト)・リミテッド Knitting machine and method for knitting fabric by yarn plating with multiple threads
JPWO2022158251A1 (en) 2021-01-22 2022-07-28

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197028A (en) * 1987-02-12 1988-08-15 Tdk Corp Perpendicular magnetic recording medium
JPH02104374U (en) * 1989-02-07 1990-08-20
JPH03226786A (en) * 1990-01-31 1991-10-07 Matsushita Electric Ind Co Ltd Pitch display device
JPH0489983U (en) * 1990-11-27 1992-08-05
JPH04270390A (en) * 1991-01-16 1992-09-25 Ricos:Kk Stress comparing display device
JPH04270392A (en) * 1991-01-16 1992-09-25 Ricos:Kk Stress indicating device
JPH04270391A (en) * 1991-01-16 1992-09-25 Ricos:Kk Musical interval comparing display device
JPH04270393A (en) * 1991-01-16 1992-09-25 Ricos:Kk Musical interval instructing device
JPH04270389A (en) * 1991-01-16 1992-09-25 Ricos:Kk Vocal data display device
JPH0535181A (en) * 1991-07-30 1993-02-12 Victor Co Of Japan Ltd Orchestral accompaniment reproduction device with image display function
SG95701A1 (en) * 2001-09-27 2003-04-23 Toshiba Kk Perpendicular magnetic recording/reading apparatus

Also Published As

Publication number Publication date
JPH0262890B2 (en) 1990-12-26

Similar Documents

Publication Publication Date Title
US6495252B1 (en) Magnetic recording medium with superparamagnetic underlayer
JPWO2006003922A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JPS6038718A (en) Vertical magnetic recording medium
Osaka et al. The effects of underlayer on recording characteristics of electroless plated perpendicular recording flexible media
Suzuki et al. High density recording on ultra-thin Fe-Pt perpendicular composite media
US20060275628A1 (en) Perpendicular media with dual soft magnetic layers
US4792486A (en) Perpendicular magnetic recording medium
JP3273374B2 (en) Magnetic recording medium
JP2001101644A (en) Vertical magnetic recording medium and magnetic recording device
JPH06295431A (en) Perpendicular magnetic recording medium
JP2002092843A (en) Magnetic recording medium
JPS5948904A (en) Recording medium
JPS6398827A (en) Perpendicular magnetic recording medium
HIRAYAMA et al. Magnetization decay in CoCr-alloy perpendicular magnetic recording media
Tachibana et al. Challenge of Media Noise Suppression With Oxidation Control in Granular Structure for CoPtCr-Based Sputtered Tape Toward 400 Gb/in 2
JPH03116516A (en) Magnetic film
JPS63124213A (en) Perpendicular magnetic recording medium
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPH0532809B2 (en)
JPS62162223A (en) Thin film magnetic recording medium
JPH071535B2 (en) Magnetic recording medium
JPS6095721A (en) Vertical magnetic recording medium and its production
JPS63247914A (en) Flexible disk
JPS59191130A (en) Base material for magnetic recording medium and magnetic recording medium
JPS62232722A (en) Magnetic recording medium