JPS6036911A - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPS6036911A
JPS6036911A JP11804384A JP11804384A JPS6036911A JP S6036911 A JPS6036911 A JP S6036911A JP 11804384 A JP11804384 A JP 11804384A JP 11804384 A JP11804384 A JP 11804384A JP S6036911 A JPS6036911 A JP S6036911A
Authority
JP
Japan
Prior art keywords
light
optical
modulator
optical fibers
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11804384A
Other languages
Japanese (ja)
Inventor
マルテイーン、クローベ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schuckertwerke AG
Siemens AG
Original Assignee
Siemens Schuckertwerke AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schuckertwerke AG, Siemens AG filed Critical Siemens Schuckertwerke AG
Publication of JPS6036911A publication Critical patent/JPS6036911A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は2本の光ファイバを経由して交互に光を放射
する二つの光源ならびに同じ光ファイバを経由しかつ中
間に光結合器を介して二つの受光器が結合される光学的
計測装置に関する。
[Detailed Description of the Invention] [Technical Field to Which the Invention Pertains] This invention relates to two light sources that alternately emit light via two optical fibers, and a light source that emit light via the same optical fiber with an optical coupler in between. The present invention relates to an optical measurement device in which two light receivers are coupled together.

〔従来技術とその問題点〕[Prior art and its problems]

光学的計測装置を使用すれば、物理的被測定量の大きさ
に応じて光を褒詞し、該変調光の光度を被測定量の大き
さの尺度として用いることができる。
Using an optical measurement device, it is possible to measure light according to the size of a physical measurand, and use the luminous intensity of the modulated light as a measure of the size of the measurand.

この場合光を光源からセンサへ、またセンサから受光器
に伝達するのに光ファイバを利用すると有利であるが、
光フアイバ中の光の減衰を系統的に把握するには困難を
伴うという欠点もあり、そのため測定値が不規則に変動
する結果をまねく。
In this case, it is advantageous to use optical fibers to transmit the light from the light source to the sensor and from the sensor to the receiver.
Another drawback is that it is difficult to systematically understand the attenuation of light in an optical fiber, which results in irregularly varying measurements.

光フアイバ中の光の減衰が伝送されるべき測定値に及ぼ
す影響を除去する方法は従来からすでに知られている。
Methods are already known in the art for eliminating the influence of light attenuation in optical fibers on the measured values to be transmitted.

例えばヨーロッパ特許出願第81110425.6号に
、特定の波長の光による光フアイバ中の減衰と他の波長
の第2の光による光フアイバ中の減衰を、光学的計測装
置中で被測定量の大きさに応じて減衰される光の光度と
ともにそれぞれ一括して測定する光学的計測装置が記載
されている。この場合両方の測定値を割り算して光フア
イバ中の減衰による影響を消去するが、この方法では波
長の異なる二種類の光に対する元ファイバの減衰特性が
同じであるかあるいは二つの波長に対する減衰特性の差
が系統的に把握されていない限り正しい結果は得られな
い。
For example, European Patent Application No. 81110425.6 discloses that the attenuation in an optical fiber due to light of a specific wavelength and the attenuation in the optical fiber due to a second light of another wavelength are measured in an optical measuring device with respect to the magnitude of the quantity to be measured. An optical measurement device is described that measures the luminous intensity of the light, which is attenuated depending on the intensity of the light. In this case, both measured values are divided to eliminate the effect of attenuation in the optical fiber. However, in this method, the attenuation characteristics of the original fiber for two types of light with different wavelengths are the same, or the attenuation characteristics for the two wavelengths are Correct results cannot be obtained unless the differences are systematically understood.

またドイツ特許出願第P 3148738.6号にも冒
頭に述べた方式の光学的計測装置が記載されている。
German patent application No. P 3148738.6 also describes an optical measuring device of the type mentioned at the outset.

しかしこの装置では伝送ルート上の減衰特性の変動に影
響されない正確な結果を得るためには、双方の光源から
同じ光度の光が放射されるように両光源を制御装置で調
整する必要がある。
However, with this device, in order to obtain accurate results that are not affected by variations in attenuation characteristics along the transmission route, it is necessary to adjust both light sources using a control device so that both light sources emit light of the same luminous intensity.

〔発明の目的〕[Purpose of the invention]

この発明は冒頭に述べた方式の光学的計測装置において
、同一光度の光源を使用しなくてもよくしかも光伝送ル
ート上のしよう乱による影響を補償できる装置を提供す
るのを目的とする。
It is an object of the present invention to provide an optical measuring device of the type described at the beginning, which does not require the use of light sources of the same luminous intensity and can compensate for the effects of disturbances on the optical transmission route.

〔発明の要点〕[Key points of the invention]

この発明によれば前記の目的は、光変調器が被測定量の
大きさに対応して前記両光源の各一方の光源で照射され
た方の元ファイバの方には光を反射投入し、他の光ファ
イバの方には光を通過投入するようにし、該光変調器に
よって両光ファイバに交互に反射投入される両光源から
の光の反射光をそれぞれ受光器で測定した二つの光度の
積と、光変調器によって両光ファイバに交互に通過投入
さ′tとる両光源からの光の通過光をそれぞれ受光器 
′で測定した二つの光度のイ責との比を被測蔵置の尺反
として用いるようにすることにより達成される。
According to the present invention, the above-mentioned object is such that the optical modulator reflects light into the original fiber irradiated by one of the light sources in accordance with the size of the measured quantity; Light is passed through and input into the other optical fiber, and the light from both light sources is alternately reflected and input into both optical fibers by the optical modulator. The light from both light sources is transmitted alternately into both optical fibers by an optical modulator, and the light from both light sources is sent to a receiver.
This is achieved by using the ratio of the two luminous intensities measured at ' as the ratio of the measured location.

すなわらこの発明による光学的計測装置においては特殊
な光変調器が使用される、該変調器には2本の光ファイ
バが接続され、変調器はその中の各一方の光ファイバか
ら伝達されて来た光を被測定1αの大きさに対応して加
減しながら一部を該一方の光ファイバへふたたび反射投
入するとともに、光の他の一部を通過させて他方の光フ
ァイバに投射する。
That is, in the optical measuring device according to the invention, a special optical modulator is used, to which two optical fibers are connected, and the modulator is transmitted from each one of the optical fibers. A part of the light is reflected back into one of the optical fibers while adjusting the amount of light according to the size of the measured object 1α, and the other part of the light is passed through and projected into the other optical fiber. .

本発明の装置においては、光ファイバの減衰特性の影響
を除去するために光変調器を対称的に構成する必要はな
いが、変調器を対称的構造とすると測定値を算出すると
き大変有利である。
In the device of the present invention, it is not necessary to configure the optical modulator symmetrically in order to eliminate the influence of the attenuation characteristics of the optical fiber, but a symmetrical structure of the modulator is very advantageous when calculating measured values. be.

この発明の有利な実施例では、向い合せに配置された二
本の光ファイバの端面の中間に被測定量の大きさに対応
して偏位する両面が鏡面仕上げされた絞り機構を置いて
光変調器を構成する。
In an advantageous embodiment of the invention, a diaphragm mechanism with mirror-finished surfaces on both sides, which deviates in accordance with the magnitude of the measured quantity, is placed between the end faces of two optical fibers arranged facing each other. Configure the modulator.

この発明による光変調器の他の実施例では二本の光ファ
イバの変調器側端面を同一平面上に配列し、その向い側
に光反射板を被測定量の大きさに対応して変化する間隙
をへだてて配置する。
In another embodiment of the optical modulator according to the present invention, the end faces of two optical fibers on the modulator side are arranged on the same plane, and a light reflecting plate is arranged on the opposite side depending on the size of the measured quantity. Arrange the space apart.

この発明のさらにもう一つの異なる実施例では、二本の
光ファイバの変調器側端面のコア相当部分を鏡面仕上げ
して向い合せに配置し、該端末面の相互関係位置が被測
定量の大きさに対応して偏位可能なように光変調器を構
成する。
In yet another different embodiment of the present invention, the core-corresponding parts of the modulator-side end surfaces of two optical fibers are mirror-finished and placed facing each other, and the relative position of the end surfaces is adjusted to the extent that the amount to be measured is large. The optical modulator is constructed so that it can be deflected in response to the

測定社を算出するため受光器の出力端をアナログ・デジ
タル変換器を介してデジタル演算回路の入力端に接続し
、さらに該演算回路の出力端を表示装置やプリンタに接
続するとよい。
In order to calculate the measurement value, it is preferable to connect the output end of the light receiver to the input end of a digital arithmetic circuit via an analog-to-digital converter, and further connect the output end of the arithmetic circuit to a display device or a printer.

〔発明の実施例〕[Embodiments of the invention]

次にこの発明を実施例の図を移照しながらさらに詳細に
説明する。
Next, the present invention will be explained in more detail with reference to figures of embodiments.

第1図の実施例において、二つの光源1および2から放
射された光3および4は、光ファイバ5および6を経由
して光変調器7に導かれる。光源1および2はこの光学
的計測装置の動作期間中交互に光を放射する。光3.4
の放射方向に半透過性の鏡8および9が存在し、該鏡8
,9は光結合器として機能して光7アイバ5および6を
経由して光変調器7から戻って米た光を受光器11およ
び12上で減結合する。受光器11 、12の電気出力
はアナログ・デジタル変換器10 、13でデジタル化
されて演算回路14に伝達される。該演算回路14の出
力端にブロック15が接続される。
In the embodiment of FIG. 1, the lights 3 and 4 emitted from the two light sources 1 and 2 are guided to a light modulator 7 via optical fibers 5 and 6. Light sources 1 and 2 emit light alternately during the operation of the optical measuring device. light 3.4
There are semitransparent mirrors 8 and 9 in the radial direction of
, 9 function as an optical coupler and decouple the light returned from the optical modulator 7 via the optical fibers 5 and 6 onto the optical receivers 11 and 12. The electrical outputs of the photodetectors 11 and 12 are digitized by analog-to-digital converters 10 and 13 and transmitted to an arithmetic circuit 14. A block 15 is connected to the output end of the arithmetic circuit 14.

この光学的計測装置は次のように機能する。ここでに工
[tlおよびKzftlをそれぞれ光ファイバ5および
6の時間とともに変化する減衰係数K = I R/I
 Aとする。ここでInは光ファイバの一端に入射する
光の光度、1人は該光ファイバの他端から放射する光の
光度である。
This optical measurement device functions as follows. where [tl and Kzftl are the time-varying attenuation coefficients K = I R/I of the optical fibers 5 and 6, respectively.
Let it be A. Here, In is the luminous intensity of the light incident on one end of the optical fiber, and In is the luminous intensity of the light emitted from the other end of the optical fiber.

光変調器7に装着された被測定量の大きさに対応して偏
位する絞り機構はその両面が鏡面仕上げされているので
、一方の光フアイバ中を伝達されて来てその端面から放
射される光の一部をさえぎって向い合せに配置された他
方の光ファイバの端面に入射されるのをさまたげ、かつ
絞り機構に照射された前記の光の部分を反射して光を放
射した方の光フアイバ端面に投げ返す。そのほか双方の
光フアイバ端末面においても光の一部が反射される。し
たがって通過した光と反射された光との関係は絞り機構
の状態に関する尺度、とりもなおさず絞り機構の状態を
決定する被測定量の大きさの尺度となる。
The diaphragm mechanism attached to the optical modulator 7, which deviates in response to the size of the measured quantity, has mirror-finished surfaces on both sides, so the light is transmitted through one optical fiber and radiated from its end face. The one that emits the light by blocking a part of the light from entering the end face of the other optical fiber placed facing each other, and reflecting the part of the light that was irradiated to the aperture mechanism. Throw it back at the end of the optical fiber. In addition, a portion of the light is also reflected from the terminal surfaces of both optical fibers. The relationship between the transmitted light and the reflected light therefore becomes a measure of the state of the diaphragm mechanism, and above all a measure of the magnitude of the measured quantity that determines the state of the diaphragm mechanism.

ここでyを被測定量の大きさに対応して動く絞り機構の
状態に関する尺度、すなわち被測定量の尺度とすると、
光ファイバ5から絞り機構に照射された光に対する絞り
機構の影響はXt=fx(y)で表わされ、これが絞り
機構により光ファイバ5の中に投げ返された光の部分で
ある。Vl(Xt)を当センサ部で失われた光の部分と
すると、1− Xt−Vl(Xl)がもう一方の光ファ
イバ6に入射された光の部分となる。
Here, if y is a measure of the state of the diaphragm mechanism that moves in response to the size of the measured quantity, that is, a measure of the measured quantity, then
The influence of the diaphragm mechanism on the light irradiated from the optical fiber 5 to the diaphragm mechanism is expressed as Xt=fx(y), which is the portion of the light thrown back into the optical fiber 5 by the diaphragm mechanism. If Vl(Xt) is the part of the light lost at the sensor section, then 1-Xt-Vl(Xl) is the part of the light incident on the other optical fiber 6.

同様のことがもう一方の光ファイバ6を経由して光変調
器に伝達される光についてもあてはまる。
The same applies to the light transmitted to the optical modulator via the other optical fiber 6.

X5=f意0’)を光変調器の絞り機構から光ファイバ
6に反射投入された光の部分、゛またVz(Xz)を当
センサ部で失われた光の部分とすると、1−X2 V2
 (Xl )が反対側の光ファイバ5に入射された光の
部分となる。
If X5=f0') is the part of the light reflected from the aperture mechanism of the optical modulator into the optical fiber 6, and Vz (Xz) is the part of the light lost at the sensor section, then 1-X2 V2
(Xl) is the portion of the light incident on the optical fiber 5 on the opposite side.

光源1から放射される光の光度を1.とすると、該光源
1は受光器11に対し下記光度の光を供給する。
Let the luminous intensity of light emitted from light source 1 be 1. Then, the light source 1 supplies light with the following luminous intensity to the light receiver 11.

そして受光器12に対しては の光度の光が与えられる。ここでに1 vは光源lから
光変調器7に到るルートの光の全減衰係数で、光ファイ
バ5の減衰係数、光ファイバへ入射するときの光の減衰
係数および半透過性の鏡9を光が透過するときの減衰係
数を包含するものとする。
The light receiver 12 is provided with light having a luminous intensity of . Here, 1 v is the total attenuation coefficient of the light on the route from the light source l to the optical modulator 7, the attenuation coefficient of the optical fiber 5, the attenuation coefficient of the light when it enters the optical fiber, and the semi-transparent mirror 9. Let include the attenuation coefficient when light is transmitted.

Klrは光変調器7から光ファイバ5を通り半透過性の
鏡9の反射面を経由して受光器11まで戻ってくる全ル
ートについての光の全滅摂係数で、光ファイバ5の減衰
係数、光ファイバ5から光が放射するときの減衰係数、
半透過性の鏡9で光が反射するときの減衰係数、および
受光器11へ光が入射するときの減衰係数を包含するも
のとする。またηlは受光器11の効率に関する係数で
ある。
Klr is the extinction coefficient of light for the entire route from the optical modulator 7 through the optical fiber 5 and back to the light receiver 11 via the reflective surface of the semi-transparent mirror 9, and is the attenuation coefficient of the optical fiber 5; Attenuation coefficient when light is emitted from the optical fiber 5,
The attenuation coefficient when light is reflected by the semi-transparent mirror 9 and the attenuation coefficient when light is incident on the light receiver 11 are included. Further, ηl is a coefficient related to the efficiency of the light receiver 11.

同様にに2vは光源2から光変調器7に到る全ルートに
ついての光の全減衰係数であり、またに2rは光変調器
7から光ファイバ6を通って半透過性の鏡8の反射面を
経由して受光器12まで戻ってくる全ルートについての
光の全減衰係数、η2は受光器氏の効率に関する係数で
ある。
Similarly, 2v is the total attenuation coefficient of light for the entire route from the light source 2 to the optical modulator 7, and 2r is the reflection from the semi-transparent mirror 8 from the optical modulator 7 through the optical fiber 6. The total attenuation coefficient of light for the entire route back to the receiver 12 via the surface, η2, is a coefficient related to the efficiency of the receiver.

光源2から放射される光の光度を12Bとし、かつIl
Bと同じ光スペクトルで構成されているものとすると、
該光源2は受光器11に対し次の光度の光を供給する。
Let the luminous intensity of the light emitted from the light source 2 be 12B, and Il
Assuming that it is composed of the same optical spectrum as B,
The light source 2 supplies light of the following luminous intensity to the light receiver 11.

そして受光器12に対しては次の通りである。The process for the light receiver 12 is as follows.

yをめるため、光源1ぶよび2を交互に点滅してそのつ
ど該当する光度■目を測定する。該光度IIIから変数
yを含めて次式が成文する。
In order to calculate y, light sources 1 and 2 are blinked alternately and the corresponding luminous intensity is measured each time. The following equation is written including the variable y from the luminous intensity III.

ここで、Xx=fx(3’1. X2=f2(3’) 
である。
Here, Xx=fx(3'1. X2=f2(3')
It is.

上式において減衰係数に、およびに2.効率係数ηlお
よびη2.そして光度I工gおよび12Bは、これらの
諸値が各測定サイクル中変化せずかつ伝送される光の光
度に無関係である限り互いlこ相殺される。また、もし
当計測装置を対称的に構成すると、Xl= X2 = 
f fyl =X が成文して式は簡易化され、1”、
I、、(X )2 112 ・Izi 1−X−V(xi そして ここで 1−Vixlが光変調器の特性値を表わす。最
も簡単な場合、V(xiは一定もしくは0である。また
y=定数・Xとすればさらに簡易化されるが、これは測
定範囲を限定すれば可能となる。
In the above equation, the damping coefficient and 2. Efficiency coefficients ηl and η2. The luminous intensities I, g and 12B then cancel each other as long as these values do not change during each measurement cycle and are independent of the luminous intensity of the transmitted light. Also, if this measuring device is configured symmetrically, Xl = X2 =
f fyl =X is written and the formula is simplified, 1”,
I,, (X )2 112 ・Izi 1-X-V(xi And here 1-Vixl represents the characteristic value of the optical modulator. In the simplest case, V(xi is constant or 0. It is further simplified by setting = constant x, but this becomes possible by limiting the measurement range.

前述の測定方法を変形して、反射光が目標の受光器にま
だすべて戻ってとない中にパルスが終了する程短かい光
パルスを光源lおよび2から交互に送り出してもよい。
In a modification of the measurement method described above, the light sources 1 and 2 may alternately send light pulses so short that the pulses terminate before all of the reflected light has returned to the target receiver.

この場合受光器が受けとる光量。In this case, the amount of light received by the receiver.

Qi j =f l1jdt が測定されるが、装置が対称的に構成されている場合に
は下式が成文する。
Qi j =fl1jdt is measured, and if the device is constructed symmetrically, the following formula holds true.

そして、さらに次式が成立する、 もし光が一方の半透過性の鏡に隣接する光ファイバの端
末面で反射され、さらに該鏡により隣の受光器の方へ方
向転換させられると、前述した補償効果が減殺されるこ
とになる。したがって鏡に隣接する光ファイバのコア端
面を非反射性とし、かつ該端末面の周囲の外皮表面をつ
や消し黒色仕上げとすると南利である、 数多くの測定値および計算値から平均値をめると、旋動
等の影響でKおよびηの値が変化することに起因する誤
差が除去されて有利である。
Then, the following equation holds: If the light is reflected by the end face of the optical fiber adjacent to one semi-transparent mirror and is further redirected by the mirror toward the adjacent receiver, then The compensation effect will be diminished. Therefore, if the core end face of the optical fiber adjacent to the mirror is made non-reflective, and the outer skin surface around the end face is finished with a matte black finish, it is possible to obtain the average value from a large number of measured and calculated values. , errors caused by changes in the values of K and η due to the effects of rotation, etc. are advantageously eliminated.

第2図は圧力測定用光変調器の実施例断面図である。金
属塊加に中空部乙につらなる同心の二つの孔21オよび
四がうがたれ、該孔21 、22の中でねじつき二、プ
ルス、25および0リング26.27によりバ、キング
ボ、クス状の気密構造が構成され、該気密部が中空部襲
まで引き込まれた光ファイバ31゜22を外gIこ対し
気密に保持する。ばね管列の中を1本の棒四が頁通し、
該棒四の下端に両面を鏡面仕上げされた絞り機構刃が装
着される。該絞り機11II30は向い合わせに配置さ
れた二つの元ファイバ31.32の端面の中間まで突き
出されて位置し、中空部る内の圧力に対応して光ファイ
バ31および32のいずれか一方に反射投入する光なら
びに他の一方に通過投射する光の童を加減するよう機能
する。
FIG. 2 is a sectional view of an embodiment of an optical modulator for pressure measurement. In addition to the metal block, two concentric holes 21 and 4 are connected to the hollow part A, and in the holes 21 and 22, threaded holes 2, 25, and 0 rings 26 and 27 are used to insert the holes 21 and 22. An airtight structure is constructed, and the airtight part holds the optical fiber 31°22 drawn into the hollow part airtightly from the outside. A rod 4 passes through the spring tube row,
A diaphragm mechanism blade whose both surfaces are mirror-finished is attached to the lower end of the rod 4. The diaphragm 11II30 is positioned so as to protrude to the middle of the end faces of the two original fibers 31 and 32 arranged facing each other, and reflects the light into one of the optical fibers 31 and 32 in response to the pressure inside the hollow part. It functions to moderate the amount of light that enters as well as the amount of light that passes through and projects onto the other side.

第3図は光変調器の異なる実施例を示す。この実施例で
は2本の光フアイバ36オよび37の端面U。
FIG. 3 shows different embodiments of the optical modulator. In this embodiment, the end faces U of two optical fibers 36 and 37.

35が同一平面上にそろえて配列される。該両端面に向
い合って可動板あが配置され、該可動板あと端面あ、3
5との間隔が被測定量の大きさに対応して変化するよう
に構成される。この実施例におい−でも、一方の端面か
ら放射された元が可動板あで反射されて該端面に投げ返
され、またもう一方の端面に入射される割り合いが前記
間隔の状態に関連して変化する。
35 are arranged on the same plane. A movable plate A is arranged facing both end faces, and the movable plate rear end face A, 3
5 is configured such that the distance between the measuring object and the measuring object 5 changes in accordance with the size of the measured quantity. In this embodiment, the rate at which the source radiated from one end face is reflected by the movable plate and thrown back to the end face, and is incident on the other end face is determined in relation to the above-mentioned spacing state. Change.

第4図はこの発明のさらに異なる実施例を示す。FIG. 4 shows yet another embodiment of the invention.

この実施例では、2本の光ファイバ41および42の一
方41が固定されているのに対し、もう一方の光ファイ
バ42は可動体43と結合されて可動に構成されている
。そして光ファイバ42の光ファイバ41に対する位置
のずれの程度に対応して、一方の光ファイバから他方の
光7アイパに入射される光量ならびに自分自身に投げ返
される光量が変化する。
In this embodiment, one of the two optical fibers 41 and 42 is fixed, while the other optical fiber 42 is connected to a movable body 43 and is configured to be movable. The amount of light incident from one optical fiber to the other optical fiber 7 and the amount of light thrown back to itself change in accordance with the degree of displacement of the optical fiber 42 with respect to the optical fiber 41.

この実施例では空隙44をへだでて向い合わせに配置さ
れた光ファイバ41 、42の両端末面は、元ファイバ
のコア断面よりやや狭い部分だけが鏡面仕上げされる。
In this embodiment, the end surfaces of the optical fibers 41 and 42, which are placed facing each other across the gap 44, are mirror-finished only in the portions that are slightly narrower than the core cross section of the original fibers.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、光変調器は被測定量の大きさに対応
して測定光を伝達して来た一方の光ファイバに投げ返す
光量と他方の光ファイバに通過入射させる光量との割り
合いを加減し、かつ受光器でこの反射光と通過光の光度
ないしは光景を測定し、その割り合いを演算回路で算出
して被測定量の大きさが把握されるので、光伝送ルート
全般に関する光の減衰の度合や減衰の態様あるいはそれ
らにもとづく副次的効果が極めて早く変化しない限り、
光伝送ルート中の光の減衰係数の変化が測定値に及ぼす
影響が補償される。また、交互に点滅する二つの光源の
光度に差があっても、測定値は影響されない。さらに二
つの光結合器における光の減衰ならびに二つの受光器の
感度の差にもとづく測定値への影響も消去される。
According to this invention, the optical modulator adjusts the ratio between the amount of light thrown back to one optical fiber through which the measurement light has been transmitted and the amount of light transmitted through the other optical fiber in accordance with the size of the measured quantity. The receiver measures the luminous intensity or sight of the reflected light and the transmitted light, and the ratio is calculated by an arithmetic circuit to determine the size of the measured quantity. Unless the degree of attenuation, mode of attenuation, or side effects based on these change extremely quickly,
The influence of changes in the attenuation coefficient of light during the optical transmission route on the measured values is compensated for. Furthermore, even if there is a difference in the luminous intensity of the two light sources that flash alternately, the measured value will not be affected. Furthermore, the influence on the measured value due to the attenuation of the light in the two optical couplers and the difference in sensitivity of the two optical receivers is also eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の原理図、第2図はこの発明
における光変調器の実施例の断面図、第3図はこの発明
における光変調器の異なる実施例の断面図、第4図はそ
のさらに異なる実施例の断面図である。 1.2・・・光源、5.6・・・光ファイバ、7・・・
光変調器、8,9・・・半透過性の鏡、11.12・・
・受光器、10 、13・・・デジタル・アナログ変換
器、14・・・演算回路、b・・・プロ、り、30・・
・絞り機構、31,32.41゜42・・・光ファイバ
、34 、35・・・光ファイバの端面。
FIG. 1 is a principle diagram of an embodiment of this invention, FIG. 2 is a sectional view of an embodiment of an optical modulator in this invention, FIG. 3 is a sectional view of a different embodiment of an optical modulator in this invention, and FIG. The figure is a sectional view of yet another embodiment. 1.2...Light source, 5.6...Optical fiber, 7...
Light modulator, 8, 9... Semi-transparent mirror, 11.12...
・Photoreceiver, 10, 13...Digital-to-analog converter, 14...Arithmetic circuit, b...Professional, 30...
- Aperture mechanism, 31, 32. 41° 42... Optical fiber, 34, 35... End face of optical fiber.

Claims (1)

【特許請求の範囲】 1)2本の光ファイバを経由して交互に光を放射する二
つの光源ならびに該光ファイバを経由しかつ中間に光結
合器を介して二つの受光器が結合された光学的計測装置
において、光変調器が被測定量の大きさに対応して前記
両光源の各一方の光源で照射された方の光ファイバの方
には光を反射投入し、他の光ファイバの方には光を通過
投入するようにし、該光変調器によって両光ファイバに
交互に反射投入される両光源からの光の反射光をそれぞ
れ受光器で測定した二つの光度の積と、光変調器によっ
て両光ファイバに交互に通過投入される両光源からの光
の通過光をそれぞれ受光器で測定した二つの光度の積と
の比を被測定量の尺度として用いることを特徴とする光
学的計測装置。 2、特許請求の範囲第1項記載の装置において、光変調
器が、双方の光ファイバの向い合って配・置された端面
の中間に位置された、両面が鏡面仕上げされかつ被測定
量の大きさに対応して偏位可能な絞り機構によって構成
されることを特徴とする光学的計測装置。 3)特許請求の範囲第1項記載の装置において、光変調
器が、双方の光ファイバの同一平面上に配列された変調
器側端面の向い合って被測定量の大きさに対応して変化
する間隙をへだてて配置された反射板で構成されること
を特徴とする光学的計測装置。 4)特許請求の範囲第1項記載の装置において、双方の
光ファイバの変調器側端末面が向い合せに配置され、か
つ該光ファイバのコア相当部端面だけが鏡面仕上げされ
、また一方の光フアイバ端面が他方の光ファイバの端面
に対して被測定量の大きさに対応して偏位可能にされた
ことを特徴とする光学的計測装置。 5)特許請求の範囲第1項ないし第4項のいずれかに記
載の装置において、各受光器の出力端がアナログ・デジ
タル変換器を介してデジタル演算回路の入力端に接続さ
れ、かつ該演算回路の出力端がプロッタに接続されたこ
とを特徴とする光学的計測装置。
[Claims] 1) Two light sources that alternately emit light via two optical fibers and two light receivers coupled via the optical fibers and an optical coupler in between. In an optical measurement device, an optical modulator reflects light into the optical fiber irradiated by one of the two light sources in accordance with the size of the measured quantity, and injects the light into the other optical fiber. Light is passed through and input into the optical fibers, and the product of the two luminous intensities measured by the light receivers of the reflected light from both light sources, which are alternately reflected and input into both optical fibers by the optical modulator, and the light Optics characterized in that the ratio of the light passing through the light sources from both light sources, which are alternately passed into both optical fibers by a modulator, and the product of two luminous intensities measured by a light receiver, is used as a measure of the quantity to be measured. measurement device. 2. In the apparatus according to claim 1, the optical modulator is located between the opposing end surfaces of both optical fibers, both sides of which are mirror-finished, and the measuring object is An optical measuring device comprising an aperture mechanism that can be deflected according to the size. 3) In the device according to claim 1, the optical modulator changes in accordance with the size of the measured quantity, with the modulator side end faces facing each other arranged on the same plane of both optical fibers. An optical measuring device characterized by comprising a reflecting plate placed apart from a gap. 4) In the device according to claim 1, the modulator-side terminal surfaces of both optical fibers are arranged to face each other, and only the end surfaces of the core-corresponding portions of the optical fibers are mirror-finished; An optical measuring device characterized in that a fiber end face can be deviated relative to the end face of the other optical fiber in accordance with the magnitude of a measured quantity. 5) In the device according to any one of claims 1 to 4, the output terminal of each light receiver is connected to the input terminal of a digital calculation circuit via an analog-to-digital converter, and An optical measuring device characterized in that the output end of the circuit is connected to a plotter.
JP11804384A 1983-06-09 1984-06-08 Optical measuring device Pending JPS6036911A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3320894.8 1983-06-09
DE19833320894 DE3320894A1 (en) 1983-06-09 1983-06-09 Optical measurement quantity pick-up

Publications (1)

Publication Number Publication Date
JPS6036911A true JPS6036911A (en) 1985-02-26

Family

ID=6201080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11804384A Pending JPS6036911A (en) 1983-06-09 1984-06-08 Optical measuring device

Country Status (2)

Country Link
JP (1) JPS6036911A (en)
DE (1) DE3320894A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110160A (en) * 1985-08-20 1987-05-21 ヨ−ク・リミテツド Optical time-region reflection measurement
US5020965A (en) * 1988-04-28 1991-06-04 Kao Corporation Method for shifting goods and apparatus therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2043183T3 (en) * 1989-06-19 1993-12-16 Iveco Magirus PROCEDURE FOR MEASURING A PHYSICAL MAGNITUDE WITH A FIBER OPTIC SENSOR.
DE102017202396A1 (en) * 2017-02-15 2018-08-16 Wicor Holding Ag Fiber optic vibration and acceleration sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110160A (en) * 1985-08-20 1987-05-21 ヨ−ク・リミテツド Optical time-region reflection measurement
US5020965A (en) * 1988-04-28 1991-06-04 Kao Corporation Method for shifting goods and apparatus therefor
US5181818A (en) * 1988-04-28 1993-01-26 Kao Corporation Method for shifting goods and apparatus therefor
US5332363A (en) * 1988-04-28 1994-07-26 Kao Corporation Method for shifting goods and apparatus therefor
US5427492A (en) * 1988-04-28 1995-06-27 Kao Corporation Method for shifting goods and apparatus therefor

Also Published As

Publication number Publication date
DE3320894A1 (en) 1984-12-13

Similar Documents

Publication Publication Date Title
EP0023345A2 (en) Optical sensing system
US4596925A (en) Fiber optic displacement sensor with built-in reference
US4356396A (en) Fiber optical measuring device with compensating properties
EP0646767B1 (en) Interferometric distance measuring apparatus
JPH0231113A (en) Interferometer sensor and use of the same in interferometer device
EP0079944B1 (en) Fiber optic interferometer
US3708229A (en) System for measuring optical path length across layers of small thickness
GB2117918A (en) Standing wave interferometer for measuring optical path differences
JPS6036911A (en) Optical measuring device
JPH068724B2 (en) Optical detector
JPH11295153A (en) Wavelength detecting device
JPS6018727A (en) Optical interferometer
US3552860A (en) Refraction measuring apparatus
JPH05323029A (en) Distance measuring method by light wave range finder
US4548502A (en) Ultra-high sensitivity interferometer
RU2141621C1 (en) Interferometric device to measure physical parameters of clear layers ( versions )
JPS6147514A (en) Reflective type optical fiber sensor
JPS58208602A (en) Laser device and interferometer with said laser device
JP3110139B2 (en) Optical fiber temperature sensor
JPH0480643A (en) Refractive index measuring apparatus
JPH06213619A (en) Interferometer
RU2166182C2 (en) Interference method measuring angle of turn of object
JPS625605Y2 (en)
SU847012A1 (en) Device for counting stable interferometer interferention order fractional part
JPS57120803A (en) Light interference type sensor