JPS6037392A - Robot system in sea and sea bottom work - Google Patents

Robot system in sea and sea bottom work

Info

Publication number
JPS6037392A
JPS6037392A JP58144349A JP14434983A JPS6037392A JP S6037392 A JPS6037392 A JP S6037392A JP 58144349 A JP58144349 A JP 58144349A JP 14434983 A JP14434983 A JP 14434983A JP S6037392 A JPS6037392 A JP S6037392A
Authority
JP
Japan
Prior art keywords
sea
robot
underwater
launcher
seabed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58144349A
Other languages
Japanese (ja)
Other versions
JPH0244992B2 (en
Inventor
津垣 昌一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58144349A priority Critical patent/JPS6037392A/en
Publication of JPS6037392A publication Critical patent/JPS6037392A/en
Publication of JPH0244992B2 publication Critical patent/JPH0244992B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 て調査、作業を行うに適したロボットゾステムに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a robot Zostem suitable for carrying out investigations and operations.

近時、海底石油の開発は漸次大深度の海域に及んできて
おり、又マンガン団塊や熱水鉱床等の海底鉱物資源の開
発の必要性が高まってきている。
In recent years, the development of seabed oil has gradually extended to deeper sea areas, and the need for the development of seabed mineral resources such as manganese nodules and hydrothermal deposits is increasing.

このような大深度の海中・海底、あるいは海底油井の事
項等の危険な場所での調査、作業は従来の有人潜水作業
機では作業が不可能又は極めて困難である。
It is impossible or extremely difficult for conventional manned submersible machines to carry out investigations and operations in such dangerous locations such as the deep sea, the seabed, or offshore oil wells.

このような高水圧、又は有人作業機での近接困難な海中
・海底での調査・作業を行なわせる目的で、近年、無人
潜水機の発達は目覚しく、海洋石油開発作業のうち、観
察やメインテナンス等の単純な作業は無人潜水機に置き
換えられつ\ある0このような無人潜水機は年々改良さ
几、高性能、大深度用のものが次々と開発され市場に出
て来ている。しかしながら、従来発表さj,ている無人
潜水機は、動力及び情報伝達の面よりすべてテザー′式
(有索式)となっている。
The development of unmanned underwater vehicles has been remarkable in recent years for the purpose of conducting investigations and operations under the sea and the seabed under such high water pressure or where it is difficult for manned working machines to approach. These simple tasks are being replaced by unmanned underwater vehicles.Those unmanned underwater vehicles are improving year by year, and new ones that are more sophisticated, have higher performance, and can be used at great depths are being developed one after another and are coming onto the market. However, all unmanned underwater vehicles that have been announced so far are tethered for power and information transmission reasons.

しかし、テザ一式(通信用光ファイノ(一ヲ含む)のも
のは次のような欠点を有し、海中・海底作業に対して充
分な適応性があるとは云い難い0すなわち (1) テザーがからまるため、海底油井のジャケット
等の構造物の内部に入ることが出来ない。又、行動半径
が制約さ几る。
However, the complete set of tethers (including the optical fiber for communications) has the following drawbacks, and it cannot be said that it is sufficiently adaptable to underwater/undersea work. Because they become entangled, they cannot enter structures such as submarine oil well jackets.In addition, their radius of action is restricted.

(2)テザーの水中抵抗のため、自由な行動が妨げられ
る。特に潮流のある場合はその影響が甚だしい。
(2) Free movement is hindered due to the underwater resistance of the tether. The effect is especially severe when there is a current.

/ヒとえば、潮流下におけるジャケット等の構造物内部
での油の事項、火災事故調査においては、危険のため、
有人潜水調査作業機やダイパーは接近できず、又、テザ
一式の無人潜水機もテザーが構造物にからまる恐几があ
るきめ、構造物内部に進入できず、又、潮流のため微細
な作業は困難となる。
For example, due to the danger of oil inside structures such as jackets under tidal currents, and fire accident investigations,
Manned underwater survey work vehicles and Diper cannot approach, and unmanned underwater vehicles equipped with tethers cannot enter the structure due to the risk of the tether getting tangled with the structure, and tidal currents make it difficult to perform delicate work. It becomes difficult.

本発明は、従来有人潜水機又はダイパーによる作業が不
可能もしくわ危険性等のため極めて困難であった大深度
又は危険な海中・海底調査、作業を安全かつ所要の精度
で実施することのできる海中・海底作業ロボットシステ
ムを提供することを目的とする。
The present invention makes it possible to safely and accurately carry out deep or dangerous underwater and seabed investigations and operations, which were previously impossible or extremely difficult to perform using manned submersibles or divers. The purpose is to provide an underwater/submarine work robot system.

以下、本発明を図面に示す実施例に基いて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第1図は本発明の海中作業ロボットシステムの一実施例
の全体を示す図である。
FIG. 1 is a diagram showing an entire embodiment of an underwater working robot system according to the present invention.

とのシステムは、海上に浮ぶ母船■と、該母船にアンビ
リカルケーブル2KJ、Vl述結さ、?1.海底面シ発
進する無索型海中・海底作業ロボット5とを有して成る
The system consists of a mother ship floating on the sea, and an umbilical cable 2KJ, Vl connected to the mother ship. 1. The robot 5 includes a ropeless underwater/submarine work robot 5 that launches from the ocean floor.

上記のロボット5は推進及び情報機器等の電源として内
部に独自の発電装置を備えるか又はランチャ−4内で海
中充電可能なコネクタを有する。
The robot 5 described above is equipped with its own power generation device internally as a power source for propulsion and information equipment, or has a connector that can be charged underwater in the launcher 4.

ロボット5は、第2図に詳細に示す妬く、本体6は水中
抵抗の小さい紡錘形をした潜水船として構、成さ几、そ
の船尾部には上記の発電装置又は充電された電池により
駆動さ几る電動機により回転さr、るプロペラ7が設け
ら九、プロペラ7を包囲してノズル式舵8が設けられて
いる。又、船体6の中央横截面付近の周囲に沿って上下
及び左右の4箇所に回転式ウォータージェット又はプロ
ペラ等9が設けら几ており、ジェットの噴出方向を変え
ることにより船体の中心線の方向を変えることが出来る
ようになっている。
The robot 5 is shown in detail in FIG. 2.The main body 6 is constructed as a spindle-shaped submersible with low underwater resistance, and the stern section is equipped with a device powered by the above-mentioned power generation device or a charged battery. A propeller 7 is provided which is rotated by an electric motor, and a nozzle type rudder 8 is provided surrounding the propeller 7. In addition, rotary water jets or propellers 9 are installed at four locations on the top, bottom, left and right along the periphery of the central transverse surface of the hull 6, and by changing the jet direction, the direction of the center line of the hull can be adjusted. It is now possible to change.

船体6の船首付近には高性能ンナー及び温度、磁界、放
射能等の各種センサーlOが設けら几ておシ、その信号
を処理して相手物体を目標として識別する計算処理装置
が船体内に設けら几ている。
A high-performance sensor and various sensors for temperature, magnetic field, radioactivity, etc. are installed near the bow of the hull 6, and a calculation processing device inside the hull processes the signals and identifies the object as a target. It's well set up.

船首前端には相手物体よりサンプルを採取する等の単純
な操作を行なう把持手段11が設けら几ている。
A gripping means 11 is provided at the front end of the bow for performing simple operations such as taking a sample from an object.

ランチャ−4には別に大田カンナ−及びハイドロホン等
の各種センサー12が設けら几ている。
The launcher 4 is also provided with various sensors 12 such as an Ota plane and a hydrophone.

このシステムは以上の如く構成さ几ているので、海中、
海底において調査、作業を行なう場合は、その海域で母
船lよりアンビリカルケーブル2で連結さ几たランチャ
−4′lr:海底面迄下降させて海底面3に着座させる
。まず、ランチャ−4に設はう几たセンサー12[より
相手物体の大まかな探知を行ない、ロボット5に情報を
与える。ロボット5はその情報により相手物体の方向に
自身の電源により駆動さ几るプロペラ7と舵8により走
行し、自身のセンサー10[よシ相手物体を発見し、船
体内に設けられた計算処理装置により目標物として識別
し、自律的に接近する。目標物としての識別方法として
は、あらかじめ目標物の特徴を計算処理装置に記憶させ
ておき、検知した情報をζ几と比較することにより相手
物体と認識する方法が採用さ几る。第1図に示す例では
、海底油井13の事項事故調査を海中海底作業ロボット
システムで行なう場合を示し、この場合はロボット5の
計算処理装置に油井ジャケットの概略形状を記憶させて
おき、ンナーにより検知した形状をとnと比較すること
により、目標を識別するようにすればよい。
This system is structured as described above, so underwater,
When surveying or working on the seabed, a launcher 4'lr connected to the mother ship 1 by an umbilical cable 2 is lowered to the seabed and seated on the seabed 3. First, a sensor 12 installed on the launcher 4 roughly detects the object and provides information to the robot 5. Based on this information, the robot 5 moves in the direction of the object using its own propeller 7 and rudder 8, which are driven by its own power source, and detects the object using its own sensor 10. It identifies it as a target and approaches it autonomously. As a method for identifying a target object, a method is adopted in which the characteristics of the target object are stored in advance in a calculation processing device, and the detected information is compared with ζ to recognize it as a target object. The example shown in FIG. 1 shows a case where an accident investigation of a submarine oil well 13 is carried out by an underwater submarine work robot system. The target may be identified by comparing the detected shape with and n.

相手物体と認別した場合は更に近接し、相手物体の詳細
形状をンナー等により検知し、相手物体の損傷個所形状
、性状、クラック等を超音波により検知記憶し、又ビデ
オ録画を行ない、必要に応じてスチール写真撮影を行な
う。又、相手物体の特定個所に接触して単純な所要の操
作を行なう。
If the target object is recognized, it approaches the target object further, detects the detailed shape of the target object using a scanner, etc., detects and memorizes the shape, nature, cracks, etc. of damaged parts of the target object using ultrasonic waves, and records video as necessary. Still photos will be taken accordingly. In addition, a simple required operation is performed by touching a specific part of the object.

そして、ロボットに記憶した超音波による情報及びビデ
オ画像情8をランチャ−帰着時にロボットよりランチャ
−へ吐出し、ランチャ−より母船ヘテザーケーブルと通
じて送り母船上で映写する。こうすることにより無索ロ
ボット/ステムの欠点である情報の量・質の貧弱さを克
服することができ、かつロボットを母船へ往復させるこ
となく母船上より遂次指示を行うことができ、作業を能
率的に行うことができる。
Then, the ultrasonic information and video image information 8 stored in the robot are discharged from the robot to the launcher when the robot returns to the launcher, and sent from the launcher through a tether cable to the mother ship and projected on the mother ship. By doing this, it is possible to overcome the poor quantity and quality of information that is a drawback of untethered robots/stems, and it is possible to give instructions sequentially from the mother ship without having to shuttle the robot back and forth to the mother ship. can be done efficiently.

第3図は熱水鉱床の探鉱、ザンプル採取に本システムを
利用した場合の状況を説明する図である。
FIG. 3 is a diagram illustrating the situation when this system is used for exploration of hydrothermal ore deposits and sampling of samples.

熱水鉱床は海底面より海水中に噴出する熱水中に溶存す
る鉱物が第3図に示す如く熱水噴出口のまわりに符号1
5で示す如く塔状に堆積して形成さnたものであって、
海底面より下方に根を降して固着されている。熱水鉱床
の鉱石には金、銀、銅、鉛等の有用な金属が含有さ几て
おり、その開発調査に当ってはサンプルを採取すること
が必要になる。
Hydrothermal deposits are minerals dissolved in hot water ejected from the ocean floor into seawater that form a circle around a hydrothermal vent, as shown in Figure 3.
It is formed by depositing in a tower shape as shown in 5.
It is anchored by its roots below the ocean floor. The ores of hydrothermal deposits contain useful metals such as gold, silver, copper, and lead, and it is necessary to collect samples when investigating their development.

そのためには、まず熱水鉱床を探すことが必要であるが
、熱水鉱床の上方は熱水のため海水温度が上昇している
ので、海底面と適当な間隔を隔て\ロボット5を走行さ
せ、温度センサーで海水温度を検知することにより探知
することができる。
To do this, it is first necessary to search for a hydrothermal deposit, but since the seawater temperature above the hydrothermal deposit is rising due to hot water, the robot 5 must be moved at an appropriate distance from the seabed. , can be detected by detecting seawater temperature with a temperature sensor.

さらにノナ−により突出物の形状を検知し、あらかじめ
記憶させておいた熱水鉱床の形状と比較することにより
確認する。熱水鉱床が確認さひると、ロボット5の船首
に設けら′i″した杷持装置11により、図に示す如く
熱水鉱床の一部を咬持し、回転式ウォータージェット又
はプロペラ等9の噴出方向を船体中心線に対して傾斜さ
せることにより、ロボット5を杷持装置11による咬持
点を中心として揺動させ、ロボット5の運動の慣性力を
利用して咬持さ几た熱水鉱床の一部を他の部分から切り
離してサンプルとして採取する。
Furthermore, the shape of the protrusion is detected using a nonar, and confirmed by comparing it with the shape of the hydrothermal ore deposit stored in advance. When a hydrothermal deposit is confirmed, a holding device 11 installed at the bow of the robot 5 holds a part of the hydrothermal deposit as shown in the figure, and a rotating water jet or propeller 9 is used to hold the deposit. By tilting the jetting direction with respect to the hull center line, the robot 5 is swung around the gripping point by the holding device 11, and the inertia of the movement of the robot 5 is used to release the hot water that has been gripped. A part of the deposit is separated from the rest and taken as a sample.

上述の海底油井のジャケット内への進入や熱水鉱床の如
く海底から突出した鉱床のまわりを走行してその一部に
咬み付き、船体を揺動させてサンプル金採取するに当っ
て、ランチャ−と連結するテザーがないため、ジャケッ
トや突出せる鉱床にからまったり、潮流等の影響を受け
ることがなく、対象物への接近が容易になり、深海底や
危険な海中での調査・作業に効果を発揮する。
The launcher is used when entering the jacket of an oil well mentioned above or traveling around a deposit protruding from the seabed such as a hydrothermal deposit, biting into a part of it, and rocking the ship to collect gold samples. Since there is no tether to connect with the tether, it will not get tangled with jackets or protruding ore deposits, or be affected by tidal currents, etc., making it easier to approach objects, making it effective for investigations and work in deep seabeds and dangerous underwater areas. demonstrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の海中海底作業ロボット/ステムの実施
例を示す斜視図、第2図はそのロボットの側面図、第3
図はそのロボットシステムによる熱水鉱床サンプル採取
作業の状態を示す斜視図である。 l・・・母船 2・・・アンビリカルケーブル 3・・・海底面 4・・・ランチャ− 5・・・非テザー型ロボット io・・・海中・底物体認識手段 11・・・作業手段 第214 第3 iyi
FIG. 1 is a perspective view showing an embodiment of the underwater submarine working robot/stem of the present invention, FIG. 2 is a side view of the robot, and FIG.
The figure is a perspective view showing the state of the hydrothermal ore deposit sample collection work performed by the robot system. l... Mother ship 2... Umbilical cable 3... Seabed surface 4... Launcher 5... Non-tethered robot io... Undersea/bottom object recognition means 11... Working means No. 214 3 iyi

Claims (1)

【特許請求の範囲】[Claims] 海上に浮ぶ母船と、該母船にアンビリカルケーブルによ
り連結され海底面に着底するランチャ−と、該ランチャ
−より発進し、独自の推進動力装置、海中・底物体認識
手段、作業手段を有する無索型ロボットとを有すること
を特徴とする海中・底作業ロボットシステム。
A mother ship floating on the sea, a launcher connected to the mother ship by an umbilical cable and landing on the seabed, and an unroped ship launched from the launcher and equipped with its own propulsion power device, underwater/bottom object recognition means, and working means. An underwater/bottom work robot system characterized by having a type robot.
JP58144349A 1983-08-09 1983-08-09 Robot system in sea and sea bottom work Granted JPS6037392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144349A JPS6037392A (en) 1983-08-09 1983-08-09 Robot system in sea and sea bottom work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144349A JPS6037392A (en) 1983-08-09 1983-08-09 Robot system in sea and sea bottom work

Publications (2)

Publication Number Publication Date
JPS6037392A true JPS6037392A (en) 1985-02-26
JPH0244992B2 JPH0244992B2 (en) 1990-10-05

Family

ID=15360032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144349A Granted JPS6037392A (en) 1983-08-09 1983-08-09 Robot system in sea and sea bottom work

Country Status (1)

Country Link
JP (1) JPS6037392A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931401A (en) * 1972-07-20 1974-03-20
JPS5390102A (en) * 1977-01-18 1978-08-08 Commissariat Energie Atomique Method of mining nodule mineral deposit of sea bottom and device for executing said method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931401A (en) * 1972-07-20 1974-03-20
JPS5390102A (en) * 1977-01-18 1978-08-08 Commissariat Energie Atomique Method of mining nodule mineral deposit of sea bottom and device for executing said method

Also Published As

Publication number Publication date
JPH0244992B2 (en) 1990-10-05

Similar Documents

Publication Publication Date Title
Kunz et al. Deep sea underwater robotic exploration in the ice-covered arctic ocean with AUVs
JP4721568B2 (en) Submarine exploration method and equipment using autonomous unmanned vehicle
US20180251199A1 (en) Re-configurable subsea robot
KR100478811B1 (en) Autonomous underwater vehicle and operational method
JPH03266794A (en) Submarine station
CN106043632A (en) Deep-sea unmanned underwater vehicle and application method thereof
AU2013248499A1 (en) Recovery method for recovering an underwater vehicle, recovery device, submarine with recovery device, underwater vehicle for this purpose, and system equipped therewith
CN108248801B (en) Underwater hoisting robot
CN206511093U (en) A kind of antiwind underwater robot
Adam Probing beneath the sea: sending vessels into environments too harsh for humans poses challenges in communications, artificial intelligence, and power-supply technology
CN106542067A (en) A kind of self-propulsion type charging device under water
KR101277002B1 (en) Unmanned Surface Robot
Salumäe et al. Design principle of a biomimetic underwater robot u-cat
JP6991545B2 (en) Operation method of multiple underwater vehicles and operation system of multiple underwater vehicles
JP4585367B2 (en) Parent-child autonomous submersible system and connection method of autonomous submersible
Sarda et al. Unmanned recovery of an AUV from a surface platform manuscript, oceans' 13 MTS/IEEE San Diego
CN109625219A (en) There is cable remote underwater robot to the cruising inspection system and method for failure submarine cable
CN110053741A (en) Based on the under-ce exploration system for being suitable for ice hole and laying recycling for capturing ROV
Kojima et al. Development of autonomous underwater vehicle'AQUA EXPLORER 2'for inspection of underwater cables
JPS6037392A (en) Robot system in sea and sea bottom work
Ura Development timeline of the autonomous underwater vehicle in Japan
JP2014151654A (en) Recovery facility of underwater observation equipment, and recovery method of underwater observation equipment
JPS6037393A (en) Robot system in sea and sea bottom work
CN113492956A (en) Underwater robot
Wernli The present and future capabilities of deep ROVs