JPS603741B2 - lead acid battery - Google Patents

lead acid battery

Info

Publication number
JPS603741B2
JPS603741B2 JP53165213A JP16521378A JPS603741B2 JP S603741 B2 JPS603741 B2 JP S603741B2 JP 53165213 A JP53165213 A JP 53165213A JP 16521378 A JP16521378 A JP 16521378A JP S603741 B2 JPS603741 B2 JP S603741B2
Authority
JP
Japan
Prior art keywords
glass mat
acid battery
electrode plate
lead
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53165213A
Other languages
Japanese (ja)
Other versions
JPS5591564A (en
Inventor
正温 坪田
克仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP53165213A priority Critical patent/JPS603741B2/en
Publication of JPS5591564A publication Critical patent/JPS5591564A/en
Publication of JPS603741B2 publication Critical patent/JPS603741B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明はペースト式鉛蓄電池の改良に関するもので、そ
の目的とするところは、充放電サイクル寿命の向上を計
ることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a paste type lead acid battery, and its purpose is to improve the charge/discharge cycle life.

障子桟状の格子に正極及び負極ペーストをそれぞれ充填
したペースト式極板を用いた鉛蓄電池は正極にクラツド
式極板を用いたそれにくらべ高率放電性能が優れており
、かつその構造、製法が比較的簡単であるため、自動車
用を始め、据置用や可搬用などにも広く用いられている
A lead-acid battery that uses a paste-type electrode plate in which a shoji frame-like grid is filled with positive and negative electrode pastes has superior high-rate discharge performance than one that uses a clad-type electrode plate for the positive electrode, and its structure and manufacturing method are Because it is relatively simple, it is widely used in automobiles as well as stationary and portable applications.

しかしながらこのペースト式正極板はクラッド式正極板
にくらべて寿命性能が悪いという欠点があった。クラッ
ド式正極板は、ガラス繊維や合成樹脂繊維製のチューブ
内に活物質が充填された構造であるから、活物質は常に
チューブで押圧されており、Pd02二P雌04の体積
変化による活物質層の膨張などの構造変化を抑制して活
物質層の崩壊を防止している。これに対しペースト式正
極板では、ガラスマットやセパレータが単にその表面に
当接しているだけであるから、充放電にともなう活物質
層の構造変化を抑制する作用はほとんどなく、このため
活物質層はクラッド式のそれにくらべ早期に崩壊して容
量低下をきたす訳である。
However, this paste-type positive electrode plate has a drawback that its life performance is poorer than that of a clad-type positive electrode plate. The clad type positive electrode plate has a structure in which the active material is filled in a tube made of glass fiber or synthetic resin fiber, so the active material is constantly pressed by the tube, and the active material is Structural changes such as layer expansion are suppressed to prevent the active material layer from collapsing. On the other hand, in a paste-type positive electrode plate, the glass mat or separator is simply in contact with its surface, so it has little effect on suppressing structural changes in the active material layer due to charging and discharging. This means that compared to the clad type, it collapses earlier and causes a decrease in capacity.

ペースト式正極板の寿命性能を改善するため、従来から
種々な提案が行なわれている。
Various proposals have been made to improve the life performance of paste-type positive electrode plates.

たとえばペースト式正極板を圧迫して活物質の脱落を防
止し、寿命の向上を計るための具体的な圧迫方法につい
ていくつかの提案がある。
For example, there are several proposals regarding specific compression methods for compressing a paste-type positive electrode plate to prevent the active material from falling off and to improve its lifespan.

しかしながら単に正極板を圧迫するだけでは、あまり寿
命は向上せずまた放電性能は逆に低下するなどの問題が
生じるため、実用には至らなかった。
However, simply compressing the positive electrode plate did not significantly improve the lifespan and caused problems such as a decrease in discharge performance, so it was not put into practical use.

本発明は上記欠点を除去せる圧迫式の鉛蓄電池を提供す
るもので、寿命性能は従釆型のペースト式鉛蓄電池の2
倍以上で、かつ放電性能(特に高率放電容量)が優れて
いることに特徴がある。
The present invention provides a pressure-type lead-acid battery that can eliminate the above-mentioned drawbacks, and has a life performance that is second to that of a conventional paste-type lead-acid battery.
It is characterized by its superior discharge performance (especially high rate discharge capacity).

本発明による鉛蓄電池の一実施例におけるェレメントの
基本構成単位を第1図に示す。図で1は厚さ2.仇吻の
ペースト式正極板、2および3はいずれもガラスマット
であるが、正極板表面に当俵しているガラスマット2は
、繊維蓬lr以下の細いガラス繊維よりなる繊密な構造
を有している。一方ガラスマット3は通常の鉛蓄電池用
(JISC2202)のもので、約19仏のガラス繊維
を用いた粗な構造を有している。なおガラスマット2は
第2図イの拡大平面図及び第2図口の拡大断面図に示す
ように多数の貫通孔2′を設けてある。この貫通孔2′
は0.5柳0〜3.0肋◇の直径とするのが適当であり
、打抜きや針状突起をつけたロールでプレスするなどの
方法により形成する。4はセパレータ、5はペースト式
負極板である。
The basic structural unit of the element in one embodiment of the lead-acid battery according to the present invention is shown in FIG. In the figure, 1 is the thickness 2. Paste-type positive electrode plates 2 and 3 are both glass mats, but the glass mat 2 that is on the surface of the positive electrode plate has a delicate structure made of thin glass fibers with a fiber thickness of 1r or less. are doing. On the other hand, the glass mat 3 is for ordinary lead-acid batteries (JISC2202), and has a rough structure using glass fiber of about 19 mm. The glass mat 2 is provided with a large number of through holes 2', as shown in the enlarged plan view of FIG. 2A and the enlarged sectional view of FIG. This through hole 2'
It is appropriate to have a diameter of 0.5 willow 0 to 3.0 ribs ◇, and it is formed by a method such as punching or pressing with a roll provided with needle-like protrusions. 4 is a separator, and 5 is a paste type negative electrode plate.

このようにして構成したェレメントを霞槽に挿入するが
、電槽内におけるェレメントにか)る圧迫力すなわちガ
ラスマット2および3が正極表面を押圧する力は、注液
前の乾燥状態で、ェレメントの両端の極板の単位面積当
り20k9/d〆以上で、かつ80k9/d〆以下とな
るように規制する。ェレメントにか)る圧迫度は「寿命
性能と放電性能とに密接な関係があり、これを第3図に
示す実験結果にもとずし、て説明する。図は鉛蓄電池の
標準的な圧迫度である20X9/d淋の時の寿命及び容
量をそれぞれ1.0とした時の各圧迫度におけるそれら
の値を示す。
The element constructed in this way is inserted into a haze tank, but the pressing force exerted on the element in the tank, that is, the force of pressing the positive electrode surface by the glass mats 2 and 3, is limited to the element in the dry state before liquid injection. It is regulated to be 20k9/d〆 or more and 80k9/d〆 or less per unit area of the electrode plate at both ends. The degree of compression applied to the element is closely related to life performance and discharge performance, and this will be explained based on the experimental results shown in Figure 3.The figure shows the standard compression of lead-acid batteries. The values are shown for each degree of compression when the lifespan and capacity at 20X9/d, which is the degree of compression, are each 1.0.

まず粗なガラスマットのみを使用した鉛蓄電池の寿命B
は圧迫度を40k9/d〆まで増加すると一挙に約1.
7倍になり、それ以後は圧迫度が増加するにつれ、寿命
はゆるやかに増加していく。
First, the lifespan B of a lead-acid battery using only a rough glass mat
When the compression degree is increased to 40k9/d〆, it suddenly increases to about 1.
7 times, and thereafter, as the degree of compression increases, the lifespan gradually increases.

ところが高率放電容量B′は、20k9/dでより圧迫
度を増加していくにつれ低下していき「特に圧迫度が8
0k9/d〆を越えるとその低下率が大きくなる。この
ように寿命性能の向上には圧迫度の高い方が好ましいが
、放電容量については圧迫度が低いほど良いという相反
する結果になる。また貫通孔を有しない繊密なガラスマ
ットと粗なガラスマットとを併用した二層構造のものを
使用した鉛蓄電池でもこれと同様な傾向Cを示すが、圧
迫度の低いところでの寿命性能の増加が非常に顕著なこ
とがわかる。しかし、高率放電容量C′は圧迫度に関係
なく、粗なガラスマットだけのものB′より著しく劣る
。一方、多数の貫通孔、例えば閉口部の占める面積が全
表面積の20%になるような孔径0.5〜3.00側の
貫通孔を設けた繊密なガラスマットと粗なガラスマット
とを用いたものの寿命特性C同様、圧迫度の低いところ
での寿命性能の増加が顕著Aで、しかも高率放電容量A
′は粗なガラスマット用いたものB′とはほとんど変ら
ない。したがって圧迫度が比較的低い20〜80k9/
dあの範囲であれば、ガラスマットを貫通孔を有する繊
密なものと粗なものとを併用した二層構造にする方が、
粗なガラスマットだけのものや貫通孔を有しない繊密な
ガラスマットを併用したものよりあきらかに陵れている
ことがわかる。以上述べたようにこのような二層構造の
ガラスマットを用いた圧迫式電池では、20〜80k9
/dあの比較的圧迫度が低いところで寿命性能を向上さ
せることが出来るので、放電容量の低下を抑制すること
ができる。また圧迫度の低い方が電池製造時のェレメン
ト組立が容易に行なえるから都合が良い。繊密なガラス
マットが正極板表面に当接している場合といない場合で
、前述したような寿命に差が生じるのは、正極板表面に
か)る圧迫力の均一性に起因しているものと考えられる
However, the high rate discharge capacity B' decreases as the degree of compression increases at 20 k9/d, and ``particularly when the degree of compression is 8,
When it exceeds 0k9/d〆, the rate of decrease becomes large. As described above, the higher the degree of compression is, the better for improving the life performance, but the lower the degree of compression is, the better the discharge capacity.This results in contradictory results. A lead-acid battery that uses a double-layered structure consisting of a delicate glass mat without through holes and a coarse glass mat also shows a similar tendency C, but the life performance under low pressure is low. It can be seen that the increase is very significant. However, the high rate discharge capacity C' is significantly inferior to the case B' made of only a coarse glass mat, regardless of the degree of compression. On the other hand, a fine glass mat with a large number of through holes, for example a hole diameter of 0.5 to 3.00 such that the area occupied by the closed part is 20% of the total surface area, and a coarse glass mat are used. Similar to the lifespan characteristic C of the product used, the lifespan performance increases markedly in areas with low pressure, and in addition, the high rate discharge capacity A
' is almost the same as B', which uses a coarse glass mat. Therefore, the degree of compression is relatively low 20-80k9/
dIn that range, it would be better to use a two-layered structure of glass mats with a delicate one with through holes and a coarse one.
It can be seen that the ridges are more obvious than those using only a coarse glass mat or those using a combination of a delicate glass mat without through holes. As mentioned above, a compression type battery using such a double-layered glass mat has a capacity of 20 to 80 k9.
/d Since the life performance can be improved at a relatively low degree of pressure, a decrease in discharge capacity can be suppressed. In addition, it is advantageous that the degree of compression is lower because the elements can be easily assembled during battery manufacture. The above-mentioned difference in lifespan between when the delicate glass mat is in contact with the surface of the positive electrode plate and when it is not is due to the uniformity of the pressure applied to the surface of the positive electrode plate. it is conceivable that.

すなわち19仏のガラス繊維を使用したマットでは数1
00仏程度の大きな孔をもつ極めて粗な構造をもってい
るうえ、柔軟性にとぼしいので圧迫度が低い場合には凹
凸のある正極活物質層全面を均一に押圧することは出来
ないが、1仏以下のガラス繊維から構成した繊密なガラ
スマットは、紬孔径が1〜20rと極めて小さく、かつ
非常に柔軟性があるので、活物質表面の凹凸にうまく適
合して均一に圧迫すること出釆る。
In other words, a mat using 19 French glass fibers has a number of 1
It has an extremely rough structure with pores as large as 0.00 mm, and has poor flexibility, so if the degree of compression is low, it is not possible to press uniformly over the entire surface of the uneven positive electrode active material layer, but it is less than 1 mm. The delicate glass mat made of glass fibers has an extremely small pore diameter of 1 to 20 r, and is extremely flexible, so it adapts well to the irregularities on the surface of the active material and can be pressed evenly. .

また紬孔径が小さいため、活物質粒子がマットの紬孔を
通って抜け出ていくのを阻止する。しかしこの繊密なガ
ラスマットは電解液の拡散が悪いので、このガラスマッ
トをそのま正極板に当援すると容量が低下するので好ま
しくない。
Furthermore, since the diameter of the pores is small, the active material particles are prevented from coming out through the pores of the mat. However, this delicate glass mat has poor diffusion of electrolyte, so if this glass mat is directly applied to the positive electrode plate, the capacity will decrease, which is not preferable.

正極板に当援する繊密なガラスマット層に貫通孔を設け
るのはこの欠点を解消するためである。すなわち、貫通
孔により正極板への電解液の拡散がよくなり、容量の低
下を防ぐことができる。次に貫通孔の関口部の面積の総
和が全表面積に占める割合(関孔率)と寿命性能との関
係を第4図に示す(寿命性能は粗なガラスマットを用い
た圧迫度20k9/d〆の電池の寿命を1とする比率で
示す)。この図から明らかなように、開孔率が30%を
越えると繊密なガラスマットを正極板に当接した効果が
失なわれて、寿命性能はあまり改善できない。したがっ
て開孔率は30%以下になるように配慮する必要がある
。以下詳述したように本発明による鉛蓄電池は、ペース
ト式極板の優れた放電性能を維持しっ)、寿命性能が従
釆型の約2倍という極めて高性能、長寿命であるが、更
に第5図に示すように使用中においても放電容量の低下
がほとんどないという特徴がある。
The purpose of providing through holes in the delicate glass mat layer supporting the positive electrode plate is to eliminate this drawback. That is, the through-holes improve the diffusion of the electrolytic solution to the positive electrode plate, thereby preventing a decrease in capacity. Next, Figure 4 shows the relationship between the ratio of the sum of the areas of the entrances of the through-holes to the total surface area (separation ratio) and the life performance (the life performance is 20k9/d using a rough glass mat). (It is expressed as a ratio with the life of the battery as 1). As is clear from this figure, when the porosity exceeds 30%, the effect of bringing the delicate glass mat into contact with the positive electrode plate is lost, and the life performance cannot be improved much. Therefore, it is necessary to take care to keep the porosity to 30% or less. As detailed below, the lead-acid battery according to the present invention maintains the excellent discharge performance of the paste-type electrode plate, and has extremely high performance and long life, with a lifetime performance about twice that of the secondary type. As shown in FIG. 5, there is a characteristic that there is almost no decrease in discharge capacity even during use.

第4図は、エネルギー密度約45wh/k9(0.に放
電時)の従来型ペースト式鉛蓄電池Bと、それと同じエ
ネルギー密度をもつ本発明によるペースト式鉛蓄電池(
圧迫度40k9/dの)Aを30℃の水槽中で寿命試験
(0.2に■x3時間放電、0.1被W×5時間充電)
した時の放電容量の推移を示す。
Figure 4 shows a conventional paste lead-acid battery B with an energy density of approximately 45 wh/k9 (when discharged to 0.0%) and a paste lead-acid battery according to the present invention (with the same energy density).
Life test of A (with pressure degree 40k9/d) in a water tank at 30°C (discharge to 0.2 × 3 hours, charge to 0.1 W × 5 hours)
The graph shows the change in discharge capacity when

本発明による鉛蓄電池は、800ミ経過時点においても
その放電量は初期のわずか10%低下したにすぎず深い
放電サイクル時においても安定した容量と優れた寿命性
能が得られるので、電気自動車やゴルフカートなどのサ
イクルサービス用として最適である。
The lead-acid battery according to the present invention has a discharge amount that is only 10% lower than the initial value even after 800 cycles, and stable capacity and excellent life performance can be obtained even during deep discharge cycles. Ideal for cycle services such as carts.

【図面の簡単な説明】 第1図は本発明によるペースト式鉛蓄電池におけるェレ
メントの基本構成単位を示す説明図、第2図は第1図に
示すガラスマット2の拡大説明図で2′は貫通孔を示す
。 第3図は乾燥状態におけるェレメントにか)る圧迫度と
寿命および容量との関係を示す図、第4図は関孔率と寿
命性能との関係を示す図、第5図は本発明によるペース
ト式鉛蓄電池Aと従来型のペースト式鉛蓄電池Bとの寿
命性能の比較である。1・・…・正極板、2・・・・・
・正極板1表面に当接されている繊密なガラスマット、
3……粗なガラスマット、4・・…・セパレータ、5・
…・・負極板、2′・・・・・・貫通孔。 外1図 矛2図 ズ3図 外5図 次4図
[Brief Description of the Drawings] Fig. 1 is an explanatory diagram showing the basic constituent units of elements in a paste type lead-acid battery according to the present invention, and Fig. 2 is an enlarged explanatory diagram of the glass mat 2 shown in Fig. 1, where 2' is a through hole. Shows holes. Figure 3 is a diagram showing the relationship between the degree of compression applied to an element in a dry state, life and capacity, Figure 4 is a diagram showing the relationship between porosity and life performance, and Figure 5 is a diagram showing the relationship between the paste according to the present invention. This is a comparison of the life performance of type lead-acid battery A and conventional paste type lead-acid battery B. 1... Positive electrode plate, 2...
- A delicate glass mat that is in contact with the surface of the positive electrode plate 1,
3... Rough glass mat, 4... Separator, 5...
...Negative electrode plate, 2'...Through hole. Outside 1 figure 2 figures 3 figures outside 5 figures next 4 figures

Claims (1)

【特許請求の範囲】[Claims] 1 直径1μ以下のガラス繊維よりなる緻密なガラスマ
ツト層とそれより繊維径の大きい粗なガラスマツト層と
を重ね合わせた二層構造のガラスマツトを正・負極板間
に介在させてエレメントを構成し、該エレメントを注液
前の状態において20〜80kg/dm^2の力で圧迫
してなるペースト式鉛蓄電池において、前記緻密なガラ
スマツト層に厚さ方向に多数の貫通孔を設けるとともに
、該貫通孔の開口部の面積の総和が前記緻密なガラスマ
ツト表面の30%以下であることを特徴とする鉛蓄電池
1. An element is constructed by interposing a two-layered glass mat layer between the positive and negative electrode plates, which is a layer of dense glass mat made of glass fibers with a diameter of 1μ or less and a coarse glass mat layer with a larger fiber diameter. In a paste type lead-acid battery in which the element is compressed with a force of 20 to 80 kg/dm^2 before liquid injection, a large number of through holes are provided in the thickness direction of the dense glass mat layer, and the through holes are A lead-acid battery characterized in that the total area of the openings is 30% or less of the surface of the dense glass mat.
JP53165213A 1978-12-28 1978-12-28 lead acid battery Expired JPS603741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53165213A JPS603741B2 (en) 1978-12-28 1978-12-28 lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53165213A JPS603741B2 (en) 1978-12-28 1978-12-28 lead acid battery

Publications (2)

Publication Number Publication Date
JPS5591564A JPS5591564A (en) 1980-07-11
JPS603741B2 true JPS603741B2 (en) 1985-01-30

Family

ID=15807988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53165213A Expired JPS603741B2 (en) 1978-12-28 1978-12-28 lead acid battery

Country Status (1)

Country Link
JP (1) JPS603741B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196461U (en) * 1984-11-29 1986-06-20
JPS6460973A (en) * 1987-08-31 1989-03-08 Shin Kobe Electric Machinery Sealed type lead storage battery
EP0947011B1 (en) * 1996-09-20 2001-12-12 Johns Manville International, Inc. Resilient mat; a method of making the resilient mat and a battery including the resilient mat
LU88819A1 (en) * 1996-09-30 1998-03-30 Amer Sil Sa Absorbing separator for lead-acid electric accumulators regulated by a valve
US6071641A (en) 1997-09-02 2000-06-06 Zguris; George C. Glass fiber separators and batteries including such separators
US6821672B2 (en) 1997-09-02 2004-11-23 Kvg Technologies, Inc. Mat of glass and other fibers and method for producing it
US8592329B2 (en) 2003-10-07 2013-11-26 Hollingsworth & Vose Company Vibrationally compressed glass fiber and/or other material fiber mats and methods for making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523118A (en) * 1975-06-24 1977-01-11 Yuasa Battery Co Ltd Separator for lead storage battery
JPS5214835A (en) * 1975-07-14 1977-02-04 Yuasa Battery Co Ltd Maintenanceefree lead battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523118A (en) * 1975-06-24 1977-01-11 Yuasa Battery Co Ltd Separator for lead storage battery
JPS5214835A (en) * 1975-07-14 1977-02-04 Yuasa Battery Co Ltd Maintenanceefree lead battery

Also Published As

Publication number Publication date
JPS5591564A (en) 1980-07-11

Similar Documents

Publication Publication Date Title
US5047300A (en) Ultra-thin plate electrochemical cell
EP0251683B1 (en) High rate sealed lead-acid battery with ultrathin plates
JPS603741B2 (en) lead acid battery
US3759746A (en) Porous electrode comprising a bonded stack of pieces of corrugated metal foil
Landfors Cycle life test of lead dioxide electrodes in compressed lead/acid cells
JPS6048869B2 (en) battery electrode
JPH08329975A (en) Sealed lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JP3511858B2 (en) Lead storage battery
JPS5846825B2 (en) lead acid battery
JP2588631Y2 (en) Sealed lead-acid battery
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP3173775B2 (en) Paste nickel positive electrode and alkaline storage battery
US4304270A (en) Process for manufacturing of battery plates
JP4660869B2 (en) Nickel metal hydride battery
JPS601757A (en) Manufacture of sealed lead storage battery
JPS5987755A (en) Paste-type lead storage battery
JPS6028167A (en) Manufacture of non-sintered type electrode for battery
CA1102409A (en) Battery plates covered with porous thermoplastic resin
JPS5937658A (en) Manufacturing method of paste type electrode for battery
JPH01169869A (en) Lead-acid battery
JPH0132633B2 (en)
JP2958785B2 (en) Manufacturing method of clad type positive plate
JP3438273B2 (en) Lead storage battery and method of manufacturing the same
JP4531189B2 (en) Lead plate for lead acid battery