JPS6037849A - Voice signal transmission system - Google Patents

Voice signal transmission system

Info

Publication number
JPS6037849A
JPS6037849A JP14625283A JP14625283A JPS6037849A JP S6037849 A JPS6037849 A JP S6037849A JP 14625283 A JP14625283 A JP 14625283A JP 14625283 A JP14625283 A JP 14625283A JP S6037849 A JPS6037849 A JP S6037849A
Authority
JP
Japan
Prior art keywords
signal
decoder
channel
adpcm
audio signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14625283A
Other languages
Japanese (ja)
Inventor
Takeshi Tanaka
剛 田中
Masanori Kajiwara
梶原 正範
Koichi Nara
奈良 宏一
Michinobu Ohata
大畑 道信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14625283A priority Critical patent/JPS6037849A/en
Publication of JPS6037849A publication Critical patent/JPS6037849A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/17Time-division multiplex systems in which the transmission channel allotted to a first user may be taken away and re-allotted to a second user if the first user becomes inactive, e.g. TASI

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

PURPOSE:To improve the line utilizing efficiency by setting initially a forecast coefficient and a step size for a coder and a decoder of a channel to which no channel is allocated. CONSTITUTION:A reception side multiplexer 40 is changed over in synchronizing with a transmission side multiplexer 36, a signal subject to time division multiplex at a line 38 is shared to channels CH1, CH2..., and the decoder 42 converts the signal into an analog signal. When a no-talking detector 34 detects the absence of talking, the coder 30 and the decoder 42 reset the coefficient of the forecast device to ''0'' and also minimize the step size of a quantizer.

Description

【発明の詳細な説明】 発明の技術分野 本発明はDSIとADPCMを組み合せた音声信号伝送
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an audio signal transmission system that combines DSI and ADPCM.

従来技術と問題点 電話の音声信号は言葉の区切り、次の言葉が見付からな
い、相手の返事を待つ等の種々の理由で途切れがあるの
が普通である。しかし通信回線から見れば途切れ期間中
は遊んでいる訳で、無駄がある。そこで途切れ期間は他
のチャネルの音声信号の伝送に利用すると回線の高すノ
率が図れる。か\る伝送方式がD S I (Degi
tal 5peach 1nLerporation)
である。第1図はこれを説明する図で、ta+はチャネ
ルlの音声信号、(blはチャネル2の音声信号を示し
、共に途切れ又は空き期間T1〜1゛3がある。(C1
はチャネルlの空き期間T1にチャネル2の音声信号を
送った場合の信号波形を示し、Fl、’F2はステータ
スフラグである。受信側ではこのステータスフラグによ
り音声信号を区切り、元のチャネル1.2の信号に戻す
。このように途切れ期間を利用して他チャネルの音声信
号を送ると回線の有効利用が図られ、海底ケーブル、衛
星通信など高価な回線を使用する場合に適切である。
Prior Art and Problems Telephone voice signals usually have interruptions due to various reasons such as breaks between words, not being able to find the next word, waiting for a reply from the other party, etc. However, from the point of view of the communication line, it is a waste of time because it is idle during the interruption period. Therefore, if the interruption period is used for transmitting audio signals of other channels, a high link ratio can be achieved. The transmission method is DSI (Digi
tal 5peach 1nLerporation)
It is. FIG. 1 is a diagram explaining this, where ta+ indicates the audio signal of channel 1, (bl indicates the audio signal of channel 2, and both have interruptions or idle periods T1 to 1゛3.(C1
shows the signal waveform when the audio signal of channel 2 is sent during the idle period T1 of channel 1, and Fl and 'F2 are status flags. On the receiving side, the audio signal is separated by this status flag and returned to the original channel 1.2 signal. By using the interruption period to send audio signals of other channels in this way, lines can be used effectively, and this is appropriate when using expensive lines such as submarine cables and satellite communications.

また音声信号の伝送にはL RE (Low Rate
 IEncoding )と呼ばれる符号化方式がある
。通電の符号化は64になどで行なわれるがLREでは
32に、16に、2.4になどで行なわれる。帯域圧縮
に有効なADPCMもその1つである。AD(Adap
Live Differential ) PCMは差
が著しくなると量子化ステップ及び又は予測器の係数を
変えるDPCMで第2図にその符号化器を、第3図に復
号器を示す。第2図でS tn+は入力音声信号であり
、これは減算器16で予測信号P (nlとの差をとら
れ、その差E tn+と適応論理回路12の出力V (
n)との積1Esfn)が非均−量子化器10に入力し
、量子化信号1 (nlとなって送出される。予測信号
P (n)は逆量子化器14等により作られる。即ち量
子化出力I (n)は逆量子化器14に入力して量子化
器10の入力△ に相当するアナログ信号Es(nlに変換され、これと
△ 適応論理回路12の出力Δfn)との積E (n)と予
測信号P (nlとの和(これでS (nl相当のもの
になる)がメモリ素子20aに格納される。メモリ素子
は20a〜20dと複数個あり、サンプリングクロック
で逐次シフトされ、各メモリ素子の出力に係数a1〜a
4を乗じたものの和が加算器22でめられる。この加算
器22の出力が予測信号P (n)であり、これは本例
では現時点から4サンプリングタイム前迄の各音声信号
に係数a1〜a4を乗じてめられたものである。ADP
CMでは予測信号P fnlと入力信号S (nlとの
差が大きい(予測が当らない)と係数a1〜a4が誤差
を小さくするように修正され、また量子化ステップが変
更される。
Additionally, LRE (Low Rate) is used to transmit audio signals.
There is an encoding method called IEncoding. Encoding of energization is performed at 64, etc., but in LRE, it is performed at 32, 16, 2.4, etc. ADPCM, which is effective for band compression, is one of them. AD
Live Differential) PCM is a DPCM that changes the quantization step and/or coefficients of the predictor when the difference becomes significant. FIG. 2 shows its encoder, and FIG. 3 shows its decoder. In FIG. 2, S tn+ is an input audio signal, which is subtracted from the predicted signal P (nl) by a subtracter 16, and the difference E tn+ and the output V (
The product 1Esfn) with n) is input to the non-uniform quantizer 10 and sent out as a quantized signal 1 (nl). The predicted signal P (n) is generated by the inverse quantizer 14, etc. The quantized output I (n) is input to the inverse quantizer 14 and is converted into an analog signal Es (nl) corresponding to the input △ of the quantizer 10, and is the product of this and the output △fn of the adaptive logic circuit 12. The sum of E (n) and the prediction signal P (nl (this corresponds to S (nl)) is stored in the memory element 20a. There are multiple memory elements 20a to 20d, and they are sequentially shifted using the sampling clock. and coefficients a1 to a are applied to the output of each memory element.
The adder 22 calculates the sum of the products multiplied by 4. The output of this adder 22 is a prediction signal P (n), which in this example is obtained by multiplying each audio signal from the current time up to four sampling times ago by coefficients a1 to a4. ADP
In CM, if the difference between the predicted signal Pfnl and the input signal S(nl is large (the prediction is incorrect), the coefficients a1 to a4 are modified to reduce the error, and the quantization step is changed.

復号は符号化の逆であり、第3図に示すように、送信側
からの量子化信号I (nlが逆量子化器24でEsf
n)に変換され、適応論理回路26で作られノコΔ(・
)との積Q(n)が加算器28に入力し、予測信号P(
nlとの和をめられてこれが入力音声信号S tn+相
△ 当の出力音声信号S (nlになる。予測信号P (n
lは送信側と同様に作られる。なおgはへソファアンプ
である。受信側の復号で重要なことは予測器の係数a1
〜a4及び量子化ステップなどが送信側と同じであるこ
とである。
Decoding is the opposite of encoding, and as shown in FIG. 3, the quantized signal I (nl) from the transmitting side is
n), and is created by the adaptive logic circuit 26 and is converted to Δ(・
) is input to the adder 28, and the predicted signal P(
This becomes the input audio signal S tn + phase △ corresponding output audio signal S (nl. Prediction signal P (n
l is created in the same way as on the sender side. Note that g is a sofa amplifier. What is important in decoding on the receiving side is the coefficient a1 of the predictor.
~a4, quantization step, etc. are the same as on the transmitting side.

か\るADPCMにDSIを適用すると、DSIでは無
信号になれば送信チャネルが切換るから、送信を中断さ
れたチャネルの処理が問題である。
When DSI is applied to ADPCM, the problem is how to handle channels whose transmission is interrupted, because DSI switches the transmission channel when there is no signal.

ADPCMは各時点での音声信号の相関性に基ずくもの
であるが、信号が中断してしまったのでは相関性が失な
われ正確な予測信号の生成が期待できない。
ADPCM is based on the correlation of audio signals at each point in time, but if the signal is interrupted, the correlation is lost and accurate prediction signal generation cannot be expected.

発明の目的 本発明はカミる問題に対処しようとするもので、DSI
においてもAD、PCMを有効に動作させ、回線使用す
J率の一層の向上を図ろうとするものである。
OBJECTS OF THE INVENTION The present invention seeks to address the problems associated with DSI
The aim is to operate AD and PCM effectively and further improve the J rate of line usage.

発明の構成 本発明はA D P 、CMの音声信号をDSIで送る
音声信号伝送方式において、通話路のわりあてられてい
ないチャンネルの送信側ADPCM符号化器および受信
側ADPCM復号器では、予測器係数およびステップサ
イズをあらかじめ定められた値に初期設定することを特
徴とするが、次に実施例を参照しながらこれを説明する
Composition of the Invention The present invention provides an audio signal transmission system in which audio signals of ADP and CM are transmitted using DSI, and in a transmitting side ADPCM encoder and a receiving side ADPCM decoder of a channel to which a communication path is not assigned, predictor coefficients are The present invention is characterized in that the step size and step size are initially set to predetermined values, which will be explained next with reference to embodiments.

発明の実施例 第4図はDSIを適用したADPCM音声信号伝送シス
テムを示し、30は第2図に示したADPCM符号化器
で図では一括して示すが、複数チャネルCHI、CH2
,・・・・・・に対してそれぞれ設けられる。32はD
SIで、無通話検出器34およびマルチプレクサ36な
どからなる。検出器34が無通話を検出するとマルチプ
レクサ36はその通話中チャネルを他の通話中チャネル
に切換え、該他の通話中チャネルが通信回線38へ接続
されその信号が受信側へ伝送されるようにする。受信側
にはマルチプレクサ40及びADPCMの復号器42が
あり、マルチプレクサ40は送信側のそれ36と同期し
て切換って、回線38では時分割多重化された信号を各
チャネルCHI、CH2゜・・・・・・別に振り分け、
復号器42はそれをアナログ音声信号に変換する。
Embodiment of the Invention FIG. 4 shows an ADPCM audio signal transmission system to which DSI is applied, and 30 is the ADPCM encoder shown in FIG.
,... are provided respectively. 32 is D
The SI includes a no-call detector 34, a multiplexer 36, and the like. When the detector 34 detects a non-call, the multiplexer 36 switches the busy channel to another busy channel so that the other busy channel is connected to the communication line 38 and its signal is transmitted to the receiving side. . There is a multiplexer 40 and an ADPCM decoder 42 on the receiving side, and the multiplexer 40 switches in synchronization with the decoder 42 on the transmitting side, and the line 38 sends the time-division multiplexed signals to each channel CHI, CH2°, etc. ...distributed separately,
Decoder 42 converts it to an analog audio signal.

無通話でチャネルが切換えられると今まで回線で接続さ
れていたチャネルの送信側と受信側は接続を断たれ、両
者の予測信号は大きくずれる。そこで本発明ではチャネ
ル切換ねり時にその切換信号をDSI32より受け、A
DPCMの符号器30及び復号器42は予測器の係数a
1〜a4を0にリセットし、また量子化器のステップサ
イズを最小にする。第5図はこれを説明する図で、検出
器34が無音(無通話)を検出するとその検出信号は上
述のようにチャネル切換えに供せられると共に、今まで
接続されていたADPCMコーダ及びデコーダに入力し
て予測器係数及びステップサイズの変更を行なう。第6
図送信側でのステップサイズ変更を説明する図で、適応
論理回路12がm子化器10及び逆量子化器14に信号
を送り、量子化ステップサイズを変更させる差分量子化
信号I(ロ)は一般には4ビツトで構成されるが、差分
には大小あり、そこで各ビットが表わす大きさくステッ
プサイズ)を変更して差分大、小に対処する。このよう
にすると、第2図等から明らかなように予測信号P (
nlは0となり、入力音声信号S (nlはそのま\ 
(差分でなく)量子化されて送出され、受信側で復号さ
れる。次のサンプリング時点では△ alEfnlが予測信号P (nlとなり、これとの差
分が量子化され、送出される。以下同様であり、第2図
および第3図のADPCMでは4サンプリング後に正常
状態に復帰する。この間、送、受信側の予測信号は0か
ら始まる同じ値のものであるから、復号は正しく行なわ
れる。
If the channel is switched without a call, the transmitting and receiving sides of the channel that were previously connected by line will be disconnected, and the predicted signals of the two will deviate greatly. Therefore, in the present invention, when switching channels, the switching signal is received from the DSI 32, and the A
The DPCM encoder 30 and decoder 42 use the predictor coefficient a
1 to a4 are reset to 0 and the quantizer step size is minimized. FIG. 5 is a diagram explaining this. When the detector 34 detects silence (no call), the detection signal is used for channel switching as described above, and is also sent to the previously connected ADPCM coder and decoder. Enter to change predictor coefficients and step size. 6th
This is a diagram illustrating step size change on the transmitting side, in which the adaptive logic circuit 12 sends a signal to the m-digitizer 10 and the inverse quantizer 14 to change the quantization step size using a differential quantization signal I (b). is generally composed of 4 bits, but the difference can be large or small, so the size (step size) represented by each bit is changed to deal with large or small differences. In this way, as is clear from FIG. 2 etc., the predicted signal P (
nl becomes 0, and the input audio signal S (nl remains as it is\
It is quantized (not a difference) and sent out, and decoded on the receiving side. At the next sampling point, △ alEfnl becomes the predicted signal P (nl, and the difference from this is quantized and sent out. The same goes for the rest, and in the ADPCM of FIGS. 2 and 3, the normal state is returned after 4 samplings. During this time, since the predicted signals on the transmitting and receiving sides have the same value starting from 0, decoding is performed correctly.

中断の送信再開に当って音声信号は小振幅から漸増する
ことが多い。送信中断時にステップサイズを最小にリセ
ットすると、か−る特質によく適合させることができる
When restarting transmission after an interruption, the audio signal often gradually increases from a small amplitude. Resetting the step size to a minimum upon interruption of transmission can better accommodate such characteristics.

中断時のADPCMのリセットは係数a1〜a4を全て
0とする代りに、al=1.a2〜a4−〇としてもよ
い。この場合は送信再開時の予測信号は中断直前に送っ
た信号になり、それとの差分が送信再開時に送られ、復
号される。al=l。
When resetting ADPCM at the time of interruption, instead of setting all coefficients a1 to a4 to 0, al=1. It may be a2 to a4-〇. In this case, the predicted signal when transmission is restarted is the signal sent immediately before the interruption, and the difference between it and that signal is sent and decoded when transmission is restarted. al=l.

a 2〜a 4=0はDPCMであり、本例はADPC
Mの符号化器および復号器を中断中はDPCMのアルゴ
リズ↓、にロックすることになる。係数a1〜a4を全
てOとする方式より本性の方が追従特性が良好になる。
a2 to a4=0 are DPCM, and this example is ADPC
While the M encoder and decoder are suspended, they will be locked to the DPCM algorithm ↓. The original method has better tracking characteristics than the method in which the coefficients a1 to a4 are all O.

初期をオールθ等、第2図等の例で言えばa1〜a4が
0000又は1000にし、中凹み+iijの状態保持
などにはしないと、次のような利点もある。即ちDSi
は第7図に示すようにADPCMコーダ30、DSi(
詳しくはそのマルチプレクサ)32、回線38、DSi
(同)32、ADPCMのデコーダ42の構成とする(
これは第4図などと同じ)代りに第8図に示すようにD
Si32、ADPCMコーダ30、回線38、ADPC
Mデコーダ42、DSijOの構成にしてもよく、この
方がコーグ、デコーダの個数を減少できる。即し第7図
の例ではchiからch24までの24チヤネルをそれ
ぞれコーグ30、デコーダ42で符号化および復号しな
ければならず、コーグ、デコーダは各24個必要である
が、第8図の方式でばchlからch24までの24チ
ヤネルをDSiで12チヤネルにまとめ、それを符号化
および復号するので、コーグ30及びデコーダ42の個
数は各12個でよい。しかしこの方式では人、出力側チ
ャネルchi〜ch24とコーグ30、デコーダ42の
関係は固定されておらず、DSIにより無通話になった
チャネルが遮断され代って通話チャネルが接続されので
、各コーグ、デコーダは各チャネルに任意に割当てられ
た(その割当て要領はDSIが決定する)、中断前の状
態の記憶が無意味になる。この点oooo又は1000
への初期化は、有効である。
If the initial stage is set to all θ, etc., and in the example shown in FIG. 2, a1 to a4 are set to 0000 or 1000, and the state of the center concave + iij is not maintained, there are the following advantages. That is, DSi
As shown in FIG. 7, the ADPCM coder 30, DSi (
For details, see the multiplexer) 32, line 38, DSi
(Same) 32, the configuration of the ADPCM decoder 42 (
(This is the same as in Figure 4, etc.) Instead, D as shown in Figure 8.
Si32, ADPCM coder 30, line 38, ADPC
It is also possible to configure the M decoder 42 and DSijO, which can reduce the number of cogs and decoders. Therefore, in the example of FIG. 7, the 24 channels from chi to ch24 must be encoded and decoded by the cog 30 and the decoder 42, respectively, and 24 cogs and decoders are required, but the method shown in FIG. Preferably, the 24 channels from ch1 to ch24 are combined into 12 channels by the DSi and encoded and decoded, so the number of cogs 30 and decoders 42 may be 12 each. However, in this method, the relationship between the person, the output side channels chi to ch 24, the cog 30, and the decoder 42 is not fixed, and the DSI cuts off the channel that has become non-calling and connects the communication channel in its place, so each cog , a decoder is arbitrarily assigned to each channel (the assignment method is determined by the DSI), and the memory of the state before the interruption becomes meaningless. This point oooo or 1000
Initialization to is valid.

発明の詳細 な説明したように本発明ではADPCMした音声信号を
DSIで送るので一層の回線有効利用が図れ、そしてD
SIでのチャネル切換え時には切換えられるチャネルの
ADPCM符号化器及び復号器の予測器係数およびステ
ップサイズをプリセットするのでチャネル復旧時に送受
両側で予測信号が同じ大きさから正しく立上り、追従性
良好、正確な復号再開が得られる。
As described in detail, in the present invention, since the ADPCM audio signal is sent by DSI, more effective use of the line can be achieved.
When switching channels in SI, the predictor coefficients and step size of the ADPCM encoder and decoder of the channel to be switched are preset, so that when the channel is restored, the predicted signal on both the transmitting and receiving sides rises correctly from the same magnitude, has good followability, and is accurate. Decryption can be resumed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はDSIの説明図、第2図および第3図はADP
CM符号化器及び復号器のブロック図、第4図〜第6図
は本発明の実施例を示すブロック図、第7図および第8
図は変形例の説明図である。 図面でal〜a4は予測器係数、MUX、DMUXはチ
ャネル切換器である。 出願人 富士通株式会社 代理人弁理士 青 柳 稔
Figure 1 is an explanatory diagram of DSI, Figures 2 and 3 are ADP
Block diagrams of the CM encoder and decoder, FIGS. 4 to 6 are block diagrams showing embodiments of the present invention, and FIGS. 7 and 8 are block diagrams of the CM encoder and decoder.
The figure is an explanatory diagram of a modified example. In the drawing, al to a4 are predictor coefficients, and MUX and DMUX are channel switching devices. Applicant Fujitsu Limited Representative Patent Attorney Minoru Aoyagi

Claims (1)

【特許請求の範囲】[Claims] ADPCMの音声信号をDSIで送る音声信号伝送方式
において、通話路のわりあてられていないチャンネルの
送信側ADPCM符号化器および受信側ADPCM復号
器では、予測器係数およびステンブサイズをあらかじめ
定められた値に初期設定することを特徴とした音声信号
伝送方式。
In an audio signal transmission system that sends an ADPCM audio signal using DSI, the transmitting ADPCM encoder and the receiving ADPCM decoder for channels to which no communication path is assigned use predetermined values for the predictor coefficients and stave size. An audio signal transmission method characterized by initial settings.
JP14625283A 1983-08-10 1983-08-10 Voice signal transmission system Pending JPS6037849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14625283A JPS6037849A (en) 1983-08-10 1983-08-10 Voice signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14625283A JPS6037849A (en) 1983-08-10 1983-08-10 Voice signal transmission system

Publications (1)

Publication Number Publication Date
JPS6037849A true JPS6037849A (en) 1985-02-27

Family

ID=15403533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14625283A Pending JPS6037849A (en) 1983-08-10 1983-08-10 Voice signal transmission system

Country Status (1)

Country Link
JP (1) JPS6037849A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240123A2 (en) * 1986-02-28 1987-10-07 AT&T Corp. Digital encoder and decoder synchronization in the presence of data dropouts
JPH02181552A (en) * 1989-01-05 1990-07-16 Nippon Telegr & Teleph Corp <Ntt> High efficient code packet transmission system
JPH04167635A (en) * 1990-10-26 1992-06-15 Nec Corp Adaptive prediction type adpc encoder/decoder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240123A2 (en) * 1986-02-28 1987-10-07 AT&T Corp. Digital encoder and decoder synchronization in the presence of data dropouts
EP0240123A3 (en) * 1986-02-28 1989-05-24 American Telephone And Telegraph Company Digital encoder and decoder synchronization in the presence of data dropouts
JPH02181552A (en) * 1989-01-05 1990-07-16 Nippon Telegr & Teleph Corp <Ntt> High efficient code packet transmission system
JPH04167635A (en) * 1990-10-26 1992-06-15 Nec Corp Adaptive prediction type adpc encoder/decoder

Similar Documents

Publication Publication Date Title
CA1124899A (en) Time division multiplexed transmission system for telephone or like signals with frequency band compression
US4516241A (en) Bit compression coding with embedded signaling
US4330689A (en) Multirate digital voice communication processor
Maglaris et al. Performance models of statistical multiplexing in packet video communications
JPS5915544B2 (en) Digital signal multiplex transmission method
JPH0220938A (en) Voice multiplexing system
JPH0435941B2 (en)
JPS6029090A (en) Transfer quantization system of vector signal
RU2172557C2 (en) Communication device
JPS6037849A (en) Voice signal transmission system
JP2809524B2 (en) Digital transmission system synchronization
Kitawaki et al. Speech coding technology for ATM networks
US7305059B2 (en) Method and device for the clocked output of asynchronously received digital signals
US4110563A (en) Traffic sensitive modulation system
JPH05347594A (en) Transmission code error compensating device
JPH04324727A (en) Stereo coding transmission system
KR960003626B1 (en) Decoding method of transformed coded audio signal for people hard of hearing
JPS63232641A (en) Digital transmission method for voice signal by vocoder system
Kondo et al. Packet Speech Transmission on ATM Networks Using a Variable Rate Embedded ADPCM Coding Scheme
KR0136394B1 (en) Channel switching
Vaman et al. Digital Speech Interpolation Techniques
JP2937340B2 (en) Digital communication circuit system
JPS63232644A (en) Digital transmission method for voice signal by vocoder system
JP2550690B2 (en) Voice packet transfer method
JPH02246431A (en) Video audio multiplex system