JPS6038407A - Production of catalyst component for alpha-olefin polymerization - Google Patents

Production of catalyst component for alpha-olefin polymerization

Info

Publication number
JPS6038407A
JPS6038407A JP14668883A JP14668883A JPS6038407A JP S6038407 A JPS6038407 A JP S6038407A JP 14668883 A JP14668883 A JP 14668883A JP 14668883 A JP14668883 A JP 14668883A JP S6038407 A JPS6038407 A JP S6038407A
Authority
JP
Japan
Prior art keywords
catalyst component
titanium
polymerization
liquid
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14668883A
Other languages
Japanese (ja)
Other versions
JPH0446283B2 (en
Inventor
Minoru Terano
稔 寺野
Kazufumi Yokoyama
横山 和史
Masuo Inoue
益男 井上
Katsuyoshi Miyoshi
三好 勝芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP14668883A priority Critical patent/JPS6038407A/en
Publication of JPS6038407A publication Critical patent/JPS6038407A/en
Publication of JPH0446283B2 publication Critical patent/JPH0446283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain the titled catalyst component capable of providing a stereoregular polymer in high yields, by suspending a dialkoxymagnesium in a liquid halohydrocarbon and successively contacting it with a titanium halide and a carboxylic ester. CONSTITUTION:A dialkoxymagnesium of the formula: Mg(OR)2 (wherein R is alkyl, cycloalkyl, or aryl), e.g., diethoxymagnesium, is suspended in a liquid 1C halohydrocarbon (e.g., methylene chloride). The obtained suspension is contacted with a titanium halide of the formula TiX4 (wherein X is a halogen), e.g., titanium tetrachloride or titanium tetrabromide, and at the same time said suspension is contacted also with a carboxylic ester (e.g., ethyl benzoate or ethyl toluylate) to obtain the purpose highly active catalyst component for use in alpha-olefin polymerization.

Description

【発明の詳細な説明】 本発明はα−オレフィン類の重合に供した際、高活性に
作用し、しかも立体規則性重合体を高収率で得ることの
できる高性能触媒成分の製造方法に係り更に詳しくはジ
アルコキ7マグネシウムを炭素数1の液体の・・ロゲ/
化炭化水素中に懸濁させ、しかる後にノ・ロゲン化チタ
ンに接触させることよりなり、この際いずれかの時点で
カルボン酸エステルと接触させることを特徴とするα−
オレフィン類重合用触媒成分の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing a high-performance catalyst component that exhibits high activity when subjected to the polymerization of α-olefins and is capable of obtaining a stereoregular polymer in high yield. For more details, please refer to Dialcoki 7 Magnesium as a liquid with 1 carbon number...Rogge/
α-
The present invention relates to a method for producing a catalyst component for polymerizing olefins.

従来、α−オレフィン類重合用触媒成分としては固体の
チタンハロゲン化物が周知であり広く用いられているが
、触媒成分および触媒成分中のチタン当りの重合体の収
量(以下触媒成分および触媒成分中のチタン当りの重合
活性という。)が低いため触媒残渣を除去するだめの所
謂脱灰工程が不可避であった。との脱灰工程は多量のア
ルコールまたはキレート剤を使用するだめに、それ等の
回収装置または再生装置が必要不可欠であり、資源、エ
ネルギーその他付随する問題が多く、当業者にとっては
早急に解決を望まれる重要な課題であった。この煩雑な
脱灰工程を省くために触媒成分とりわけ触媒成分中のチ
タン当りの重合活性を高めるべく数多くの研究がなされ
提案されている。
Conventionally, solid titanium halides have been well known and widely used as catalyst components for the polymerization of α-olefins. Since the polymerization activity per titanium is low, a so-called demineralization step to remove catalyst residues was unavoidable. Since the deashing process uses a large amount of alcohol or chelating agent, recovery equipment or regeneration equipment is indispensable, and there are many resource, energy, and other problems involved, and it is urgent for those skilled in the art to solve them. This was an important and desirable issue. In order to eliminate this complicated deashing step, many studies have been made and proposals have been made to increase the polymerization activity per titanium in the catalyst component, especially in the catalyst component.

特に最近の傾向として活性成分であるチタンハロゲン化
物等の遷移金属化合物を塩化マグネシウム等の担体物質
に担持させ、α−オレフィン類の重合に供した際に触媒
成分中のチタン当りの重合活PLを飛躍的に高めたとい
う提案が数多く見かけられる。
In particular, there has been a recent trend in which transition metal compounds such as titanium halides, which are active ingredients, are supported on carrier materials such as magnesium chloride, and when used in the polymerization of α-olefins, the polymerization activity PL per titanium in the catalyst component is increased. There are many proposals that have dramatically improved this.

例えば特開昭50−126590号公報においては、短
体物質である塩化マグネシウムを芳香族カルボン酸エス
テルと機械的手段によって接触させ、得られた固体組成
物に四・・ロゲン化チタンを液相中で接触させて触媒成
分を得る方法が開示されている。
For example, in JP-A-50-126590, magnesium chloride, which is a truncated substance, is brought into contact with an aromatic carboxylic acid ester by mechanical means, and titanium tetrachloride is added to the resulting solid composition in a liquid phase. A method for obtaining a catalyst component by contacting with a catalyst is disclosed.

しかしながら塩化マグネシウムに含有される塩素は、・
・ロダン化チタン中のハロゲン元素と同様生成重合体の
劣化、黄変等の原因となるばかりか、造粒、成形などの
工程に用いる機器の腐食の原因ともなり、そのだめに事
実上塩素の影響を無視し得る程の高活性が要求されてい
るが、前記公報等に開示されている塩化マグネ7ウムを
担体物質として用いた触媒成分においては、現在に至る
1で充分な性能を示すものは得られていないのが現状で
ある。
However, the chlorine contained in magnesium chloride is...
・Like the halogen element in titanium rhodanide, it not only causes deterioration and yellowing of the produced polymer, but also causes corrosion of equipment used in processes such as granulation and molding. Although high activity is required to the extent that the influence can be ignored, catalyst components using magnesium chloride as a carrier material disclosed in the above-mentioned publications, etc., currently show sufficient performance with 1. The current situation is that it has not been obtained.

従ってより高い性能を一得ることを目的として塩化マグ
ネシウム以外のものを使用する試みもなされている。
Therefore, attempts have been made to use substances other than magnesium chloride in order to obtain higher performance.

例えば、%開明56−166205号公報にけMg(O
H2)nX2−n (R’u炭素数1〜1oのアルキル
基、シクロアルキル基、アリール基またはアラルキル基
を示し、Xはハロゲン原子を示し、nはJ、0〜2゜を
示す。)を用いた触媒成分の調製法が開示されている。
For example, Mg(O
H2) nX2-n (R'u represents an alkyl group, cycloalkyl group, aryl group or aralkyl group having 1 to 1 carbon atoms, X represents a halogen atom, and n represents J, 0 to 2°). A method of preparing the catalyst components used is disclosed.

しかし乍らこの方法ではTi (OR2)4 (R2は
炭素数1〜10のアルキル基、シクロアルキル基、アリ
ール基まだはアラルキル基を示す。)で表わされる酸素
含有チタン化合物を必要とする上、性能的にも当該技術
分野の要求を満足させる程度のものは得られていない。
However, this method requires an oxygen-containing titanium compound represented by Ti (OR2)4 (R2 represents an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group having 1 to 10 carbon atoms); In terms of performance, it has not been possible to achieve a level that satisfies the requirements of the technical field.

寸だ、特開昭57−40510号公報では金属マグネシ
ウム、テトラアルフキ/チタン、アルコール、電子供与
性化合物、ハロゲン化チタンを反応させることによって
触媒成分を得る方法が開示されているが、金属マグネシ
ウムから反応を開始することが必要な上、テトラアルコ
キソチタンの使用も必須要件となっておシ、なおかつ性
能的にも充分な値を示していない。
Indeed, JP-A No. 57-40510 discloses a method for obtaining a catalyst component by reacting metallic magnesium, tetraalfky/titanium, alcohol, an electron-donating compound, and titanium halide. Not only is it necessary to start the process, but the use of tetraalkoxotitane is also an essential requirement, and it has not shown sufficient performance.

さらに、特開昭57−63309号公報においては、M
g(OR’)2(R’は炭素数1〜20のアルキル基、
シクロアルキル基、アリール基あるいはアラルキル基を
示す。)を電子供与性化合物と接触させ、次いでTi 
(OR2)nX4−n (R2は炭素数1〜10のアル
キル基、シクロアルキル基、アリール基、アルケニル基
才たはアラルキル基を示し、nは0以上4未満の実数で
あり、Xは・・ロゲン原子を示す。)と2回以上反応さ
せることによって触媒成分を得る方法が開示されている
が、重合特性値等において当該技術分野の要求を充分に
満し得るところまでは至っていない。なお、該Mg (
OH2)2を電子供与性化合物と接触させる際、ヘキサ
ン、ヘプタン等の不活性炭化水素を溶媒として加えるこ
ともできるとの記述もあるが、後述の比較例に示される
ように充分な性能を示しているとはいえない。
Furthermore, in Japanese Patent Application Laid-Open No. 57-63309, M
g(OR')2 (R' is an alkyl group having 1 to 20 carbon atoms,
Indicates a cycloalkyl group, aryl group or aralkyl group. ) is contacted with an electron-donating compound, then Ti
(OR2)nX4-n (R2 represents an alkyl group, cycloalkyl group, aryl group, alkenyl group, or aralkyl group having 1 to 10 carbon atoms, n is a real number from 0 to 4, and X is... Although a method for obtaining a catalyst component by reacting the catalyst component twice or more with a halogen atom (representing a halogen atom) has been disclosed, it has not yet reached the point where it can fully satisfy the requirements of the technical field in terms of polymerization property values and the like. In addition, the Mg (
There is also a description that an inert hydrocarbon such as hexane or heptane can be added as a solvent when OH2)2 is brought into contact with an electron-donating compound, but as shown in the comparative example below, sufficient performance has been demonstrated. I can't say that it is.

本発明者等は斯かる従来技術に残された問題点を解決す
べく鋭意研究の結果、一般式Mg(ORh(式中Rはア
ルキル基、/クロアルキル基またはアリール基である。
As a result of intensive research to solve the problems remaining in the prior art, the present inventors found that the general formula Mg(ORh (wherein R is an alkyl group, /chloroalkyl group, or aryl group) was obtained.

)で表わされるジアルコキ/マグネシウムを、炭素数1
の液体の・・ロゲン化炭化水素中に懸濁させ、しかる後
に一般式T1X4(式中Xは・・ロゲン元素である。)
で表わされる・・ロゲン化チタンに接触させることより
なり、その際いずれかの時点でカルボン酸エステルと接
触させるという本発明の方法によって触媒性能を飛躍的
に向上させることができた。その結果触媒成分中に含ま
れる塩素量の減少と併せて生成重合体中の塩素量を、全
く無視できる程度にまで低減することができた。
) with a carbon number of 1
is suspended in a liquid rogenated hydrocarbon, and then a compound of the general formula T1X4 (wherein X is a rogen element)
The catalyst performance was able to be dramatically improved by the method of the present invention, which consists of contacting with titanium halogenide represented by the following, and contacting with a carboxylic acid ester at some point in the process. As a result, it was possible to reduce the amount of chlorine contained in the catalyst component and the amount of chlorine in the produced polymer to a completely negligible level.

更に付随する効果として、生成重合体がほぼ球状である
上、粒度分布が狭く、粒径が大きいという特徴を有して
いる。このため、後処理装置への ・移送等、生成重合
体の取扱いが極めて容易になった。
Further, as an accompanying effect, the produced polymer is characterized by having a substantially spherical shape, a narrow particle size distribution, and a large particle size. This has made it extremely easy to handle the produced polymer, such as transporting it to post-processing equipment.

現在、工業的なα−オレフィン重合体の製造工程におい
て、造粒工程を省略することが斯界の急務ときれている
が、本発明によって得られた触媒成分を使用することに
よって造粒工程を省略し得る可能性がひらけたものとい
える。
Currently, it is an urgent need in the industry to omit the granulation step in the industrial production process of α-olefin polymers, but the granulation step can be omitted by using the catalyst component obtained by the present invention. It can be said that the possibility of doing so has been opened.

捷だ、工業的なα−オレフィン重合体の製造においては
重合時に水素を共存させることがMI制御などの点から
一般的とされているが、前記塩化マグネシウムを担体と
して用いる触媒成分は水素共存下では、活性および立体
規則性が大幅に低下するという欠点を有していた。しか
し、本発明によって得られた触媒成分を用いてα−オレ
フイ:/類の重合を行なった場合、重合時に水素を共存
させても殆んど活性および立体規則性が低下せず、斯か
る効果は当業者にとって極めて大きな利益をもたらすも
のである。
In the industrial production of α-olefin polymers, it is common to allow hydrogen to coexist during polymerization from the viewpoint of MI control, but the catalyst component using magnesium chloride as a carrier does not require hydrogen coexistence. However, it had the disadvantage that the activity and stereoregularity were significantly reduced. However, when α-olefins are polymerized using the catalyst component obtained according to the present invention, the activity and stereoregularity hardly decrease even when hydrogen is present during the polymerization, and such effects are suppressed. is of great benefit to those skilled in the art.

本発明において使用されるジアルコキシマグネ/ラムと
しては、ジエトキ/マグネシウム、ジグトキンマク゛ネ
シウム、ジフェノキンマグネ/ラム、ジブロボキ/マグ
ネ/ウム、ジー5ee−ブトキンマグネ/ラム、ジーt
ert−ブトキンマグネシウム、ジイソブロボキシマグ
ネシウム等があげられる。
The dialkoxymagne/ram used in the present invention includes diethyl magnesium/magnesium, zigtquinone magnesium, diphenoquine magnesium/ram, dibroboxymagnet/magnesium, dibutquine magnesium/ram,
Examples include ert-butquin magnesium and diisobroboxymagnesium.

本発明において使用されるカルボン酸エステルとしては
、酢酸エチル、メタクリル酸メチルなどの脂肪族カルボ
ッ酸エステル類、トルイル酸エチル、アニス酸エチル、
安息香酸エチルなどの芳香族カルボン酸エステル類等が
あげられるが、これ等のうち好ましいものは芳香族カル
ボン酸エステル類である。
The carboxylic acid esters used in the present invention include aliphatic carboxylic acid esters such as ethyl acetate and methyl methacrylate, ethyl toluate, ethyl anisate,
Examples include aromatic carboxylic acid esters such as ethyl benzoate, and among these, aromatic carboxylic acid esters are preferred.

本発明において使用される炭素数1の液体の・・ロゲン
化炭化水素としては、四塩化炭素、クロロホルム、塩化
メチレン等があげられるが中でも塩化メチン/が好まし
い。
Examples of the liquid logenated hydrocarbon having 1 carbon atom used in the present invention include carbon tetrachloride, chloroform, methylene chloride, etc. Among them, methine chloride is preferred.

本発明において使用される一般式TiXイ(式中Xはハ
ロゲン元素である。)で表わされるハロゲン化チタンと
しては、TiCJ−+、’piBr4. Til<等が
あげられるが中でもTlC44が好捷しい。
The titanium halides represented by the general formula TiX (wherein X is a halogen element) used in the present invention include TiCJ-+, 'piBr4. Among them, TlC44 is preferable.

本発明における各成分の使用割合は生成する触媒成分の
性能に悪影響を及ぼすことの無い限り任意であり、特に
限定する電のではないが通常アルコキンマグネシウム1
2に対し、カルボン酸エステル類は0.01〜2y、好
ましくは旧〜1りの範囲であり、・・ロゲン化チタンは
0.17以上、好ましくは17以上の範囲で用いられる
。また、炭素数1の液体の・・ロゲン化炭化水素は懸濁
液を形成し得る量であれば任意の割合で用いられる。
The ratio of each component to be used in the present invention is arbitrary as long as it does not adversely affect the performance of the catalyst component produced, and although there are no particular limitations, it is usually 1 part alcoquine magnesium.
2, carboxylic acid esters are used in a range of 0.01 to 2y, preferably old to 1y, and titanium rogenide is used in a range of 0.17 or more, preferably 17 or more. Further, the liquid rogenated hydrocarbon having one carbon number may be used in any proportion as long as it can form a suspension.

本発明におけるアルコキンマグネシウムの炭素数1の液
体の・・ロゲン化炭化水素への懸濁は、通常室部ないし
用いられるノ・ロゲン化炭化水素の沸点寸での温度で1
00時間以下、好ましくは10時間以下の範囲で行なわ
れる。この際該懸濁液が均一な溶液にならないことが必
要である。また、該懸濁液とハロゲン化チタンの接触は
、通常−20℃ないし用いられる・・ロゲン化チタンの
沸点まで、好−ましくは−10℃〜100℃の温度で1
0分ないし10時間の範囲で行なわれる。この際該懸濁
液をノ・ロゲノ化チタンに加えることが好ましい。また
、カルボ/酸エステルはいずれの時点で用いることも可
能である。
In the present invention, the suspension of alkoxymagnesium in a liquid containing 1 carbon atom in a halogenated hydrocarbon is usually carried out in a room or at a temperature at the boiling point of the halogenated hydrocarbon used.
It is carried out within a range of 00 hours or less, preferably 10 hours or less. At this time, it is necessary that the suspension does not become a homogeneous solution. Further, the suspension and the titanium halide are brought into contact at a temperature of usually -20°C to the boiling point of the titanium halide used, preferably -10°C to 100°C.
The duration ranges from 0 minutes to 10 hours. At this time, it is preferable to add the suspension to the titanium chloride. Also, the carbo/acid ester can be used at any point.

本発明における各成分の接触手段は各成分が充分に接触
し得る方法であれば特に制限は無いが、通常攪拌機を具
備した容器を用いて攪拌し乍ら行なわれる。
The means for contacting each component in the present invention is not particularly limited as long as each component can be brought into sufficient contact with each other, but it is usually carried out while stirring using a container equipped with a stirrer.

本発明において各成分の接触後n−へブタン等の有機溶
媒で洗浄することも可能であり、更にハロゲン化チタン
との接触を繰返し行なうことも妨げない。
In the present invention, it is also possible to wash each component with an organic solvent such as n-hebutane after contact with each other, and further contact with titanium halide may be repeated.

本発明のこれ等一連の操作は酸素、水分等の不存在下に
行なわれることが好ましい。
These series of operations of the present invention are preferably carried out in the absence of oxygen, moisture, and the like.

以上の如くして製造された触媒成分は有機アルミニウム
化合物と組合せてα−オレフィン類重合用触媒を形成す
る。使用される有機アルミニウム化合物は触媒成分中の
チタン原子のモル当りモル比で1〜1000、好ましく
は1〜300の範囲で用いられる。また重合に際して電
子供与性物質などの第三成分を添加使用することも妨げ
ない。
The catalyst component produced as described above is combined with an organoaluminum compound to form a catalyst for polymerizing α-olefins. The organoaluminum compound used is used in a molar ratio of 1 to 1000, preferably 1 to 300, per mole of titanium atoms in the catalyst component. Further, it is not prohibited to add and use a third component such as an electron-donating substance during the polymerization.

重合は有機溶媒の存在下でも或いは不存在下でも行なう
ことができ、まだα−オレフィン単量体は気体および液
体のいずれの状態でも用いることができる。重合温度は
200℃以下好ましくは100℃以下であり、重合圧力
はI OOKV/cni−a以下、好寸しくば5QK7
//c++1・0以下である。
Polymerization can be carried out in the presence or absence of organic solvents, yet the alpha-olefin monomers can be used in either gaseous or liquid form. The polymerization temperature is 200°C or less, preferably 100°C or less, and the polymerization pressure is 1 OOKV/cni-a or less, preferably 5QK7.
//c++1.0 or less.

本発明方法により製造された触媒成分を用いて単独重合
捷たは共重合されるα−オレフィン類はプロピレン、]
−フテン 4− メチル−1−ヘ7テノ等であり、ま/
こα−オレフィン類とエチレンとの共重合も可能である
The α-olefins to be homopolymerized or copolymerized using the catalyst component produced by the method of the present invention are propylene,
-phthene 4-methyl-1-he7teno, etc.
Copolymerization of α-olefins and ethylene is also possible.

以下本発明を実施例および比較例により具体的に説明す
る。
The present invention will be specifically explained below using Examples and Comparative Examples.

実施例1 〔触媒成分の調製〕 窒素ガスで充分に置換され、攪拌機を具備した容量20
0m/!の丸底フラスコにジエトキ/マグネ/ウム52
、安息香酸エチル2.0mおよび塩化メチレノ25 m
lを装入して懸濁状態とし、還流下で1時間攪拌した。
Example 1 [Preparation of catalyst components] A 20-volume tank sufficiently purged with nitrogen gas and equipped with a stirrer
0m/! Dietki/Magne/Um 52 in a round bottom flask
, ethyl benzoate 2.0 m and methylene chloride 25 m
The suspension was stirred under reflux for 1 hour.

次いでこの懸濁液を攪拌機を具備した容量500m1!
の丸底フラスコ中の0℃のTic/−+ 200me中
に圧送後90℃に昇温して2時間攪拌しながら反応させ
た。反応終了後40℃のn−へブタン200m1で3回
洗浄し、新たにTiC14200mlを加えて90℃で
2時間攪拌しながら反応させた。反応終了後40℃まで
冷却し、次いでn−へフリノ200m/!による洗浄を
繰り返し行ない、洗浄液中に塩素が検出されなくなった
時点で洗浄−終了として触媒成分とした。なお、この際
該触媒成分中の固液を分離して固体分のチタン含有率を
測定したところ351重量%であった。
This suspension was then poured into a volume of 500ml equipped with a stirrer.
The mixture was pumped into Tic/-+ 200me at 0°C in a round bottom flask, heated to 90°C, and reacted with stirring for 2 hours. After the reaction was completed, the mixture was washed three times with 200 ml of n-hebutane at 40°C, and 200 ml of TiC14 was newly added, followed by reaction at 90°C for 2 hours with stirring. After the reaction was completed, it was cooled to 40°C, and then n-hefurino 200m/! The cleaning was repeated, and when chlorine was no longer detected in the cleaning solution, the cleaning was completed and the catalyst component was used. At this time, the solid and liquid in the catalyst component was separated and the titanium content in the solid was measured and found to be 351% by weight.

〔重 合」 窒素ガスで完全に置換された内容積2.Otの攪拌装置
付オー 1−クレープに、n−へブタノ700m1を装
入し、窒素ガス雰囲気を保ちつつトリエチルアルミニウ
ム301■、P−)ルイル酸エチル137mV、次いで
前記触媒成分をチタン原子として0.5ml装入した。
[Polymerization] Internal volume completely replaced with nitrogen gas2. 700 ml of n-hebutano was charged into an Ot crepe equipped with a stirrer, and while maintaining a nitrogen gas atmosphere, 301 ml of triethylaluminum, 137 mV of ethyl p-)ruylate, and then 0.0 ml of titanium atoms were added to the catalyst component. 5 ml was charged.

その後水素ガス300−を装入し60℃に昇温してプロ
ピレンガスを導入しつつ6 K9/ca・0の圧力を維
持して2時間の重合を行なった。重合終了後得られた固
体重合体を戸別し、80℃に加温して減圧乾燥した。一
方r液を濃縮して重合溶媒に溶存する重合体の量を(ト
)とし、固体重合体の量を(B)とする。また得られた
固体重合体を沸騰n−へブタンで6時間抽出しn−へブ
タンに不溶解の重合体を得、この量を(C)とする。
Thereafter, 300 °C of hydrogen gas was charged, the temperature was raised to 60°C, and while propylene gas was introduced, a pressure of 6K9/ca·0 was maintained and polymerization was carried out for 2 hours. After the polymerization was completed, the obtained solid polymer was separated, heated to 80° C., and dried under reduced pressure. On the other hand, the amount of polymer dissolved in the polymerization solvent after concentrating the r liquid is defined as (g), and the amount of solid polymer is defined as (B). Further, the obtained solid polymer was extracted with boiling n-hebutane for 6 hours to obtain a polymer insoluble in n-hebutane, and this amount was designated as (C).

触媒成分当りの重合活性0を式 寸だ結晶性重合体の収率■を式 で表わし、全結晶性重合体の収率■を式よりめた。また
生成重合体中の残留塩素を(G)、生成重合体の旧を■
で表わす。得られた結果は、第1表に示す通りである。
The polymerization activity per catalyst component (0) was calculated using the formula, the yield (2) of the crystalline polymer was expressed by the formula, and the yield (2) of the total crystalline polymer was determined from the formula. In addition, the residual chlorine in the produced polymer (G) and the old one in the produced polymer are
It is expressed as The results obtained are shown in Table 1.

実施例2 安息香酸エチルを2.5ml使用した以夕tは実施秒す
1と同様にして実験を行なった。なお、この際の固体分
生のチタン含有率は3.31重量%であった。重合に際
しては実施例1と同様にして実験を11なった。得られ
た結果は第1表に示す通りである。
Example 2 An experiment was conducted in the same manner as in Example 1 except that 2.5 ml of ethyl benzoate was used. Note that the titanium content of the solid fraction at this time was 3.31% by weight. During the polymerization, 11 experiments were conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

実施例3 懸濁液を圧送する際、T i C14の温度を室温とし
た以外は実施例1と同様にして実験を行なった。
Example 3 An experiment was conducted in the same manner as in Example 1, except that the temperature of T i C14 was kept at room temperature when pumping the suspension.

なお、この際の固体分生のチタン含有率は3.62重量
%であった。重合に際しては実施例1と同様にし、て実
験を行なった。得られた結果は第1表に示す通りである
Incidentally, the titanium content of the solid fraction at this time was 3.62% by weight. During polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

実施例4 塩化メチレンを50 ml使用した以外は実施例1と同
様にして実験を行なった。なお、この際の固体分生のチ
タン含有率は3.56重量%であった。重合に際しては
実施例1と同様にして実験を行なった。
Example 4 An experiment was conducted in the same manner as in Example 1 except that 50 ml of methylene chloride was used. Incidentally, the titanium content of the solid fraction at this time was 3.56% by weight. During polymerization, an experiment was conducted in the same manner as in Example 1.

得られた結果は第1表に示す通りである。The results obtained are shown in Table 1.

実施例5 安息香酸エチルの代りにP−アニス酸エチルを用いた以
外は実施例1と同様例して実験を行なった。なお、この
際の固体分生のチタン含有率は358重量%であった。
Example 5 An experiment was carried out in the same manner as in Example 1 except that ethyl P-anisate was used instead of ethyl benzoate. Note that the titanium content of the solid fraction at this time was 358% by weight.

重合に際しては実施例1と同様にして実験を行なった。During polymerization, an experiment was conducted in the same manner as in Example 1.

得られた結果は第1表に示す通りである。The results obtained are shown in Table 1.

比較例J ■、2−ジクロルエタンのかわりに11−ヘプタンを用
いた以外は実施例1と同様にして実験を行なった。なお
、この際の固体分生のチタン含有率は25656重量%
った。
Comparative Example J (1) An experiment was carried out in the same manner as in Example 1 except that 11-heptane was used instead of 2-dichloroethane. In addition, the titanium content of the solid agglomerate at this time was 25,656% by weight.
It was.

重合に際しては触媒成分をチタン原子として0.1m7
使用した以外は実施例1と同様にして実験を行なった。
During polymerization, the catalyst component is 0.1 m7 as titanium atoms.
The experiment was conducted in the same manner as in Example 1 except that the following materials were used.

得られた結果は第1表に示す通りである。The results obtained are shown in Table 1.

比較例2 窒素ガスで充分に置換され、攪拌機を具備した容量20
0m1!の丸底フラスコにジエトキ/マグネ/ウム57
、安息香酸エチル2.0m7!およびTiCt425m
を装入し、70℃で1時間攪拌下で反応させた。次いで
攪拌機を具備した容量500dの丸底フラスコ中の0℃
のTiCt4200 ml中に圧送後、70℃に列部し
て2時間攪拌しながら反応させた。反応終了後40℃寸
で冷却し、次いでn−ヘプタン200mj!による洗浄
を繰返し行ない、洗浄液中に塩素が検出されなくなった
時点で洗浄終了として触媒成分とした。なお、この際の
固体分生のチタン含有率を測定したところ3.99重量
%であった。
Comparative Example 2 Capacity 20 fully purged with nitrogen gas and equipped with a stirrer
0m1! Dietki/Magne/Um 57 in a round bottom flask
, ethyl benzoate 2.0m7! and TiCt425m
was charged and reacted at 70° C. for 1 hour with stirring. Then at 0 °C in a 500 d capacity round bottom flask equipped with a stirrer.
After pressure-feeding the mixture into 4200 ml of TiCt, the mixture was heated to 70° C. and reacted with stirring for 2 hours. After the reaction was completed, it was cooled to 40°C, and then 200mj of n-heptane was added. The cleaning was repeated, and when chlorine was no longer detected in the cleaning solution, the cleaning was completed and the catalyst component was used. The titanium content of the solid fraction was measured and found to be 3.99% by weight.

重合に際しては触媒成分をチタン原子として01〜使用
した以外は実施例1と同様にして実験を行なった。得ら
れた結果は第1表に示す通りである。
During the polymerization, an experiment was conducted in the same manner as in Example 1, except that titanium atoms were used as catalyst components. The results obtained are shown in Table 1.

第 1 表Table 1

Claims (1)

【特許請求の範囲】[Claims] (1) (a)一般式Mg (OR)2 (式中Rはア
ルキル基、/クロアルキル基捷たはアリール基である。 )で表わされるジアルコキ7マグネシウムを、(b)炭
素数1の液体の・・ロゲン化炭化水素中に懸濁させ、し
かる後に(c)一般式TlX4(式中Xはハロゲン元素
である。)で表わされるノ・ロゲ/化チタンに接触させ
ることよりなり、この際いずれかの時点で(d)カルボ
ン酸エステルと接触させることを特徴とするα−オレフ
イノ類重合用触媒成分の製造方法。
(1) (a) dialkoxy7magnesium represented by the general formula Mg (OR)2 (in the formula, R is an alkyl group, /chloroalkyl group, or aryl group), and (b) a liquid having 1 carbon number. ...suspended in a halogenated hydrocarbon, and then brought into contact with (c) titanium chloride represented by the general formula TlX4 (wherein X is a halogen element); A method for producing a catalyst component for polymerizing α-olefinos, which comprises bringing it into contact with (d) a carboxylic acid ester at some point.
JP14668883A 1983-08-12 1983-08-12 Production of catalyst component for alpha-olefin polymerization Granted JPS6038407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14668883A JPS6038407A (en) 1983-08-12 1983-08-12 Production of catalyst component for alpha-olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14668883A JPS6038407A (en) 1983-08-12 1983-08-12 Production of catalyst component for alpha-olefin polymerization

Publications (2)

Publication Number Publication Date
JPS6038407A true JPS6038407A (en) 1985-02-28
JPH0446283B2 JPH0446283B2 (en) 1992-07-29

Family

ID=15413323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14668883A Granted JPS6038407A (en) 1983-08-12 1983-08-12 Production of catalyst component for alpha-olefin polymerization

Country Status (1)

Country Link
JP (1) JPS6038407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294713A (en) * 1988-05-23 1989-11-28 Shin Etsu Chem Co Ltd Manufacture of vinyl chloride polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152710A (en) * 1979-05-17 1980-11-28 Shell Int Research Olefin polymerization catalyst composition and olefin polymerization therewith
JPS5912904A (en) * 1982-07-15 1984-01-23 Toho Titanium Co Ltd Preparation of catalytic component for polymerizing alpha-olefin
JPS59179510A (en) * 1983-03-29 1984-10-12 Toa Nenryo Kogyo Kk Preparation of ethylene copolymer
JPS59179508A (en) * 1983-03-29 1984-10-12 Toa Nenryo Kogyo Kk Preparation of ethylene copolymer
JPS59221308A (en) * 1983-05-31 1984-12-12 Toho Titanium Co Ltd Preparation of catalytic component for polymerizing alpha-olefin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152710A (en) * 1979-05-17 1980-11-28 Shell Int Research Olefin polymerization catalyst composition and olefin polymerization therewith
JPS5912904A (en) * 1982-07-15 1984-01-23 Toho Titanium Co Ltd Preparation of catalytic component for polymerizing alpha-olefin
JPS59179510A (en) * 1983-03-29 1984-10-12 Toa Nenryo Kogyo Kk Preparation of ethylene copolymer
JPS59179508A (en) * 1983-03-29 1984-10-12 Toa Nenryo Kogyo Kk Preparation of ethylene copolymer
JPS59221308A (en) * 1983-05-31 1984-12-12 Toho Titanium Co Ltd Preparation of catalytic component for polymerizing alpha-olefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294713A (en) * 1988-05-23 1989-11-28 Shin Etsu Chem Co Ltd Manufacture of vinyl chloride polymer

Also Published As

Publication number Publication date
JPH0446283B2 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
JPS6155104A (en) Olefin polymerization catalyst component and catalyst
JPS6067508A (en) Polymerization of olefin
JPS63168408A (en) Preparation of polyolefin
JPS6038407A (en) Production of catalyst component for alpha-olefin polymerization
JPS59142206A (en) Production of catalyst component for alpha-olefin polymerization
JPH0222310A (en) Production of propylene copolymer
JPS5912904A (en) Preparation of catalytic component for polymerizing alpha-olefin
JPS59221308A (en) Preparation of catalytic component for polymerizing alpha-olefin
JPH0415809B2 (en)
JPS59213709A (en) Preparation of catalytic component for alpha-olefin polymerization
JPH0565522B2 (en)
JPS6038406A (en) Production of catalyst component for olefin polymerization
JP2617901B2 (en) Method for producing solid catalyst component for olefin polymerization
JPS6067510A (en) Production of catalyst components for olefin polymerization
JPH059445B2 (en)
JPS6018504A (en) Preparation of catalyst component for polymerization of olefin
JPH0446284B2 (en)
JPS61103907A (en) Catalytic components and catalyst therefrom for olefin polymerization
JPS6323202B2 (en)
JPH01245002A (en) Catalyst for polymerizing olefins
JPS61233005A (en) Catalyst component for polymerizing olefin and catalyst
JPS60184506A (en) Catalyst component and catalyst for polymerization of olefin
JPS648004B2 (en)
JPS6222807A (en) Production of columnar polyolefin
JPS61108612A (en) Catalyst component for olefin polymerization and catalyst