JPS6036539B2 - Refrigeration equipment capable of cooling and dehumidifying - Google Patents

Refrigeration equipment capable of cooling and dehumidifying

Info

Publication number
JPS6036539B2
JPS6036539B2 JP13543577A JP13543577A JPS6036539B2 JP S6036539 B2 JPS6036539 B2 JP S6036539B2 JP 13543577 A JP13543577 A JP 13543577A JP 13543577 A JP13543577 A JP 13543577A JP S6036539 B2 JPS6036539 B2 JP S6036539B2
Authority
JP
Japan
Prior art keywords
expansion valve
cooling
coil
indoor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13543577A
Other languages
Japanese (ja)
Other versions
JPS5468043A (en
Inventor
菩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP13543577A priority Critical patent/JPS6036539B2/en
Publication of JPS5468043A publication Critical patent/JPS5468043A/en
Publication of JPS6036539B2 publication Critical patent/JPS6036539B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Drying Of Gases (AREA)

Description

【発明の詳細な説明】 本発明は、除湿用減圧膨張機構として温度式目勤膨張弁
を用い、この膨張弁を特殊な冷煤回路を用いて冷房運転
時に閉止させることにより、1個の開閉弁で冷房運転及
び除湿運転相互間の切換えを可能とした冷凍装置に関す
る。
Detailed Description of the Invention The present invention uses a temperature-type expansion valve as a decompression expansion mechanism for dehumidification, and closes this expansion valve during cooling operation using a special cold soot circuit. The present invention relates to a refrigeration system that allows switching between cooling operation and dehumidification operation using a valve.

この種の冷房、除湿運転可能とした冷凍装置として従来
知られているものでは、冷房運転及び除湿運転相互間を
切換えるための開閉弁として電磁弁を2個必らず必要と
していたこと、さらに運転切換え時室内コイルで不快な
音が発生していたこと等の種々の欠点があった。
Conventionally known refrigeration equipment capable of cooling and dehumidifying operations of this type required two solenoid valves as opening/closing valves to switch between cooling and dehumidifying operations. There were various drawbacks, such as an unpleasant sound being generated by the indoor coil when switching.

これら欠点を従来装置の室内側の1例を図示した第6図
に基づき説明する。31は冷房時蒸発器となり、除湿時
再熱器となる第1室内コイル、32は冷房、除湿時とも
蒸発器となる第2室内コイル、33,34はそれぞれ除
湿用及び冷房用膨張弁、35,36は電磁弁であり、こ
の冷凍装置は、冷房運転は電磁弁35を閉じ電磁弁36
を開いて、冷媒を冷房用膨張弁34、第1、2室内コイ
ル31,32の順に流通させることにより行ない、電磁
弁35を開き電磁弁36を閉じて、冷媒を第1室内コイ
ル31、除湿用膨張弁33、第2室内コイル32の順に
流通させて除湿運転を行なうものである。
These drawbacks will be explained based on FIG. 6, which shows an example of the indoor side of the conventional device. 31 is a first indoor coil that serves as an evaporator during cooling and a reheater during dehumidification; 32 is a second indoor coil that serves as an evaporator during both cooling and dehumidification; 33 and 34 are expansion valves for dehumidification and cooling, respectively; 35 , 36 are solenoid valves, and in cooling operation, the solenoid valve 35 is closed and the solenoid valve 36 is closed.
The solenoid valve 35 is opened and the solenoid valve 36 is closed to allow the refrigerant to flow through the cooling expansion valve 34 and the first and second indoor coils 31 and 32 in this order. The dehumidifying operation is performed by circulating the air through the expansion valve 33 and the second indoor coil 32 in this order.

従って、まず第1に冷房運転及び除湿運転の相互間を切
換えるために2個の電磁弁35,36を必要とし、また
かかる電磁弁35,36はコストも高いので、装置全体
の価格を上昇させていた。
Therefore, first of all, two solenoid valves 35 and 36 are required to switch between cooling operation and dehumidification operation, and since these solenoid valves 35 and 36 are expensive, they increase the price of the entire device. was.

さらに電磁弁35,36は弁部のゴミ詰まり、電磁コイ
ルの焼損等の事故が起りやすく、かかる事故が起ると、
前記運転切換えが不能となる欠点を有していた。さらに
、除湿時再熱器となり冷房時蒸発器となる第1室内コイ
ル31内の圧力が、冷房運転及び除湿運転相互間の切換
え時に高低圧に急激に変化するため、特に冷房運転から
除湿運転に切換えたとき、低圧である第1室内コイル3
1内に高圧冷煤が流入して、前記コイル31内が急激に
低圧から高圧に変化するため、この圧力変化に伴なう衝
撃音が発生し、室内の居住者に不快感を与えるという欠
点がある。
Furthermore, the electromagnetic valves 35 and 36 are prone to accidents such as dust clogging in the valve portion and burnout of the electromagnetic coil, and if such an accident occurs,
This had the disadvantage that the operation switching was impossible. Furthermore, the pressure inside the first indoor coil 31, which serves as a reheater during dehumidification and an evaporator during cooling, changes rapidly between high and low pressures when switching between cooling operation and dehumidification operation, especially when changing from cooling operation to dehumidification operation. When switched, the first indoor coil 3 is at low pressure.
High-pressure cold soot flows into the coil 31 and the pressure inside the coil 31 suddenly changes from low to high, so this pressure change generates an impact sound that causes discomfort to the occupants of the room. There is.

本発明は以上のごとき欠点を改善しようとして発明した
もので、除湿用減圧膨張機構として温度式目動膨張弁を
用い、この膨張弁をバイパスするバイパス配管に1個の
開閉弁と冷房用減圧膨張機構とを直列に介設し、冷房運
転時節記除湿用温度式目敷膨張弁の感温部を冷却するよ
うに未蒸発の低圧低温冷媒を流通せしめることにより、
前記除湿用の膨張弁を自動的に閉止させて、1個の開閉
弁で冷房運転及び除湿運転相互間を切換え可能としたも
のである。
The present invention was invented in an attempt to improve the above-mentioned drawbacks, and uses a temperature-type variable expansion valve as a dehumidifying decompression expansion mechanism, and a bypass pipe that bypasses this expansion valve with one on-off valve and a cooling decompression expansion mechanism. By interposing the mechanism in series with the air conditioner and allowing unevaporated low-pressure low-temperature refrigerant to flow so as to cool the temperature-sensing part of the temperature-type expansion valve for dehumidification during cooling operation,
The expansion valve for dehumidification is automatically closed to enable switching between cooling operation and dehumidification operation with one on-off valve.

本発明にかかる冷凍装置を第1図に基づき説明する。A refrigeration system according to the present invention will be explained based on FIG.

圧縮器1吐出口から吸入口との間に、室外コイル2、後
述する熱交換装置12の外側通路13、除湿用の温度式
目動膨張弁7、第1室内コイル3、前記熱交換装置12
の内側通路14、第2室内コイル4を順次配管接続する
とともに、前記膨脹弁7の感温部8を第1室内コイル3
と前記熱交換装遣12とを接続する配管16に添接して
除湿運転回路を構成する。
Between the discharge port and the suction port of the compressor 1, there are an outdoor coil 2, an outer passage 13 of a heat exchange device 12 (described later), a temperature-type variable expansion valve 7 for dehumidification, a first indoor coil 3, and the heat exchange device 12.
The inner passage 14 of
and the heat exchange equipment 12 are connected to the piping 16 to form a dehumidifying operation circuit.

なお、前記熱交換装置12は室外コイル2から流出した
高圧冷媒と前記感温部8下流側の低圧冷媒とを熱交換さ
せるようにしたもので、図示の如く2重管構造とし外側
通路13内に前記室外コイル2から流出した高圧冷煤を
流し、また内側通路14内に前記感温部8下流側の低圧
袷煤を流すようにしている。
The heat exchange device 12 is designed to exchange heat between the high-pressure refrigerant flowing out from the outdoor coil 2 and the low-pressure refrigerant downstream of the temperature sensing section 8, and has a double pipe structure as shown in the figure. The high-pressure cold soot flowing out from the outdoor coil 2 is made to flow into the inner passage 14, and the low-pressure soot on the downstream side of the temperature-sensing section 8 is made to flow into the inner passage 14.

また、前記2重管式熱交換装置12において冷蝶を上記
の如く流す理由は、前記低圧冷媒が熱交換装置12の周
囲空気と熱交換するのを防止し、前記高圧冷煤と効率よ
く熱交換するように配慮したからである。而して、前述
の除湿運転回路において、前記除湿用の膨張弁7をバィ
パスし、電磁弁11と冷房時減圧膨脹機構として作動す
る冷房用の温度式目勤膨張弁9とを直列に介設したバイ
パス配管15を設け、該冷房用の膨張弁9の感温部10
を第2室内コイル4の出口配管17に添接して冷房運転
を可能としている。
The reason for flowing the cold soot in the double-pipe heat exchanger 12 as described above is to prevent the low-pressure refrigerant from exchanging heat with the surrounding air of the heat exchanger 12, and to efficiently exchange heat with the high-pressure cold soot. This is because consideration was given to replacing it. In the dehumidifying operation circuit described above, the expansion valve 7 for dehumidification is bypassed, and the solenoid valve 11 and the temperature-type expansion valve 9 for cooling, which operates as a decompression expansion mechanism during cooling, are interposed in series. A bypass pipe 15 is provided, and a temperature sensing part 10 of the cooling expansion valve 9 is provided.
is attached to the outlet pipe 17 of the second indoor coil 4 to enable cooling operation.

なお、第1図において5は室外コイル2用の室外ファン
、6は第1、2室内コイル3,4用の室内ファンである
In addition, in FIG. 1, 5 is an outdoor fan for the outdoor coil 2, and 6 is an indoor fan for the first and second indoor coils 3 and 4.

また21は圧縮機1電動機発樟用の運転スイッチ、22
はサーモスタットで室内温度が所定値より高いときに閉
となって、圧縮機1電動機に給電する。23は電磁弁1
1開閉用のスイッチ、24,25は給電線である。
In addition, 21 is an operation switch for the compressor 1 electric motor, and 22
is a thermostat that closes when the indoor temperature is higher than a predetermined value, supplying power to the compressor 1 motor. 23 is solenoid valve 1
1 is an opening/closing switch, and 24 and 25 are power supply lines.

以上説明した第1図々示装置の冷房運転を行なう場合に
ついて説明する。
The case where the cooling operation of the apparatus shown in FIG. 1 described above is performed will be explained.

まず、スッチ21を閉成し、サーモスタット22を介し
て圧縮機1電動機に給電し、圧縮機1を駆動する。
First, the switch 21 is closed, power is supplied to the compressor 1 motor via the thermostat 22, and the compressor 1 is driven.

同時にスイッチ23を閉成して電磁弁11を開放する。
また室内外ファン6,5を適宜手段(図示せず)により
駆動する。このように操作すると、圧縮機1、室外コイ
ル2、電磁弁11、冷房用膨張弁9、第1室内コイル3
、第2室内コイル4、圧縮機1の順に冷煤が循環するサ
イクルが形成され、除湿用膨張弁7の感温部8を添接し
ている連絡配管16内に低圧の液ガス混合冷煤が流れ、
この伶煤によって前記感溢部8が冷却されて前記除湿用
膨張弁7が自動的に閉止し、冷房運転が行なわれる。
At the same time, the switch 23 is closed and the solenoid valve 11 is opened.
In addition, the indoor and outdoor fans 6 and 5 are driven by appropriate means (not shown). When operated in this way, the compressor 1, the outdoor coil 2, the solenoid valve 11, the cooling expansion valve 9, and the first indoor coil 3
, the second indoor coil 4 , and the compressor 1 in this order, forming a cycle in which cold soot circulates, and low-pressure liquid-gas mixed cold soot flows into the connecting pipe 16 that connects the temperature sensing part 8 of the dehumidifying expansion valve 7 . flow,
The soot cools the overflowing section 8, and the dehumidifying expansion valve 7 automatically closes to perform cooling operation.

この冷房運転のサイクルについて、さらに第2図aに示
したモリヱル線図を用いながら詳述する。
This cooling operation cycle will be further explained in detail using the Molier diagram shown in FIG. 2a.

圧縮機1から吐出した高圧高温のガス冷媒(第2図aの
点イ)が室外コイル2に流入する。
A high-pressure, high-temperature gas refrigerant (point A in FIG. 2 a) discharged from the compressor 1 flows into the outdoor coil 2 .

前記ガス冷媒はこの室外コイル2で室外ファン5により
誘導された室外空気により冷却され、液化する(点口)
。液化した高圧冷媒は熱交換装置12に流れてゆき、該
装置12の外側通路13を通ってゆく間に、第1室内コ
イルから流出する低圧低温の冷嬢により過冷却され(点
ハ)、冷房用膨張弁9に至る。
The gas refrigerant is cooled by the outdoor air induced by the outdoor fan 5 in this outdoor coil 2 and liquefied (point outlet).
. The liquefied high-pressure refrigerant flows to the heat exchange device 12, and while passing through the outer passage 13 of the device 12, it is supercooled by the low-pressure, low-temperature refrigerant flowing out from the first indoor coil (point C), and the air conditioner is cooled. expansion valve 9.

而して、冷房用膨張弁9で減圧膨張された低圧の液冷媒
(点二)は、第1室内コイル3に流入し、室内ファン6
により誘導された室内空気と熱交換し該室内空気を冷却
しながら一部の液冷媒が蒸発した状態(点へ)となった
後、熱交換装置12に流れてゆく。
Then, the low-pressure liquid refrigerant (point 2) that has been decompressed and expanded by the cooling expansion valve 9 flows into the first indoor coil 3 and is turned off by the indoor fan 6.
After exchanging heat with the indoor air induced by the refrigerant and cooling the indoor air, some of the liquid refrigerant reaches a state where it evaporates (to a point), and then flows into the heat exchange device 12.

このとき、除湿用膨張弁7の感温部8が添接されている
第1室内コイル3出口側の連絡配管16には、冷房運転
中つねに液ガス混合(全く過熱されていない湿りの状態
)の冷煤が流通しているから、前記除湿用膨張弁7は冷
房運転中ずっと感溢部8で湿り状態を検知しつづけてお
り、該膨張弁7は閉止側に動作し、冷房運転中閉止しつ
づけている。
At this time, the connecting pipe 16 on the outlet side of the first indoor coil 3, to which the temperature sensing part 8 of the dehumidifying expansion valve 7 is attached, is constantly mixed with liquid gas (in a moist state without being overheated) during cooling operation. Since the cold soot is circulating, the dehumidifying expansion valve 7 continues to detect the wet state in the overflow section 8 during the cooling operation, and the expansion valve 7 moves to the closing side and remains closed during the cooling operation. I keep doing it.

次いで、熱交換装置12に流入した低圧冷嬢は該装置1
2の内側通路14を流れてゆく間に室外コイル2からの
高圧液冷煤により加熱された後(点ト)、第2室内コイ
ル4に入り、ここで、こらに第1室内コイル3で冷却さ
れた室内空気と熱交換し、室内空気をさらに冷却しなが
ら蒸発気化し、一定の過熱度のガス冷蝶(点チ)となっ
て、圧縮機1に吸入される。
Next, the low pressure refrigeration chamber that has flowed into the heat exchanger 12 is transferred to the heat exchanger 12.
After being heated by the high-pressure liquid cold soot from the outdoor coil 2 while flowing through the inner passage 14 of the second indoor coil 4, it enters the second indoor coil 4, where it is further cooled by the first indoor coil 3. It exchanges heat with the heated indoor air, evaporates and vaporizes the indoor air while further cooling it, becomes a gas with a certain degree of superheating, and is sucked into the compressor 1.

一方、第1、2室内コイル3,4で冷却された空気は室
内に還流し、冷房運転が行なわれる。
On the other hand, the air cooled by the first and second indoor coils 3 and 4 is returned indoors, and cooling operation is performed.

なお、以上のサイクル中、第1室内コイル3を出た低圧
冷媒が熱交換装置12で高圧冷媒によって加熱されてい
るので(第2図aの点へから点卜まで)、冷房能力を低
下させているかのようにみえるが、冷房用膨張弁9に流
れてゆく高圧液袷煤がこの加熱量相当分過冷却されてい
るので(第2図aの点口から点ハまで)、前記熱交換装
置12を用いたことによって何ら冷房能力は低下しない
。次に、第1図々示の本発明冷凍装置の除湿運転を行な
う場合について説明する。
Note that during the above cycle, the low-pressure refrigerant leaving the first indoor coil 3 is heated by the high-pressure refrigerant in the heat exchanger 12 (from point a in Figure 2 to point B), which reduces the cooling capacity. However, since the high-pressure liquid soot flowing into the cooling expansion valve 9 is supercooled by the amount of heating (from point a to point c in Figure 2), the heat exchange Using the device 12 does not reduce the cooling capacity in any way. Next, a case will be described in which the refrigeration system of the present invention shown in FIG. 1 is operated in a dehumidifying operation.

まず、スイッチ21を閉成して圧縮機1を駆動する。First, the switch 21 is closed to drive the compressor 1.

このとき、スイッチ23は開放したままとして電磁弁1
1を閉止状態としておく。なお、室内外ファン6,5は
冷房運転の場合と同様適宜手段により駆動する。このよ
うに操作すると、圧縮機1、室外コイル2、熱交換装置
12の外側通路13、除湿用膨張弁7、第1室内コイル
3、熱交換装置12の内側通路14、第2室内コイル4
、圧縮機1の順に袷煤が循環するサイクルが形成され、
除湿運転が行なわれる。
At this time, the switch 23 remains open and the solenoid valve 1
1 is kept in a closed state. Note that the indoor and outdoor fans 6 and 5 are driven by appropriate means as in the case of cooling operation. When operated in this way, the compressor 1, the outdoor coil 2, the outer passage 13 of the heat exchange device 12, the dehumidifying expansion valve 7, the first indoor coil 3, the inner passage 14 of the heat exchange device 12, and the second indoor coil 4
A cycle is formed in which soot circulates in the order of compressor 1,
Dehumidification operation is performed.

この除湿運転のサイクルについて、さらに第2図bに示
したモリェル線図を用いながら詳述する。
The cycle of this dehumidification operation will be further explained in detail using the Mollier diagram shown in FIG. 2b.

圧縮機1から吐出した高圧高温のガス冷煤(第2図bの
点イ)は室外コイル2に流入し、室外ファン5により誘
導された室外空気により冷却され、1部液化する(点口
)。
The high-pressure, high-temperature gas cold soot discharged from the compressor 1 (point A in Figure 2 b) flows into the outdoor coil 2, is cooled by the outdoor air induced by the outdoor fan 5, and partially liquefies (point point). .

この液ガス混合の高圧冷媒は熱交換装置12に流れてゆ
き、該熱交換装置12の外側通路13を通ってゆく間に
第1室内コイル3から流出する低圧低温の冷煤により過
冷却され(点ハ)、除湿用膨張弁7に至る。
This liquid-gas mixed high-pressure refrigerant flows into the heat exchange device 12, and while passing through the outer passage 13 of the heat exchange device 12, it is supercooled by the low-pressure, low-temperature cold soot flowing out from the first indoor coil 3 ( Point c), the dehumidification expansion valve 7 is reached.

このとき、電磁弁11が閉じているから、冷房用膨張弁
9には流れない。而して、除湿用膨張弁7で減圧膨張さ
れた1部ガス混じりの低圧液冷煤(点二)は第1室内コ
イル3に流れてゆき、室内ファン6により誘導された室
内空気と熱交換し該室内空気を冷却除湿しながら蒸発し
、一定の過熱渡のガス冷媒(点木)となって熱交換装置
12に流入する。
At this time, since the solenoid valve 11 is closed, the air does not flow into the cooling expansion valve 9. The low-pressure liquid cold soot partially mixed with gas (point 2), which has been depressurized and expanded by the dehumidifying expansion valve 7, flows to the first indoor coil 3, where it exchanges heat with the indoor air induced by the indoor fan 6. The room air is then evaporated while being cooled and dehumidified, and flows into the heat exchange device 12 as a gas refrigerant (point wood) with a constant superheat.

次いで、熱交換装置12に流入した低圧袷煤は内側通路
14を流れてゆく間に、室外コイル2から流出する前述
の液ガス混合の高圧冷媒により加熱され、高温の低圧袷
煤(点へ)となって第2室内コイル4に流入する。ここ
で、この高温の低圧冷媒は第1室内コイル3で冷却除湿
された室内空気と熱交換し該室内空気を加熱しながら冷
却された後(点ト)、圧縮機1に吸入される。
Next, while the low-pressure soot that has flowed into the heat exchanger 12 flows through the inner passage 14, it is heated by the above-mentioned high-pressure liquid-gas mixed refrigerant flowing out from the outdoor coil 2, and the high-temperature low-pressure soot (to a point) is heated. and flows into the second indoor coil 4. Here, this high-temperature low-pressure refrigerant exchanges heat with the cooled and dehumidified indoor air in the first indoor coil 3 and is cooled while heating the indoor air (point 3), and then sucked into the compressor 1.

一方、室内空気は第1室内コイル3で冷却除湿された後
、第2室内コイル4で室内温度とほぼ同じ温度まで加熱
され、室内に還流し除湿運転が行なわれる。以上説明し
た実施例では、本願の特徴の一つであるバイパス配管1
5は、除湿用の膨張弁7のみをバイパスする如く接続し
たものであるが、これに限定されるものではなく、冷房
運転時に冷房用膨張弁9に高圧の液冷媒を流し、かつ該
膨張弁9通過後の低圧低温の冷煤を、除湿用膨張弁7の
感温部8がこの低温の冷煤により冷却されるように除湿
用膨張弁7をバイパスし得るものであればよい。
On the other hand, the indoor air is cooled and dehumidified by the first indoor coil 3, heated to approximately the same temperature as the indoor temperature by the second indoor coil 4, and then returned indoors to perform a dehumidifying operation. In the embodiment described above, the bypass piping 1, which is one of the features of the present application,
5 is connected so as to bypass only the expansion valve 7 for dehumidification, but is not limited to this. During cooling operation, high-pressure liquid refrigerant flows through the expansion valve 9 for cooling, and the expansion valve Any device may be used as long as it can bypass the dehumidifying expansion valve 7 so that the low-pressure, low-temperature cold soot that has passed through the dehumidifying expansion valve 7 is cooled by the low-temperature cold soot.

この具体例第1図々示の冷凍装置に基づき説明すると、
除湿用膨張弁7以外に第1室内コイル3または熱交換装
置12の何れかをバイパスするものでもよく、この場合
配管系統は第3,4図の如くなる。さらに、図示してい
ないが、除湿用膨張弁7、第1室内コイル3、熱交換装
置12の全てをバイパスするものでもよい。また、前記
冷房用膨張弁9の代りにキャピラリーチュープを用いて
もよいことは勿論である。
This specific example will be explained based on the refrigeration system shown in Figure 1.
In addition to the dehumidifying expansion valve 7, either the first indoor coil 3 or the heat exchange device 12 may be bypassed, and in this case, the piping system will be as shown in FIGS. 3 and 4. Furthermore, although not shown, the dehumidifying expansion valve 7, the first indoor coil 3, and the heat exchange device 12 may all be bypassed. Furthermore, it goes without saying that a capillary tube may be used in place of the cooling expansion valve 9.

つぎに他の実施例である第3,4図の作用効果について
簡単に説明する。第3,4図何れのものも除湿運転サイ
クルは第1図のものと同じであるが、第3図のものは、
冷房運転サイクル時冷房用膨張弁9通過後の低圧低温袷
線が第1室内コイル3をバィパスし除湿用膨脹弁7の感
温部8の上流側に流れるようにしたから、冷房運転時、
除湿用膨張弁7を閉止させることができながら、冷房時
と除湿時との蒸発器側熱交換面積が大きく変動すること
を防止できる。即ち、第1図では、蒸発器として除湿時
第1室内コイル3のみが、冷房時、第1、2室内コイル
3,4の両者がそれぞれ働き、冷房時の蒸発器側熱交換
面積は除湿時の約2倍になり、冷房、除湿相互間で大き
く変動するので、冷凍装置の設計が難しいが、第3図で
は蒸発器として除湿時第1室内コイル3が、袷簾時第2
室内コイル4がそれぞれ働き、蒸発器側熱交換面積は冷
房時徐湿時ともほとんど同じであり、大きく変動するこ
とがない。従って、冷凍装置の設計は極めて容易となる
。さらに、第4図のものは冷房運転時室外コイル2から
の高圧液冷煤が熱交換装置12をバイパスして冷房用膨
張弁9に流れるようにして、高圧冷媒と低圧冷媒との間
の熱授受をなくしたもので、この場合のサイクルをモリ
ェル線図上に示すと、第2図aの点イから点口,ホ,チ
を介し点イに戻るサイクルであり、従来のものと同様と
なる。この場合低温低圧袷蝶が感温部8に作用し除湿用
膨張弁7を閉止していることはいうまでもない。以上の
如く本発明冷凍装置は、圧縮機1、室外コイル2、除湿
用温度式目勤膨張弁7、第1、2室内コイル3,4、圧
縮機1の順に配管接続し、前記膨張弁7の感温部8より
下流側の第1室内コイル出口側の連絡配管16と前記膨
張弁7上流側の配管とを熱交換関係に構成するとともに
、前記膨張弁7をバイパスするバイパス配管15を前記
膨張弁入口側配管と前記感温部8上流側の配管との間に
設け、前記バイパス配管15に開閉弁l1、冷房用減圧
膨張機構9を介設したから、きわめて有用な冷房、除湿
可能な冷凍装置が得られる。即ち、除湿用温度式目動膨
張弁7と並列の冷房用減圧膨張機構9に直列に1個の開
閉弁11を接続し、この開閉弁11を開閉させるだけで
、冷房運転及び除湿運転の相互間を切換えることができ
、さらに高価でゴミ詰まり、コイル焼損等の事故の起り
やすい電磁弁の如き開閉弁の使用個数が減少し、信頼性
の高い冷房、除湿可能な冷凍装置を提供することができ
る。
Next, the effects of other embodiments shown in FIGS. 3 and 4 will be briefly explained. The dehumidifying operation cycle for both Figures 3 and 4 is the same as that in Figure 1, but the one in Figure 3 is
During the cooling operation cycle, the low-pressure, low-temperature sash line after passing through the cooling expansion valve 9 bypasses the first indoor coil 3 and flows upstream of the temperature sensing part 8 of the dehumidification expansion valve 7, so that during the cooling operation,
While the dehumidifying expansion valve 7 can be closed, it is possible to prevent the evaporator side heat exchange area between cooling and dehumidifying from changing greatly. That is, in FIG. 1, only the first indoor coil 3 works as an evaporator during dehumidification, and both the first and second indoor coils 3 and 4 work as an evaporator during cooling, and the heat exchange area on the evaporator side during cooling is The design of the refrigeration system is difficult because it varies greatly between cooling and dehumidification, but in Fig. 3, the first indoor coil 3 is used as an evaporator during dehumidification, and the second indoor coil is used as an evaporator during dehumidification.
Each of the indoor coils 4 works, and the heat exchange area on the evaporator side is almost the same during cooling and dehumidification, and does not vary greatly. Therefore, the design of the refrigeration system becomes extremely easy. Furthermore, in the case of FIG. 4, the high-pressure liquid cold soot from the outdoor coil 2 bypasses the heat exchanger 12 and flows into the cooling expansion valve 9 during cooling operation, so that the heat between the high-pressure refrigerant and the low-pressure refrigerant is The cycle in this case is shown on a Mollier diagram, and it is a cycle that returns from point A in Figure 2, via Teguchi, Ho, and Chi, to point A, and is the same as the conventional one. Become. In this case, it goes without saying that the low-temperature, low-pressure butterfly acts on the temperature-sensing section 8 and closes the dehumidifying expansion valve 7. As described above, in the refrigeration system of the present invention, the compressor 1, the outdoor coil 2, the temperature type expansion valve 7 for dehumidification, the first and second indoor coils 3 and 4, and the compressor 1 are connected via piping in this order, and the expansion valve 7 The connecting pipe 16 on the outlet side of the first indoor coil downstream of the temperature sensing section 8 and the pipe on the upstream side of the expansion valve 7 are configured in a heat exchange relationship, and the bypass pipe 15 that bypasses the expansion valve 7 is configured as Since the expansion valve inlet side piping and the piping on the upstream side of the temperature sensing section 8 are provided, and the on-off valve l1 and cooling expansion mechanism 9 are interposed in the bypass piping 15, extremely useful cooling and dehumidification are possible. A refrigeration device is obtained. That is, one on-off valve 11 is connected in series to the cooling depressurization expansion mechanism 9 which is parallel to the dehumidification thermostatic expansion valve 7, and by simply opening and closing this on-off valve 11, cooling operation and dehumidification operation can be performed mutually. This reduces the number of on-off valves such as solenoid valves that are expensive and prone to dust clogging, coil burnout, and other accidents, and provides a highly reliable refrigeration system that can provide cooling and dehumidification. can.

また、室内コイル3,4の何れにおいても、冷房運転及
び除湿運転相互間の切換えによる高低圧の圧力変化が全
くなく、従釆の如き衝撃音が発生することがないので、
静粛で快適な冷凍装置が得られる。
In addition, in both indoor coils 3 and 4, there is no change in high or low pressure due to switching between cooling operation and dehumidification operation, and no impact noise is generated as in the case of secondary coils.
A quiet and comfortable refrigeration system can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明冷凍装置の配管系統図を示し、第2図a
,bは冷房時、除湿時の冷凍サイクルをモリェル線図上
に表わしたもので、第3,4図は本発明の他の実施例で
、冷凍装置の室内側を図示し、第5図は従来例を示した
ものである。 1・…・・圧縮機、2・・・・・・室外コイル、3・・
・・・・第1室内コイル、4・・・・・・第2室内コイ
ル、7・・・・・・温度式目敷膨張弁、8・・・…感温
部、9・・・・・・減圧膨張機構、11・・・・・・開
閉弁、12・・・…熱交換装置。 孝之図孝J図 鱗図 寿く図 髪5図
Figure 1 shows a piping system diagram of the refrigeration system of the present invention, and Figure 2 a
, b shows the refrigeration cycle during cooling and dehumidification on a Mollier diagram. Figures 3 and 4 show other embodiments of the present invention, showing the indoor side of the refrigeration system, and Figure 5 shows the refrigeration cycle during cooling and dehumidification. This shows a conventional example. 1...Compressor, 2...Outdoor coil, 3...
...First indoor coil, 4...Second indoor coil, 7...Temperature type expansion valve, 8...Temperature sensing section, 9... - Decompression expansion mechanism, 11... Opening/closing valve, 12... Heat exchange device. Takayuki picture Takayoshi J scale scale picture Juku hair figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機吐出口、室外コイル、第1室内コイル、第2
室内コイル、圧縮機吸入口の順に配管接続し、前記室外
コイルから第1室内コイルまでの配管に除湿用温度式自
動膨張弁を介し、該膨張弁の感温部を前記第1室内コイ
ルと第2室内コイルとを接続する連絡配管に添接すると
ともに、該連絡配管中の前記感温部添接位置より下流側
の配管と室外コイルから除湿用温度式自動膨張弁までの
配管とを熱交換関係に構成する一方、前記膨張弁をバイ
パスするバイパス配管を前記膨張弁入口側管路と前記膨
張弁の感温部より上流側の管路との間に設け、前記バイ
パス配管に開閉弁、冷房用減圧膨張機構を介設して成る
冷房、除湿可能な冷凍装置。
1 Compressor discharge port, outdoor coil, 1st indoor coil, 2nd
The indoor coil and the compressor suction port are connected in this order via piping, and a temperature-type automatic expansion valve for dehumidification is connected to the piping from the outdoor coil to the first indoor coil, and the temperature sensing part of the expansion valve is connected to the first indoor coil and the first indoor coil. 2. Attached to the connecting pipe that connects the indoor coil, the pipe on the downstream side of the temperature-sensing section attachment position in the connecting pipe and the pipe from the outdoor coil to the temperature-type automatic expansion valve for dehumidification are connected in a heat exchange relationship. On the other hand, a bypass pipe that bypasses the expansion valve is provided between the expansion valve inlet side pipe line and a pipe line upstream from the temperature sensing part of the expansion valve, and the bypass pipe is provided with an on-off valve and a cooling valve. A cooling and dehumidifying refrigeration device equipped with a decompression expansion mechanism.
JP13543577A 1977-11-10 1977-11-10 Refrigeration equipment capable of cooling and dehumidifying Expired JPS6036539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13543577A JPS6036539B2 (en) 1977-11-10 1977-11-10 Refrigeration equipment capable of cooling and dehumidifying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13543577A JPS6036539B2 (en) 1977-11-10 1977-11-10 Refrigeration equipment capable of cooling and dehumidifying

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6654978A Division JPS602579B2 (en) 1978-06-02 1978-06-02 dehumidifier

Publications (2)

Publication Number Publication Date
JPS5468043A JPS5468043A (en) 1979-05-31
JPS6036539B2 true JPS6036539B2 (en) 1985-08-21

Family

ID=15151644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13543577A Expired JPS6036539B2 (en) 1977-11-10 1977-11-10 Refrigeration equipment capable of cooling and dehumidifying

Country Status (1)

Country Link
JP (1) JPS6036539B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147115A (en) * 1987-12-04 1989-06-08 Ngk Insulators Ltd Heat insulating structure around engine intake valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147115A (en) * 1987-12-04 1989-06-08 Ngk Insulators Ltd Heat insulating structure around engine intake valve

Also Published As

Publication number Publication date
JPS5468043A (en) 1979-05-31

Similar Documents

Publication Publication Date Title
JP3936693B2 (en) Combination of automotive cooling plant and heat pump for cooling, heating and dehumidification
US5819551A (en) Air conditioning apparatus for a vehicle
JP2003291635A (en) Air-conditioner
JPH0518630A (en) Air conditioner
JP2006170608A (en) Heat exchanger in air conditioner
JPH06143974A (en) Air conditioner
KR100225636B1 (en) Airconditioner for both cooling and warming
JP3433297B2 (en) Air conditioner
KR101187709B1 (en) Air conditioner and its control method for the pressure equilibrium
JPH0829012A (en) Heat pump device
JPS60219114A (en) Air conditioner for automobile
JP2525338B2 (en) Defrost mechanism of heat pump type air conditioner
JPS6036539B2 (en) Refrigeration equipment capable of cooling and dehumidifying
JP3830242B2 (en) Heat pump type automotive air conditioner
JPS6036542B2 (en) Refrigeration equipment capable of heating, cooling, and dehumidifying
JP3242217B2 (en) Air conditioner
JPS5813820B2 (en) air conditioner
JP2797656B2 (en) Heat pump type air conditioner
JPS6015084Y2 (en) Refrigeration equipment
JPS5852149B2 (en) Refrigeration equipment capable of cooling and dehumidifying
JPS6122748B2 (en)
JP2557940Y2 (en) Air heat source heat pump air conditioner
JPH06337186A (en) Defrosting controller for air-conditioning machine
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JPH0621727B2 (en) Air conditioner