JPS6036534A - Manufacture of highly functional water-absorptive resin - Google Patents

Manufacture of highly functional water-absorptive resin

Info

Publication number
JPS6036534A
JPS6036534A JP14625783A JP14625783A JPS6036534A JP S6036534 A JPS6036534 A JP S6036534A JP 14625783 A JP14625783 A JP 14625783A JP 14625783 A JP14625783 A JP 14625783A JP S6036534 A JPS6036534 A JP S6036534A
Authority
JP
Japan
Prior art keywords
water
resin
absorbent resin
meth
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14625783A
Other languages
Japanese (ja)
Other versions
JPH0563490B2 (en
Inventor
Takatoshi Kobayashi
小林 隆俊
Seizo Yamazaki
山崎 晴三
Yuzo Tsunoda
裕三 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP14625783A priority Critical patent/JPS6036534A/en
Priority to DE19843429379 priority patent/DE3429379A1/en
Priority to ES535037A priority patent/ES8602873A1/en
Publication of JPS6036534A publication Critical patent/JPS6036534A/en
Priority to ES545939A priority patent/ES8607364A1/en
Priority to US06/837,666 priority patent/US4727097A/en
Publication of JPH0563490B2 publication Critical patent/JPH0563490B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain titled resin effectively carrying on its surface highly reactive functional group without any reduction in its water absorptivity, by crosslinking reaction following impregnation of a carboxyl group-contg. resin of specific water content with reactive functional group-contg. hydrophilic monomer. CONSTITUTION:(A) A carboxyl (or carboxylate) group-contg. highly water-absorptive resin with a water content regulated below 50wt% (pref. to 10-40wt%) is impregnated with (B) a reactive functional group-contg. hydrophilic monomer [pref. (meth)acrylamide] followed by crosslinking using a crosslinking agent (pref. polyglycidyl ether) to coat the surface of said resin. The above resin (A) is preferably an acrylic acid (alkali metal salt) (co)polymer prepared by reversed- phase suspension polymerization of an aqueous solution of carboxyl group, etc.- contg. hydrophilic monomer in the presence of water-soluble initiator. USE:As hygienic materials, antisweating agent, phase-transfer catalyst, etc.

Description

【発明の詳細な説明】 本発明は高わ:;能外性吸水性樹脂致:jTj方法に関
し、更に詳しくは、反応性に富む品々の官能基を樹)]
;イ表面に効果的に有する吸水性(I・1脂の製造ブj
法に1りjする。
[Detailed Description of the Invention] The present invention relates to a method for producing a non-functional water-absorbing resin, and more specifically, relates to a method for producing a highly reactive water-absorbing resin.
;B Effective water absorption on the surface (Production process of I.1 fat)
It's better than the law.

流動性の水性液体の吸収に最近、高い吸収能を有する水
不溶性の水膨潤性樹脂、いわゆる高吸水性樹脂(5up
er absorbent polymer )と称さ
力、るものが開発されて来ている。これらの樹脂として
はデンプン−アクリロニトリルグラフト重合体の加水分
解物、変性セルロースエーテル、アクリルrソ(及びそ
の塩)の重合物及び共重合物:デンプン−アクリル酸ソ
ーダグラフト重合体等が提案されている。その形態は微
粒子状、即ち、粉末カモは粒状であって、A、((おむ
つ、月経帯、その他吸収用具のセルロース系吸収41す
造の中にそれらの吸収効率を増大させるために使用され
てきた。しかしながら、これらの41tJ脂としては単
に流動性の水性液体を吸収するのみにとどまるのであり
、新たな工夫1!IJちこの件1pjに加えて更に新j
〜い枦能の付与、例えば樹脂ジぐ而を改質し、樹脂の表
面上に何らかの反応の場を設ける試みはなされていない
。従って、これら高吸水性樹脂はその特性を生かした衛
生材料(吸水剤)、保水剤及び樹脂の官能基特性による
重金属吸着剤等に利用されているにすぎない。
Recently, water-insoluble water-swellable resins with high absorption capacity, so-called super absorbent resins (5up
Materials called "absorbent polymers" have been developed. As these resins, hydrolysates of starch-acrylonitrile graft polymers, modified cellulose ethers, polymers and copolymers of acrylic acid (and its salts): starch-sodium acrylate graft polymers, etc. have been proposed. . Its form is particulate, i.e. powdered duck is granular and is used in cellulose-based absorbent structures of diapers, menstrual belts, and other absorbent devices to increase their absorption efficiency. However, these 41tJ fats only absorb fluid aqueous liquids, and in addition to the new idea 1!
No attempt has been made to impart any kind of reactivity, for example, by modifying the resin structure to provide some kind of reaction site on the surface of the resin. Therefore, these highly water-absorbing resins are only used in sanitary materials (water-absorbing agents), water-retaining agents, and heavy metal adsorbents due to the functional group characteristics of the resins.

又、最近これら公知の吸水性シtl脂を改質し、広範囲
な利用に供すべく、例えば(・ii々の反応性に富んだ
官能基を有するモノマーと親水性モノマーとの共重合体
が提案されている。しかし、重合に際して官能基の失活
やゲル化あるいは吸収能の低下等を招くという欠点が有
る。更に吸水物性を改良する目的から吸水性樹脂を非イ
オン性界面活性剤で処理する例やポリグリシジルエーテ
ルで架橋する例が提案されているがこれらは旨吸水性樹
脂の表面に反応性に富む官能基を有するまでに到ってい
ない。
Recently, copolymers of hydrophilic monomers and monomers with highly reactive functional groups (.ii However, it has the disadvantage of causing deactivation of functional groups, gelation, or a decrease in absorption capacity during polymerization.Furthermore, in order to improve the water absorption properties, the water absorbent resin is treated with a nonionic surfactant. Examples of crosslinking with polyglycidyl ether and polyglycidyl ether have been proposed, but these have not reached the level of having highly reactive functional groups on the surface of the water-absorbing resin.

又、樹脂表面に官能基を廂する樹脂はGPO用ゲルとし
て市販されているが、これらはほとんど吸水能力がなく
、その利用範囲は非常に狭いものとなっている。このよ
うに高い吸水物性を治し、しかも(シ1脂表面に官能基
を有する樹脂の出現が待たれていたが、未だがかる高性
能の樹脂はイ;)らハ、てkらず、本発明の目的とする
ところはかかる高性能の樹脂をイ((ようとするところ
にある。
Further, resins having functional groups on the resin surface are commercially available as gels for GPO, but these have almost no water absorption ability and their range of use is extremely narrow. In this way, the present invention has solved the high water absorption properties and has been awaited (the appearance of a resin having functional groups on the surface of the resin has been awaited, but such a high-performance resin has not yet been produced). The purpose of this is to develop such high-performance resins.

本発明者らは上記の如き微粒子状の高吸水性(ソ1脂の
力丁規な広範囲な利用を0」能にすべく鋭意検fN L
 、I吸収能の低下をともなわず、微粒子状高吸水性樹
脂の表面に反応性に富む官能基を有する樹脂を得る方法
を見い出し本発明を完成したO 即ち、本発明は50重量%以下に含水量を調整したカル
ボキシル基(又はカルボキシレート基)を有する高吸水
性樹脂に反応性官能基を崩性吸水性樹脂の製法を提供す
るものである。
The inventors of the present invention have conducted extensive research in order to make the above-mentioned fine particulate highly water-absorbent (powerful and widely used fat) possible.
O, who completed the present invention by discovering a method for obtaining a resin having a highly reactive functional group on the surface of a particulate superabsorbent resin without causing a decrease in I absorption capacity. The present invention provides a method for producing a disintegrating water-absorbing resin in which a reactive functional group is added to a super-water-absorbing resin having a carboxyl group (or carboxylate group) in which the amount of water is adjusted.

本発明に用いられる高吸水性樹脂としては通常自重の1
0倍以上から1500倍程度0IFk水率をもつものが
望ましく、その構成単位にカルボキシル基(又はカルボ
キシレート基)を有するものであれば重合体の種類及び
沖合方法は問わない。本発明に好適に使用しイ!Iるも
のとしては特公昭54−30710、特開昭56−26
909号公報等に記載の逆相懸濁重合法によるポリアク
リル酸ソーダ、又特開昭55−13.”1413号公報
等に記載の水溶液重合(断熱重合、尚膜重合)により得
られるポリアクリル酸ソーダ、特公昭55−46199
号公報等に記載のデンプン−アクリル酸ソーダグラフト
重合体等を例示することができる。又これらの知合体を
製造するに際し、極微量の架橋剤添加であれば架橋剤の
使用は何ら問題はない。史にこれらの重合体が自己架橋
されていることが望ましい。本発明においては、反応性
官能基を有する親水性ポリマーを高吸水性樹脂にコーテ
ィングする時の高吸水性樹脂の含水量を50ilj量%
以下に調整することを要するため、通常樹脂を合成後、
脱水工程を必要々し、このため作業性等から鑑みて逆相
(W/○型)懸濁重合法でイ()られた重合体が望まし
い。その構成単位にカルボキシル基(又はカルボキシレ
ート基)を有する重合体としては、一般にポリアクリル
酸(及びそび)塩)及びポリメタクリル酸(及びその塩
)を例示することが出来、これらは本発明の方法に好ま
しく使用しイ(する。又、アクリル酸又はメタクリル酸
にマレインし、イタコン酸、アクリルアミド、2−アク
リルアミド−2−メチルプロパンスルホンtR%2−(
メタ)アクリロイルエタンスルホン敵、2−ヒドロキシ
エチル(メタ)アクリレート、スチレンスルホン酸等の
コモノマーを高−吸水性樹脂の性能を低下させない範囲
で共重合せしめた共重合体も、又、本発明の方法に好ま
しく使用し得る。
The super absorbent resin used in the present invention is usually 1 of its own weight.
It is desirable to have a 0 IFk water content of 0 times or more to about 1500 times, and the type of polymer and offshore method are not limited as long as it has a carboxyl group (or carboxylate group) in its constitutional unit. Suitable for use in the present invention! Examples include JP 54-30710 and JP 56-26.
Sodium polyacrylate produced by the reverse-phase suspension polymerization method described in Japanese Patent Publication No. 909, etc., and Japanese Patent Application Laid-open No. 55-13. ``Sodium polyacrylate obtained by aqueous solution polymerization (adiabatic polymerization, membrane polymerization) as described in Publication No. 1413 etc., Japanese Patent Publication No. 55-46199
Examples include starch-sodium acrylate graft polymers described in Japanese Patent Publication No. Furthermore, when producing these complexes, there is no problem in using a crosslinking agent as long as it is added in a very small amount. It is desirable that these polymers are self-crosslinked. In the present invention, when coating a super absorbent resin with a hydrophilic polymer having a reactive functional group, the water content of the super absorbent resin is set to 50 ilj% by weight.
Since it is necessary to adjust the following, usually after synthesizing the resin,
A dehydration step is required, and therefore, in view of workability and the like, it is desirable to use a polymer produced by a reverse phase (W/○ type) suspension polymerization method. Examples of polymers having carboxyl groups (or carboxylate groups) in their constituent units include polyacrylic acid (and its salts) and polymethacrylic acid (and its salts), which are used in the present invention. Preferably used in the method of 2-(
A copolymer obtained by copolymerizing comonomers such as meth)acryloylethanesulfone, 2-hydroxyethyl(meth)acrylate, and styrenesulfonic acid within a range that does not reduce the performance of the super-absorbent resin can also be used by the method of the present invention. It can be preferably used for.

重合に逆相懸濁重合方法を採用する場合、手記公知文献
に記載される如き常法に従い、過硫除塩等の水溶性開始
剤を含有したカルボキシル基(又はカルボキシレート基
)を有する上記の如き親水性モノマーの水溶液を非水溶
剤中で保獲コロイドを用いて逆相懸濁重合せしめる。そ
の際使用される保護コロイドとしてソルビタンモノステ
アレート、ソルビタンモノラウレート等のソルビタン脂
肪酸エステル及びエチルセルロース、ベンジルセルロー
ス等のセルロースニー テ# 、セルロースアセテート
、セルロースブチレート、セルロースアセテートブチレ
ート等のセルロースエステル、マレイン化ポリフタジエ
ン、マレイン化ポリエチレン、マレイン化α−オレフィ
ン等の高分子分散剤を挙げる41が出来、これらの1種
又は2種以上いずれを用いても良い。又その時に用いる
非水溶剤としてヘギザン、ヘプタン、オクタン等の脂肪
族炭化水素、ンクロヘキサン、メチルシクロヘギザン、
デカリン等の脂環族炭化水素、ベンゼン、トルエン、ギ
シレン等の芳香族炭化水素、 。
When employing a reversed-phase suspension polymerization method for polymerization, the above-mentioned polymer having a carboxyl group (or carboxylate group) containing a water-soluble initiator such as persulfur removal salt, etc. An aqueous solution of such a hydrophilic monomer is subjected to reverse phase suspension polymerization using a captured colloid in a non-aqueous solvent. Protective colloids used in this case include sorbitan fatty acid esters such as sorbitan monostearate and sorbitan monolaurate; cellulose esters such as ethyl cellulose and benzyl cellulose; cellulose acetate, cellulose butyrate, and cellulose acetate butyrate; Polymer dispersants such as maleated polyphtadiene, maleated polyethylene, and maleated α-olefin can be mentioned in 41, and one or more of these may be used. In addition, as non-aqueous solvents used at that time, aliphatic hydrocarbons such as hegizane, heptane, octane, cyclohexane, methylcyclohexane,
Alicyclic hydrocarbons such as decalin, aromatic hydrocarbons such as benzene, toluene, and cylene.

六二;==蓼=F#左 −・−虫博≠≠喜妄抽璽寓皆ク
ロルベンゼン、ブロムベンゼン、ジクロルベンゼン等の
ハロゲン化炭化水素を挙げる事が出来る。
62;==蓼=F#left -・-Mushihiro≠≠Kirandakushuji All halogenated hydrocarbons such as chlorobenzene, brombenzene, and dichlorobenzene can be mentioned.

本発明の方法において、反応性に富む官能基を有する親
、水性ポリマーを高吸水性+11脂にコーティングせし
める際の該高吸水性樹脂の含水量が極めて重要であり、
50垂j1士%以下でなければならない050力【量%
を超えると、表m1コーティングが十分に達成できなか
ったり、表面コーティングされたi司吸水性位1脂の吸
水量及び/又は吸水速度が著しく低下し不発1ヅJの効
果が得らf’Lない。含水量は好壕しくば1〜50重量
%、より好ましくは10〜40重ink%である。
In the method of the present invention, the water content of the superabsorbent resin when coating the superabsorbent +11 fat with a parent water-based polymer having a highly reactive functional group is extremely important;
050 power [amount%] must be less than 50%
If it exceeds 1, the water absorption rate and/or water absorption rate of the surface-coated lubricant may be insufficient, and the effect of failure may not be obtained. do not have. The water content is preferably 1 to 50% by weight, more preferably 10 to 40% by weight.

本発明に用いられる反応性官能基を有する親水性ポリマ
ーとしては何らかの化学反応性を有する官能基を有し、
且つ親水性であればいずれでも良い。又、高吸水性樹脂
にコーティングL7た後、何らかの化学反応により化学
反応性を有する官能基を持つ様に変換さノ′L得るポリ
マーも本発明に含まれるものである。
The hydrophilic polymer having a reactive functional group used in the present invention has a functional group having some kind of chemical reactivity,
Any material may be used as long as it is hydrophilic. Also included in the present invention are polymers that are converted to have chemically reactive functional groups by some chemical reaction after being coated on a superabsorbent resin.

かかる化学反応性を有する官能基と[2てはアミド、水
酸基、アミン基、アルデヒド基、スルホン酸基、カルボ
キシル基等が誉げら)]、る。このような反応性官能基
を有する親水性ポリマーとしては例えば(メタ)アクリ
ルアミド、N、N−ジメチルアミンエチル(メタ)アク
リレート、N 、N−ジエチルアミノエチル(メタ)ア
クリレート、ビニルピリジン、ビニルピロリドン、アリ
ルアミン等の含窒素ビニルモノマー、2−ヒドロキシエ
チル(メタ)アクリレート、ポリエチレングリコール(
メタ)アクリレート等の含水酸基ビニルモノマー及びビ
ニルスルホネート、スチレンスルホン酸、2−アクリル
アミド−2−メチルプロパンスルホンムダ等の含スルホ
ン酸ビニルモノマーの重合体及び共重合体、並びにポリ
エチレンイミン、ポリアクロレイン、ポリエチレングリ
コール、ポリアクリルアミドのHOfmamn分解物等
を誉げることが出来る。これらのポリマーの分子量は特
に制限はないが、好ましくは1,000〜500,00
0である。
Functional groups having such chemical reactivity include amide, hydroxyl, amine, aldehyde, sulfonic acid, and carboxyl groups. Examples of hydrophilic polymers having such reactive functional groups include (meth)acrylamide, N,N-dimethylamine ethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, vinylpyridine, vinylpyrrolidone, and allylamine. Nitrogen-containing vinyl monomers such as 2-hydroxyethyl (meth)acrylate, polyethylene glycol (
Polymers and copolymers of hydrous acid group vinyl monomers such as meth)acrylate, vinyl sulfonates, sulfonic acid group vinyl monomers such as styrene sulfonic acid, 2-acrylamido-2-methylpropanesulfone muda, and polyethyleneimine, polyacrolein, and polyethylene. Glycols, HOfmamn decomposition products of polyacrylamide, etc. can be praised. The molecular weight of these polymers is not particularly limited, but is preferably 1,000 to 500,000.
It is 0.

これら親水性ポリマーを高吸水性樹脂にコーティングせ
しめる際には、こり、らポリマーの官能基と反応1〜得
る官能基を2個以上有する架橋剤の添加が不可欠である
。かかる架橋剤としてはエチレングリコールジグリシジ
ルエーテル、ポリエチレングリコールジグリシジルエー
テル、グリセリントリグリシジルエーテル等のポリグリ
シジルエーテル、エピクロルヒドリン、α−メチルクロ
ルヒドリン等のハロエポキシ化合物、ゲルタールアルデ
ヒド、グリオキザール等のポリアルデヒド、グリセリン
、ペンタエリスリトール、エチレングリコール等のポリ
オール及びエチレンジアミン等のポリアミン類を誉げる
ことができる。
When coating a superabsorbent resin with these hydrophilic polymers, it is essential to add a crosslinking agent having two or more functional groups that react with the functional groups of the polymer. Examples of such crosslinking agents include polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerin triglycidyl ether, haloepoxy compounds such as epichlorohydrin and α-methylchlorohydrin, polyaldehydes such as geltaraldehyde and glyoxal, Polyols such as glycerin, pentaerythritol, ethylene glycol and polyamines such as ethylenediamine may be mentioned.

反応性に富む官能基を有する親水性ポリマーを高吸水性
樹脂の表面にコーティングする方法としては特に限定さ
れるものではなく種々の方法がある。例えば逆相懸濁重
合法によりに、1られた重合体の場合には有機溶媒中に
水分含量が本発明に規定した範囲に入る如く調整された
高吸水性樹脂が懸濁した状態において架橋剤を含んだ親
水性ポリマーを加え、熱処理する方法が例示される。
The method for coating the surface of a superabsorbent resin with a hydrophilic polymer having a highly reactive functional group is not particularly limited, and there are various methods. For example, in the case of a polymer prepared by reverse-phase suspension polymerization, a crosslinking agent is added in a state in which a super absorbent resin whose water content is adjusted to fall within the range specified in the present invention is suspended in an organic solvent. An example is a method of adding a hydrophilic polymer containing the following and heat-treating it.

又薄膜重合法等による場合の表面コーティングの方法と
しては、生成ポリマーゲルを解砕後、乾燥工程により水
分含量を本発明に規定した師。
In addition, as a surface coating method using a thin film polymerization method, etc., the water content is determined according to the present invention through a drying process after crushing the produced polymer gel.

囲に調整し、次いでニーダ−中に有機溶媒とこの樹脂を
入れ、そこに親水性ポリマー及び架橋剤を加え、熱処理
する方法を例示することができる。表面コーティングを
円滑に行なうためには加熱する事が望ましく、40〜1
50℃の範囲で反応させるのが好ましい。
An example of a method is to adjust the temperature to the desired temperature, then put an organic solvent and this resin into a kneader, add a hydrophilic polymer and a crosslinking agent thereto, and heat-treat the resin. In order to coat the surface smoothly, it is desirable to heat the surface to a temperature of 40 to 1
It is preferable to carry out the reaction in a temperature range of 50°C.

分散媒として用いられる有機溶媒は非極性溶媒であるな
らば特に制限はないが、安全性並びに作業性等から沸点
が30〜200℃の範囲にある脂肪族炭化水素及び脂環
族炭化水素が好ましく、例工ばノルマルヘキサン、シク
ロヘキサン、リグロイン等を挙げることが出来る。
The organic solvent used as a dispersion medium is not particularly limited as long as it is a non-polar solvent, but aliphatic hydrocarbons and alicyclic hydrocarbons having a boiling point in the range of 30 to 200°C are preferred from the viewpoint of safety and workability. Examples include normal hexane, cyclohexane, and ligroin.

木シロすJの方法において、高吸水性樹脂に対する親水
性ポリマーの添加量は要求される用途に応じて広範囲に
変えることができるが、通常、高吸水性樹脂全量に基づ
いて1〜100wt’%、好ましくは1〜3[1wt%
となる量用いられる。1wt%より少ない場合には表面
コーティング効果が十分発現せず反対に100wt%よ
り多い場合には均一な表面コーティングが出来ず、更に
は吸水量の低下を招く結果となり、本発明の意図する所
ではない。
In the method of Kishirosu J, the amount of hydrophilic polymer added to the superabsorbent resin can be varied over a wide range depending on the required application, but is usually 1 to 100 wt'% based on the total amount of the superabsorbent resin. , preferably 1 to 3 [1wt%
The amount used is If it is less than 1 wt%, the surface coating effect will not be sufficiently expressed, and if it is more than 100 wt%, a uniform surface coating will not be possible, and furthermore, the water absorption will decrease, which is not the purpose of the present invention. do not have.

架1藷剤の添加量は架橋剤の種類及び親水性ポリマーの
種類に(A′つても異なるが、通常0.01〜5.Ow
t%が適切な範囲である。
The amount of crosslinking agent added depends on the type of crosslinking agent and the type of hydrophilic polymer (A'), but it is usually 0.01 to 5.
t% is an appropriate range.

本発明の方法により得られた表面コーティングされた高
吸水性樹脂は、微粒子状形態が固定化された一つの吸収
体に変換出来る形態のものである。例えば、表面がポリ
エチレンイミンで覆われた高吸水性樹脂は、壱機ポリイ
ンンアネ−I−とポリオールよりなるポリウレタン製造
するに当り、系内にこの表面コーチイングイ^1脂を添
加すること・により共有結合性を有した連続吸収構造を
もつ一つの吸収体に変換でき、衛生材料、保水剤、止水
剤、脱水剤ほかプラスチック建材などに練り込んで結露
防止剤や史には他樹脂とのブレンドによる包装材料等の
幅広い用途が考えられる。
The surface-coated superabsorbent resin obtained by the method of the present invention is in a form that can be converted into a single absorbent body in which fine particulate forms are immobilized. For example, when producing a polyurethane made from Ichiki Polyinane-I and a polyol, a superabsorbent resin whose surface is covered with polyethyleneimine can be shared by adding this surface coating resin to the system. It can be converted into a single absorbent body with a continuous absorbent structure with binding properties, and can be incorporated into sanitary materials, water retention agents, water stop agents, dehydration agents, and other plastic building materials, and used as an anti-condensation agent and blended with other resins. A wide range of uses can be considered, such as packaging materials.

更には、相関移動触媒、酵−J?:、同定支持体等に代
表される高分子触媒、重金属、重金属や有害金属捕捉能
を有したキレート樹脂、凝集沈殿樹脂やイオン交換樹脂
等の従来の衛生分野 1i% 芋分野以外の新規な用途
に高吸水性樹脂が利用できる。
Furthermore, phase transfer catalyst, enzyme-J? :, conventional hygiene fields such as polymer catalysts represented by identification supports, heavy metals, chelate resins with the ability to capture heavy metals and harmful metals, coagulation precipitation resins, ion exchange resins, etc. 1i% New applications outside the potato field Super absorbent resin can be used for

以下、実施例及び比較例によって本発明を具体的に説明
するが、本発明dこれらの実施例に限定されるものでは
ない。比較例1は反応性官能基を有する親水性ポリマー
をコーティングしない例、比較例2は反応性官能基を有
する親水性ポリマーを高吸水性樹脂の製造の際はじめか
ら添加する例を示すものである。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Comparative Example 1 shows an example in which a hydrophilic polymer having a reactive functional group is not coated, and Comparative Example 2 shows an example in which a hydrophilic polymer having a reactive functional group is added from the beginning during the production of a superabsorbent resin. .

同、以下の実施例及び比較例における吸水量とは次の操
作によってめられる値である。即ちポリマー約12を大
過剰の生理食塩水中に分散し、充分膨潤させ、次いで8
0メツシユ金網で濾過し、得られた)膨潤ポリマー重量
(W’)を測定し、この値をイ〃めのポリマー重量(W
o)で割って29)られる値である。吸水量(y/r 
) =’ W / Wo。
Similarly, the water absorption amount in the following Examples and Comparative Examples is a value determined by the following operation. That is, approximately 12 polymers were dispersed in a large excess of physiological saline, sufficiently swollen, and then 8
The swollen polymer weight (W') obtained by filtration through a mesh wire mesh was measured, and this value was calculated as the initial polymer weight (W').
It is the value obtained by dividing by 29). Water absorption amount (y/r
)='W/Wo.

又、吸水速度はポリマー0,5りが10分間に吸収した
生理食塩水の値でもって表わt7た。
In addition, the water absorption rate was expressed as the value of physiological saline absorbed by Polymer 0 and 5 in 10 minutes, t7.

実施例1 撹1−42機、還流冷却器、滴下沖斗、窒素ガス尋入管
を何した1000罰4つロフラスコにシクロヘキサン5
00 mノ、ソルビタンモノスデアレート5.699を
仕込み窒素ガスを吹き込んで溶存酸素を追い出し、7s
t壕で昇温した。別にフラスコ中にアクリル(i260
tを外部より冷却しつつ、イオン交換水802に溶解し
た25.Ofの98%苛性ソーダで中和した。次いで過
硫酸カリウム0.2F並びにN、N’−メチレンビスア
クリルアミド0.6fを添加溶解した後窒素ガスを吹き
込み、水溶液内に溶存する酸素を除去した。このフラス
コの内容物を上記4つ[1フラスコに1時間かかつて滴
下し、重合した。和合終了後脱水管管用い、共沸脱水を
行ない、水76り除去した。
Example 1 What was done about the stirrer 1-42, reflux condenser, dropping tube, and nitrogen gas inlet tube?
00 m, sorbitan monosdaleate 5.699 was charged, nitrogen gas was blown in to drive out dissolved oxygen, and 7 s
The temperature was raised in the T-trench. Separately, put acrylic (i260
25.t dissolved in ion-exchanged water 802 while cooling it from the outside. Neutralized with 98% caustic soda. Next, 0.2 F of potassium persulfate and 0.6 F of N,N'-methylenebisacrylamide were added and dissolved, and then nitrogen gas was blown into the aqueous solution to remove oxygen dissolved in the aqueous solution. The contents of this flask were added dropwise to the above four flasks for about an hour to polymerize. After completion of the mixing, azeotropic dehydration was performed using a dehydration tube to remove 76% of water.

吸水性樹脂の含水率は17.0%となった。この吸水性
樹脂を分散したシクロヘキサンにポリ(2−ヒドロキシ
エチルアクリレ−))1st(分子量10,0Oo)と
エチレングリコールジグリシジルエーテル0.1Fを水
102に溶解し添加し、75〜80℃で1時間反応させ
た後シクロヘキサンを減圧下に留去し、残った膨潤ポリ
マー部分を80〜1シ10℃で減圧下に乾;↓゛hし、
表面に水酸基を有する高吸水性樹脂を得た。
The water content of the water absorbent resin was 17.0%. Poly(2-hydroxyethyl acrylate) 1st (molecular weight 10.0 Oo) and ethylene glycol diglycidyl ether 0.1F dissolved in water 102 were added to cyclohexane in which this water-absorbing resin was dispersed, and heated at 75 to 80°C. After reacting for 1 hour, cyclohexane was distilled off under reduced pressure, and the remaining swollen polymer portion was dried under reduced pressure at 10°C for 80 to 10 minutes;
A super absorbent resin having hydroxyl groups on the surface was obtained.

分子j92000のポリテトラメチレンエーテルグリコ
ール2002とTDエニーo (2,4/ 2.6異性
体比8o/2o)alrとを反応させて得たセミプレポ
リマー(N00含量50%) 2B1vに上記樹脂30
Fを添加混合分散し、更にグリ−4zリンにプロピレン
オキシドを付加し次いでエチレンオキシドでチップした
ポリエーテルポリオ−/l/ (OH価62.1級OH
含量30%)962、トリメチロールプロパン2.Of
を混合し、75〜80℃で10分間キユアリングさせて
ポリウレタン−高吸水性樹脂フィルムをイ4Iた。この
フィルムを大過剰の水にて膨潤させたところ高吸水性樹
脂のポリウレタンフィルムからの脱離に〕なくイソシア
ネート基(Neo)と水酸基とが反応し、共有結合が生
成していることが明らかとなり、高吸水性樹脂の表面に
効率的に水取基が存在していることが明らかになった。
Semi-prepolymer (N00 content 50%) obtained by reacting polytetramethylene ether glycol 2002 with molecule j92000 and TD any o (2,4/2.6 isomer ratio 8o/2o) alr (N00 content 50%) 2B1v and the above resin 30
F was added, mixed and dispersed, and then propylene oxide was added to Gly-4zphosphorus, and then chipped with ethylene oxide.
Content 30%) 962, trimethylolpropane 2. Of
were mixed and cured for 10 minutes at 75 to 80°C to form a polyurethane-super absorbent resin film. When this film was swollen with a large excess of water, it became clear that the superabsorbent resin did not detach from the polyurethane film, but that the isocyanate groups (Neo) and hydroxyl groups reacted, forming covalent bonds. It was revealed that water-absorbing groups exist efficiently on the surface of superabsorbent resins.

実施例2 橙拌様、還流冷却器、滴下P斗、窒素ガス導入管を付し
た1000m64つ口丸底フラスコにシクロヘキサン5
00m1.エチルセルロース5,72 t(バーキュリ
ーズ製商標エチルセルロースN−200)を仕込み、窒
素ガスを吹き込んで溶存賑素を追い出し、75℃まで昇
温した。別にフラスコ中でアクリルm 60 fを外部
より冷却しつつ、イオン交換水80Fに溶解した22.
iFの98%苛性ソーダで中和した。次いで過硫酸カリ
ウム0.22を添加溶解した後、窒素ガスを吹き込み、
水溶液内に溶存する酸素を除去した。このフラスコの内
容物を上記4つロフラスコVこ−1−+’i添加し、重
合した。重合終了後、脱水イ1゛1を用い、共沸脱水を
行ない水62.89を除去しカニ。吸水性樹脂の含水率
は24.6%となった。このI吸水41樹脂が分散しプ
こシクロヘキサンに、ポリ(テトラエチレングリコール
アクリレ−1−)1s t (分子量12.ooo)と
エピクロルヒドリン[1,1fを水152に溶解し添加
した後75℃VC保j゛為して2時間反応を続けた。シ
クロヘキサンを減圧下に留去し、残った膨潤ポリマー部
分を80〜100℃で減圧下に乾煙し表面に水1孜基を
有−4”る高吸水性樹脂を得た。
Example 2 Cyclohexane 5 was placed in a 1000 m 6 4-neck round bottom flask equipped with an orange stirrer, a reflux condenser, a dropping port, and a nitrogen gas inlet tube.
00m1. 5.72 t of ethyl cellulose (trademark ethyl cellulose N-200 manufactured by Vercules) was charged, nitrogen gas was blown in to drive out dissolved nitrogen, and the temperature was raised to 75°C. 22. Separately, in a flask, acrylic m 60 f was dissolved in 80F deionized water while cooling from the outside.
Neutralized with iF 98% caustic soda. Next, after adding and dissolving 0.22% of potassium persulfate, nitrogen gas was blown into the solution.
Oxygen dissolved in the aqueous solution was removed. The contents of this flask were added to the above-mentioned four-hole flask V-1-+'i and polymerized. After the polymerization is completed, azeotropic dehydration is performed using dehydration solution 1-1 to remove 62.89% of the water. The water content of the water absorbent resin was 24.6%. This I water absorption 41 resin was dispersed and added to polycyclohexane by dissolving poly(tetraethylene glycol acrylate 1-) 1s t (molecular weight 12.ooo) and epichlorohydrin [1,1f in water 152, then boiling at 75°C VC. The reaction was continued for 2 hours while being maintained. Cyclohexane was distilled off under reduced pressure, and the remaining swollen polymer portion was dried under reduced pressure at 80 to 100°C to obtain a super water-absorbent resin having -4'' water groups on the surface.

上記樹脂305’を分子量2000のポリエチレングリ
コールioo、o tとTDエニー0 (2,4/2.
A異性体比aO/2o)so、srとを反り、させ°C
得たセミプレポリマー(Noo含貿30%)140.5
 Fに添加し、混合分散させ、更にグリセリンにプロピ
1/ンオキシドを付加し、次いで工チレンオキシドでチ
ップしたポリエーテルポリオール(OH価32、i級O
R&ff13 o% )48f、)リメチロールプロパ
ン1.02を混合し、80℃、10分間キユアリングさ
せてポリウレタン−高吸水性樹脂含有フィルム′に得た
。このフ・rルムを犬II′つ刹の水Cてて+=1潤さ
せたところ高吸水性樹脂のポリウレタンフィルムからの
脱離はなく、NO□と水酸基と、が反応し、共有結合が
生成していることが明らかとなった。
The above resin 305' is mixed with polyethylene glycol ioo,ot with a molecular weight of 2000 and TD any0 (2,4/2.
A isomer ratio aO/2o) so, sr and let °C
Obtained semi-prepolymer (30% containing Noo) 140.5
F, mixed and dispersed, further added propylene oxide to glycerin, and then added polyether polyol (OH number 32, i-class O
1.02 of R&ff13o%)48f,)rimethylolpropane were mixed and cured at 80°C for 10 minutes to obtain a polyurethane-super absorbent resin-containing film'. When this film was moistened with water at a temperature of +=1, the superabsorbent resin did not detach from the polyurethane film, and the NO□ and hydroxyl groups reacted, forming a covalent bond. It became clear that it was generated.

実施例3 実施例1と同様に操作し、但l〜共沸脱水によりポリマ
ー中の含水率を20 %とした。そしてポリ(2−と;
パロキシェチルアクリンート) K代わり、ポリ(N、
b+−ジメチルアミンエチルアクリレート)102(分
子量a、ooo )とグリセリンジグリシジルエーテル
0.259を水5Fに溶j;’4L 、添加した後60
〜7[1’Cにて3時間加熱反応さぜで表面にアミノ基
を111する高吸水性樹1:”E(S・得た。この樹脂
1’Q fを500 ppmの硫酸銅水浴1jE 1.
000 meに投入し充分膨潤させ、上澄み溶液を測定
したところポリ(N、N−ジメチルアミンエチルアクリ
レート)は検出されず、しかし、水溶液中の硫酸銅濃度
が10 ppmに低下していた。即ち、樹脂表面にボI
J (N、N−ジメチルアミノエチルアクリレ−1−)
が効率的にコーティングされていることが示さfzた。
Example 3 The procedure was carried out in the same manner as in Example 1, except that the water content in the polymer was brought to 20% by azeotropic dehydration. and poly(2-;
paroxetyl acrylate) K substitute, poly(N,
b+-dimethylamine ethyl acrylate) 102 (molecular weight a, ooo) and glycerin diglycidyl ether 0.259 were dissolved in 5F of water; '4L, and after adding 60
~7 [Super water-absorbent resin 1: 111 amino groups were formed on the surface by heating reaction at 1'C for 3 hours. 1.
When the supernatant solution was measured, poly(N,N-dimethylamine ethyl acrylate) was not detected, but the concentration of copper sulfate in the aqueous solution had decreased to 10 ppm. That is, holes are formed on the resin surface.
J (N,N-dimethylaminoethyl acrylate-1-)
It was shown that fz was efficiently coated.

実施例4 実施例1と同様に操作し、但し、共沸脱水により水75
Fを除去し、含水率を15.1%とした。そしてポリ(
2−ヒドロキシエチルアクリレート)に代わり、ポリエ
チレンイミン(日本触媒化学工朶(株)商品名5P−2
圓、分子量20.000 )B yを水152に溶解し
、その水溶液を添加し、その後架橋剤としてエチレング
リコールジグリンジルエーテル0.2’ e71(1y
 K溶解し添加し、75℃にて1時間加熱し、表面にア
ミン基を有する高吸水性樹脂をatだ。
Example 4 The procedure was as in Example 1, except that 75% of the water was removed by azeotropic dehydration.
F was removed to bring the water content to 15.1%. And poly(
2-Hydroxyethyl acrylate), polyethyleneimine (Nippon Shokubai Kagaku Co., Ltd. trade name 5P-2)
Yen, molecular weight 20.000) B y was dissolved in water 152, the aqueous solution was added, and then ethylene glycol diglyndyl ether 0.2' e71 (1y
K was dissolved and added, heated at 75°C for 1 hour, and a super absorbent resin having amine groups on the surface was heated.

この樹脂10i’を500 ppmの硫酸銅水溶数10
100Oに投入し充分膨潤させ、上澄み溶液を測定した
ところポリエチレンイミンは検出されず硫酸銅は4 p
pmに低下していた。即ち、ポリエチレンイミンが高吸
水性i脂表面に効率的にコーティングされて−ることが
示された。
This resin 10i' was mixed with 500 ppm of copper sulfate water soluble number 10.
When the solution was poured into 100O and allowed to swell sufficiently, polyethyleneimine was not detected and copper sulfate was 4p when the supernatant solution was measured.
It had dropped to pm. That is, it was shown that polyethyleneimine was efficiently coated on the surface of the super absorbent fat.

比較例1 4n拌機、還流冷却器、滴下P斗、窒素ガス導入管を付
した1000m64つ日丸底フラスコにシクロヘキサン
500mg、ソルビタンモノステアレート5.7yを仕
込み、窒素ガスを吹き込んで溶存酸素を追い出し、75
℃まで昇温した。別のフラスコ中でアクリル酸602を
外部より冷却しつつイオン交換水802に溶解した22
.IFの98%苛性ソーダで中和した。次いで過硫酸カ
リウム0.22並びにN、 N’−メチレンビスアクリ
ルアミド0.05Fを添加@解した後、窒素ガスを吹き
込み、水溶液内に溶存する酸素を除去した。
Comparative Example 1 500 mg of cyclohexane and 5.7 y of sorbitan monostearate were placed in a 1000 m 64-day round bottom flask equipped with a 4n stirrer, reflux condenser, dropping port, and nitrogen gas inlet tube, and nitrogen gas was blown into the flask to remove dissolved oxygen. kick out, 75
The temperature was raised to ℃. In another flask, acrylic acid 602 was dissolved in ion-exchanged water 802 while cooling from the outside.
.. Neutralized with IF 98% caustic soda. Next, 0.22 F of potassium persulfate and 0.05 F of N,N'-methylenebisacrylamide were added and dissolved, and then nitrogen gas was blown into the solution to remove oxygen dissolved in the aqueous solution.

このフラスコの内容物を上記4つロフラスコに一括添加
し重合した。重合後、共沸脱水を行ない水62.81を
除去した。シクロヘキサンを減圧下に留出し、残った膨
潤ポリマー部分を80〜100℃で減圧下に乾燥し、高
吸水性樹脂を得た。
The contents of this flask were added all at once to the four flasks mentioned above for polymerization. After polymerization, azeotropic dehydration was performed to remove 62.81 g of water. Cyclohexane was distilled off under reduced pressure, and the remaining swollen polymer portion was dried under reduced pressure at 80 to 100°C to obtain a super absorbent resin.

この樹脂を用いて実施例1と同様にし、高吸水性樹脂含
有ポリウレタンフィルムを製作し、これを大過剰の水に
膨潤させたところ、ポリウレタンフィルム含有吸水性樹
脂全量に対して86%の樹脂が離脱した。
Using this resin, a polyurethane film containing a super absorbent resin was produced in the same manner as in Example 1, and when this was swollen in a large excess of water, 86% of the resin was swollen with respect to the total amount of water absorbent resin contained in the polyurethane film. I left.

比較例2 実施例1〜4と同様に高吸水性樹脂表面に水酸基又はア
ミン基を有するポリマーを得ようとしてアクリル酸ソー
ダ水溶液中にポリマー〔ポリ(2−ヒドロキシエチルア
クリレ−1−、ポリ(N、N−ジメチルアミノエチルア
クリレート、ポリエチレンイミン等〕を溶解しようと試
みたが溶解しないか、又はゲル化を起し目的とする樹脂
が得られなかった。
Comparative Example 2 Similar to Examples 1 to 4, in an attempt to obtain a polymer having a hydroxyl group or an amine group on the surface of a superabsorbent resin, a polymer [poly(2-hydroxyethyl acrylate-1-, poly( [N,N-dimethylaminoethyl acrylate, polyethyleneimine, etc.]] but either it did not dissolve or gelation occurred and the desired resin could not be obtained.

実施例1〜4及び比較例1〜2で得られた各表面活性な
高吸水性樹脂の吸水量並びに吸水i・1一度を表−1に
示した。表−1から本発明の方法が吸水能の低下を招く
ことなく高吸水性樹脂の表面を効率よくコーティングで
き、そしてこの表面コーティングされた樹脂が広範囲な
利用が可能であることが明らかである。
Table 1 shows the water absorption amount and water absorption i.times.1 of each surface active super absorbent resin obtained in Examples 1 to 4 and Comparative Examples 1 to 2. It is clear from Table 1 that the method of the present invention can efficiently coat the surface of a super absorbent resin without causing a decrease in water absorption capacity, and that this surface-coated resin can be used in a wide range of applications.

表 −1Table-1

Claims (1)

【特許請求の範囲】 150重量%以下に含水h1を調整したカルボキシル基
(又はカルボキシレート基)を有する高吸水性樹脂に反
応性官能基を有する親水性ポリマーを含浸し、次いで架
橋剤により架橋せしめて高吸水性樹脂表面をコーティン
グすることを特徴とする高機能性吸水性樹脂の製法。 2 高吸水性樹脂が水溶性開始剤を含有したカルボキシ
ル基(又はカルボキシレート基)を有する親水性モノマ
ー水溶液の逆相@濁重合により得られる親水性ポリマー
である特許請求の範囲第1項記載の高機能性吸水性樹脂
の製法。 6 高吸水性樹脂がアクリル酸(又はアクリル酸アルカ
リ金属塩)の重合体又は共重合体である特許請求の範囲
第1項又は第2項記載の高機能性吸水性樹脂の製法。 4 高吸水性樹脂の含水量が1〜507Q’Ji;%と
なる様に調整される、特許請求の範囲第1角、第2項又
は第6項記載の高機能性樹脂の製法。 5 高吸水性樹脂の含水量が10〜40@量%となる様
に調整される、l特許請求の範囲第1項〜第4項の何れ
か1項に記載の高機能性吸水性樹脂の製法。 6 反応性官能基を有する親水性ポリマーが(メタ)ア
クリルアミド、N、N−ジメチルアミノエチル(メタ)
アクリレ−)、N、N−ジエチルアミノエチル(メタ)
アクリレート、ビニルピリジン、ビニルピロリドン、ア
リルアミン、2−ヒドロキシエチル(メタ)アクリレー
ト、ポリエチレングリコール(メタ)アクリレート、ビ
ニルスルホネート、スチレンスルホン酸、2−アクリル
アミド−2−メチルプロパンスルホン酸の重合体及び共
重合体、ポリエチレンイミン、ポリアクロレイン、ポリ
エチレングリコール及びポリアクリルアミドのホフマン
分解物から選ばれたものである特許請求の範囲第1項〜
第5項の倒れか1項に記載の高機能性吸水性樹力旨の製
法。 7 架橋剤がポリグリシジルエーテル、ハロエポキシ化
合物、ポリアルデヒド、ポリオール又はポリアミンであ
る4?f’n′F請求の範1)」第1項〜第6項の何れ
か1項に記載の高桜能性吸水性樹脂の製法。
[Claims] A super absorbent resin having a carboxyl group (or carboxylate group) with a water content h1 adjusted to 150% by weight or less is impregnated with a hydrophilic polymer having a reactive functional group, and then crosslinked with a crosslinking agent. A method for producing a highly functional water-absorbing resin, which is characterized by coating the surface of a highly water-absorbing resin. 2. The superabsorbent resin is a hydrophilic polymer obtained by reverse phase @turbidity polymerization of an aqueous solution of a hydrophilic monomer having a carboxyl group (or carboxylate group) containing a water-soluble initiator. Manufacturing method for highly functional water absorbent resin. 6. The method for producing a highly functional water absorbent resin according to claim 1 or 2, wherein the super absorbent resin is a polymer or copolymer of acrylic acid (or an alkali metal salt of acrylic acid). 4. A method for producing a highly functional resin according to claim 1, claim 2, or claim 6, wherein the water content of the superabsorbent resin is adjusted to be 1 to 507Q'Ji;%. 5. The highly functional water absorbent resin according to any one of claims 1 to 4, which is adjusted so that the water content of the super water absorbent resin is 10 to 40% by weight. Manufacturing method. 6 The hydrophilic polymer having a reactive functional group is (meth)acrylamide, N,N-dimethylaminoethyl (meth)
acrylate), N,N-diethylaminoethyl (meth)
Polymers and copolymers of acrylate, vinylpyridine, vinylpyrrolidone, allylamine, 2-hydroxyethyl (meth)acrylate, polyethylene glycol (meth)acrylate, vinylsulfonate, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid , polyethyleneimine, polyacrolein, polyethylene glycol, and a Hofmann decomposition product of polyacrylamide.
The method for producing the highly functional water-absorbing wood according to item 5 or item 1. 7.4 where the crosslinking agent is a polyglycidyl ether, haloepoxy compound, polyaldehyde, polyol or polyamine? f'n'FClaim 1) The method for producing a high cherry blossom ability water absorbent resin according to any one of items 1 to 6.
JP14625783A 1983-08-10 1983-08-10 Manufacture of highly functional water-absorptive resin Granted JPS6036534A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14625783A JPS6036534A (en) 1983-08-10 1983-08-10 Manufacture of highly functional water-absorptive resin
DE19843429379 DE3429379A1 (en) 1983-08-10 1984-08-09 METHOD FOR PRODUCING A HIGHLY REACTIVE WATER-ABSORBING RESIN
ES535037A ES8602873A1 (en) 1983-08-10 1984-08-09 Process for preparing highly reactive, water-absorptive resin
ES545939A ES8607364A1 (en) 1983-08-10 1985-08-06 Process for preparing highly reactive, water-absorptive resin
US06/837,666 US4727097A (en) 1983-08-10 1986-03-04 Process for preparing highly reactive, water-absorptive resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14625783A JPS6036534A (en) 1983-08-10 1983-08-10 Manufacture of highly functional water-absorptive resin

Publications (2)

Publication Number Publication Date
JPS6036534A true JPS6036534A (en) 1985-02-25
JPH0563490B2 JPH0563490B2 (en) 1993-09-10

Family

ID=15403645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14625783A Granted JPS6036534A (en) 1983-08-10 1983-08-10 Manufacture of highly functional water-absorptive resin

Country Status (1)

Country Link
JP (1) JPS6036534A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112654A (en) * 1985-11-11 1987-05-23 Kyoritsu Yuki Kogyo Kenkyusho:Kk Highly water-absorbing resin composition
US6103785A (en) * 1998-03-26 2000-08-15 Nippon Shokubai Co., Ltd. Water-absorbing agent and its production process and use
JP2001192464A (en) * 1999-10-29 2001-07-17 Nippon Shokubai Co Ltd Surface-cross-linked water-absorbing resin and method for cross-linking surface of water-absorbing resin
WO2011065368A1 (en) * 2009-11-27 2011-06-03 住友精化株式会社 Process for production of water-absorbing resin paticles, water-absorbing resin particles, water-stopping material, and absorbent article
JP2014520199A (en) * 2011-06-23 2014-08-21 ビーエーエスエフ エスイー Alkylaminoalkyl oligomers as broad-spectrum antibacterial agents

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159232A (en) * 1980-05-12 1981-12-08 Kuraray Co Ltd Powdery high water-absorption resin for surface coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159232A (en) * 1980-05-12 1981-12-08 Kuraray Co Ltd Powdery high water-absorption resin for surface coating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112654A (en) * 1985-11-11 1987-05-23 Kyoritsu Yuki Kogyo Kenkyusho:Kk Highly water-absorbing resin composition
JPH0475261B2 (en) * 1985-11-11 1992-11-30
US6103785A (en) * 1998-03-26 2000-08-15 Nippon Shokubai Co., Ltd. Water-absorbing agent and its production process and use
JP2001192464A (en) * 1999-10-29 2001-07-17 Nippon Shokubai Co Ltd Surface-cross-linked water-absorbing resin and method for cross-linking surface of water-absorbing resin
WO2011065368A1 (en) * 2009-11-27 2011-06-03 住友精化株式会社 Process for production of water-absorbing resin paticles, water-absorbing resin particles, water-stopping material, and absorbent article
US9320660B2 (en) 2009-11-27 2016-04-26 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article
JP2014520199A (en) * 2011-06-23 2014-08-21 ビーエーエスエフ エスイー Alkylaminoalkyl oligomers as broad-spectrum antibacterial agents

Also Published As

Publication number Publication date
JPH0563490B2 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
TWI290155B (en) Hygiene article comprising an absorbent polymer
JP3967358B2 (en) Method for producing water-absorptive resin and water-absorptive resin
KR101700586B1 (en) Superabsorbent polymer compositions having a triggering composition
JP4564284B2 (en) Manufacturing method of water absorbing material
JP5591448B2 (en) Water absorbing agent and method for producing the same
JP2877255B2 (en) Manufacturing method of water absorbent resin with excellent durability
WO2004083284A1 (en) Process for production of water-absorbing resin particles
JP2008528751A (en) Polyamine-coated super absorbent polymer
WO1996013542A1 (en) Water absorptive resin composition and method of manufacturing the same
JP2008528752A (en) Polyamine-coated super absorbent polymer
CA2781165A1 (en) Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article
JPH04501877A (en) Manufacturing method of super absorbent resin
JP2006089525A (en) Method for producing water-absorbing resin particle
JPH0639487B2 (en) Super absorbent resin manufacturing method
JP2901368B2 (en) Method for producing salt-resistant water-absorbent resin
JPH01292004A (en) Production of highly water-absorbable resin
JP7214344B2 (en) Polymerization of continuous strand superabsorbent polymers
JPS6036534A (en) Manufacture of highly functional water-absorptive resin
JP3822812B2 (en) Water absorbing agent and method for producing the same
JP2000230129A (en) Water-absorbent composition
JP4704559B2 (en) Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof
JPS6036516A (en) Manufacture of highly functional water-absorptive resin
CN109776741B (en) Method for producing super absorbent resin
JP2002138147A (en) Method of producing water-swellable crosslinked polymer
JPH07228640A (en) Water-absorbing resin and its production