JPS6036395A - Method for growing crystal of iii-v group compound semiconductor - Google Patents

Method for growing crystal of iii-v group compound semiconductor

Info

Publication number
JPS6036395A
JPS6036395A JP14621683A JP14621683A JPS6036395A JP S6036395 A JPS6036395 A JP S6036395A JP 14621683 A JP14621683 A JP 14621683A JP 14621683 A JP14621683 A JP 14621683A JP S6036395 A JPS6036395 A JP S6036395A
Authority
JP
Japan
Prior art keywords
crystal growth
reaction tube
crystal
impurities
growth material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14621683A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14621683A priority Critical patent/JPS6036395A/en
Publication of JPS6036395A publication Critical patent/JPS6036395A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To remove impurities as an Al compound, and to obtain an excellent epitaxial crystal layer, by adding a specific amount of Al component to the raw material for crystal growth before the material reaches the reaction tube. CONSTITUTION:An Al source material 11 is added to the materials 9, 10 for crystal growth or their carrier gas before the materials reach the reaction tube 1. The molar ratio of the Al to the III-group element in the materials 9, 10 is adjusted <1%. The impurities are removed in the form of an Al compound before the reaction tube 1, and an excellent epitaxial growth crystal layer can be produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、■−V族化合物半導体結晶成長方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for growing a -V group compound semiconductor crystal.

従来例の構成とその問題点 1−V族化合物半導体結晶成長方法の1つに半導体基板
上へのエピタキシャル成長法がある。この方法を用いて
作製した半導体エピタキシャル層は、半導体レーザやF
ET等のデバイスを作製、する上で重要なものである。
Conventional Structure and Problems 1-One of the methods for growing group V compound semiconductor crystals is an epitaxial growth method on a semiconductor substrate. The semiconductor epitaxial layer produced using this method can be used for semiconductor lasers and F
This is important in manufacturing and implementing devices such as ET.

前者は、光通信、光情報処理、DAD、 VD、レーザ
プリンタ等の光源として、後者は、高速、或はマイクロ
波、高周波回路部品として幅広い用途が考えられる。そ
して、これらデバイスの特性(主に電気特性と光学特性
)は。
The former can be used as a light source for optical communications, optical information processing, DAD, VD, laser printers, etc., and the latter can be used in a wide range of applications as high-speed, microwave, and high-frequency circuit components. And what are the characteristics (mainly electrical and optical characteristics) of these devices?

主に半導体エピタキシャル層の特性により決定される。It is mainly determined by the characteristics of the semiconductor epitaxial layer.

従来からよく行なわれている半導体エピタキシャル成長
法の代表的なものとして、MOCVD法(Metal 
Organic Chemical Vapor De
position :有機金属熱分解気相成長法)があ
るが、これは、半導 ′体裁板を載置したサセプタを収
納すると共に、外周に高周波加熱コイルを巻回した反応
管と、この反応管内に結晶成長用材料をキャリアガスに
のせて供給するための材料供給ラインとを備えた結晶成
長装置を用いている。この装置で1例えば化合物半導体
の1つであるGaAs結晶を成長させる場合。
The MOCVD method (Metal
Organic Chemical Vapor De
position: organometallic pyrolysis vapor phase growth method), which houses a susceptor on which a semiconductor display plate is placed, a reaction tube with a high-frequency heating coil wound around its outer periphery, and a reaction tube inside the reaction tube. A crystal growth apparatus is used, which is equipped with a material supply line for supplying a crystal growth material on a carrier gas. For example, when growing a GaAs crystal, which is one of the compound semiconductors, using this apparatus.

結晶成長材料の(CH3) 3 Gaおよび、A8H3
等をキャリアガスにのせて別々の材料供給ラインを通し
て反応管に送り5反応管内を高周波加熱コイルで制御加
熱してサセプタ上のGaAs単結晶基板上にGaAsエ
ヒタキシャル結晶層を形成させるものである。
(CH3) 3 Ga and A8H3 of crystal growth material
etc. are placed in a carrier gas and sent to a reaction tube through separate material supply lines, and the inside of the reaction tube is controlled and heated using a high-frequency heating coil to form a GaAs epitaxial crystal layer on a GaAs single crystal substrate on a susceptor.

しかしながら1通常こ、の方法により、良質な電気特性
および光学特性を有するGaAsエピタキシャル結晶を
?尋ることは困難である。この原因は、主としてGaA
sキビタキシャル結晶中に不純物が侵入することによる
と考えられ、この不純物は下記のような過程で結晶中に
侵入する。
However, is it possible to produce GaAs epitaxial crystals with good electrical and optical properties using this method? It is difficult to ask. This is mainly due to GaA
This is thought to be due to the intrusion of impurities into the scbitaxial crystal, and this impurity intrudes into the crystal through the following process.

(1)結晶成長用材料((CH3)3Ga 、 AsH
3等)中に存在し、GaAsエピタキシャル結晶成長中
に同時に結晶中に侵入する。
(1) Crystal growth materials ((CH3)3Ga, AsH
3, etc.) and simultaneously invade the crystal during GaAs epitaxial crystal growth.

(2)材料供給ラインの内壁面などから離脱して、キャ
リアカスによって反応管に運ばれて成長中のGaAsキ
ビタキシャル結晶中に侵入する。
(2) It separates from the inner wall surface of the material supply line, is carried by the carrier scum to the reaction tube, and enters the growing GaAs chibitaxial crystal.

(3)材料供給ラインのリークにより、そのリーク箇所
から入ってキャリアカスによって反応管に運ばれ、成長
中のGaAsエピタキシャル結晶中に侵入する。
(3) Due to a leak in the material supply line, the carrier gas enters from the leak point and is carried by the carrier scum to the reaction tube, where it invades the GaAs epitaxial crystal that is being grown.

そして、このようにして不純物がGaAsキピタ(a)
導電性を持たせるべく作製したGaAs エピタキシャ
ル結晶層が高抵抗を示し、期待する導電性が得られない
In this way, the impurity is converted into GaAs capita(a).
The GaAs epitaxial crystal layer, which was made to have electrical conductivity, exhibits high resistance, and the expected electrical conductivity cannot be obtained.

(b) 同一 N、子濃度レベルで、 GaAsエピタ
キシャル結晶層本来の特徴の1つである高移動度が得ら
れない。
(b) At the same N concentration level, high mobility, which is one of the original characteristics of the GaAs epitaxial crystal layer, cannot be obtained.

(c) GaAsエピタキシャル結晶層中に深い準位を
形成し、この結晶層に対し、光励起、電子線励起、或は
注入電流励起を行なった場合、上記結晶層中での禁制帯
幅にほぼ相当するエネルギーを持った光への変換効率が
著しく低下する。
(c) When a deep level is formed in the GaAs epitaxial crystal layer and this crystal layer is subjected to photoexcitation, electron beam excitation, or injection current excitation, the bandgap width approximately corresponds to the forbidden band width in the above crystal layer. The efficiency of converting light into light with energy decreases significantly.

発明の目的 本発明は、上記従来の欠点を解消するもので。Purpose of invention The present invention solves the above-mentioned conventional drawbacks.

結晶成長中における不純物の侵入を防止することにより
、所望の良質な特性を有するエピタキシャル結晶層を碍
ることができるようにした1−v族化合物半導体結晶成
長方法を提供することを目的とする。
An object of the present invention is to provide a method for growing a 1-V group compound semiconductor crystal, which makes it possible to form an epitaxial crystal layer having desired quality characteristics by preventing the intrusion of impurities during crystal growth.

発明の構成 本発明は、この目的を達成するために、結晶成長用材料
が反応管に到達する前に、結晶成長用材料またはそのキ
ャリアガスに、結晶成長用材料における団族元素に対し
てモル比で1チ未満のA1を含むA4供給材料を添加す
ることにより、反応管に到達する以前に不純物をそのA
J化合物として除々した上で、反応管内で結晶成長用材
料から結晶成長させるようにしたI−V族化合物半導体
結晶成長方法を提供する。
Structure of the Invention In order to achieve this object, the present invention provides a method for adding molar ratios to the crystal growth material or its carrier gas relative to group elements in the crystal growth material before the crystal growth material reaches the reaction tube. By adding an A4 feed containing less than 1% of A1, impurities are removed from the A1 before reaching the reaction tube.
Provided is a method for growing a group IV compound semiconductor crystal in which the crystal is grown from a crystal growth material in a reaction tube after being gradually removed as a J compound.

以上の構成によれば、不純物がAffl化合物として反
応管に到達する以前に除去されるので1反応管内には不
純物がほとんど存在せず、結晶成長用材料からエピタキ
シャル結晶成長させた場合に。
According to the above configuration, since impurities are removed as Affl compounds before reaching the reaction tube, there are almost no impurities in one reaction tube, and when epitaxial crystal growth is performed from a crystal growth material.

この結晶中に不純物が侵入することがない。Impurities do not enter this crystal.

実施例の説明 以下添付図面に基づいて、本発明の一実施例を凹−v族
化合物半導体としてアンド−ブト(undoped)G
aAsを例にとって詳細に説明する。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below based on the accompanying drawings as an undoped G compound semiconductor.
This will be explained in detail by taking aAs as an example.

MOCVD法を行なうための装置構成を示す図面におい
て、(1)は外周に高周波加熱コイル(2)が配設され
1こ反応管で、コイル(2)との協働により内部の濁度
を制御するための冷却剤1例えば水を貫流させるべく冷
却剤入口(3)および冷却剤出口(4)を備えている。
In the drawing showing the configuration of an apparatus for carrying out the MOCVD method, (1) is a single reaction tube with a high-frequency heating coil (2) arranged around its outer periphery, and the turbidity inside is controlled by cooperation with the coil (2). It is provided with a coolant inlet (3) and a coolant outlet (4) to allow a coolant 1, for example water, to flow through it.

反応管(1)内には、サセプタ(5)が収納されており
、このサセプタ(5)上にGaAs単結晶基板(6)が
載置されている。さらに反応管(1)には、 Ga系結
晶成長用材料供給ライン(7)およびAs系結晶成長用
梠料供給ライン(8)が接続されている。供給ライン(
7)には、(CH3)3Ga、 (C2Hs)sGa、
(C2H5)2GaCQなとのGa系結晶成長用材料(
9)が供給されると共に、単体のAtまたはAUを含む
化合物から成るAJ供給材料Oqが供給される。このよ
うに供給ライン(7)に供給されたGa系結晶成長用材
料(9)とA1供給材料(1りとは、供給ライン(7)
を流れるH2などのキャリアガスと混り、反応管(1)
への搬送されるが、この搬送中にGa系結晶成長用材料
(9)に含まれる不純物がAC供給材料(LL>からの
AU2と化合物を形成してその大部分が除去される。一
方、供給ライン(8)には、AsH3(気体)などのA
s系結晶成長用祠料aυが供給され、そして、このよう
に供給されたAs系結晶成長用材料(11)が供給ライ
ン(8)を流れる■■2などのキャリアカスに混合希釈
されて反応管(1)へと搬送される。
A susceptor (5) is housed in the reaction tube (1), and a GaAs single crystal substrate (6) is placed on the susceptor (5). Furthermore, a Ga-based crystal growth material supply line (7) and an As-based crystal growth material supply line (8) are connected to the reaction tube (1). Supply line (
7) includes (CH3)3Ga, (C2Hs)sGa,
(C2H5) Ga-based crystal growth material such as 2GaCQ (
9) is supplied, and at the same time, AJ feed material Oq consisting of a compound containing single At or AU is supplied. The Ga-based crystal growth material (9) and A1 supply material (1) supplied to the supply line (7) in this way
It mixes with carrier gas such as H2 flowing through the reaction tube (1).
During this transportation, impurities contained in the Ga-based crystal growth material (9) form a compound with AU2 from the AC supply material (LL>, and most of it is removed. On the other hand, The supply line (8) contains A such as AsH3 (gas).
The abrasive material aυ for s-based crystal growth is supplied, and the thus supplied As-based crystal growth material (11) is mixed and diluted with carrier scum such as 2 flowing through the supply line (8), and reacts. It is conveyed to the tube (1).

以」二のような構成の装置ばにおいて反応管(1)に供
給されたGa系結晶成長用材料(9)およびAs系結晶
TrSc長用材料αIノは、高周波加熱コイル(2)に
より加熱されたサセプタ(5)」−で高温になったGa
As単結晶基板(6)上で熱分解し、遊離したGaおよ
びAsが結合してGaAsエピタキシャル結晶層が形成
される。
In the apparatus configured as described above, the Ga-based crystal growth material (9) and the As-based crystal TrSc length material αI supplied to the reaction tube (1) are heated by the high-frequency heating coil (2). Ga heated to high temperature in the susceptor (5)
Ga and As released by thermal decomposition on the As single crystal substrate (6) combine to form a GaAs epitaxial crystal layer.

そして、不要なガスは、反応管(1)の下部に設けたガ
ス出口Q4を介して排出される。
Then, unnecessary gas is discharged through a gas outlet Q4 provided at the bottom of the reaction tube (1).

Ga系結晶成長用材料(9)として(CHs)3Gaを
用い、As系結晶成長用材料00としてAs)I3を用
いて、以下の結晶成長条件下で、 A9供給材料01の
供給が有る場合とJji(い場合のそれぞれについて、
厚さ約3μmのGaAsエピタキシャル結晶層をGaA
s単結晶基板(6)上に形成し、その特性を評価した。
Using (CHs)3Ga as the Ga-based crystal growth material (9) and As)I3 as the As-based crystal growth material 00, under the following crystal growth conditions, when A9 supply material 01 is supplied. Jji (for each case,
A GaAs epitaxial crystal layer with a thickness of about 3 μm is made of GaAs.
s was formed on a single crystal substrate (6), and its characteristics were evaluated.

基板温度二650℃ 結晶成長条件下01μm/m1n Ga/Asモル比:45 全ガス流量:8A/min なお、特性の評価は、電子s度と移動度についててはv
an der pauwによるホール測定で行ない。
Substrate temperature: 2650°C Crystal growth conditions: 01μm/m1n Ga/As molar ratio: 45 Total gas flow rate: 8A/min Note that the characteristics are evaluated using v for electron s degree and mobility.
Performed by hole measurement according to and der pauw.

フォトルミネッセンス強度(以下’PLPL強度略す)
については5145人、IOW/dのArレーザ励起に
より測定した。この測定結果を第1表に示す。
Photoluminescence intensity (hereinafter abbreviated as 'PLPL intensity')
5145 people were measured using Ar laser excitation at IOW/d. The measurement results are shown in Table 1.

(以下余白〉 第 1 表・ 第1表の値は、それぞれの項目について各50ツトづつ
の平均値を示しており、この結果から判るように、電子
温度についてはA1添加による差はほとんどないが、移
動度とPL強度においては明らかな差がある。これは、
酸素や炭素などの不純物がA1と容易に化合物を形成し
て1反応管(1)に到達する前に除去されたことによる
と考えられる。
(Margins below) Table 1 The values in Table 1 show the average value of 50 points for each item, and as can be seen from these results, there is almost no difference in electron temperature due to the addition of A1. , there is a clear difference in mobility and PL strength.
This is believed to be because impurities such as oxygen and carbon easily formed compounds with A1 and were removed before reaching the reaction tube (1).

Af供給材料0(夛の添加鼠は、それにより供給される
Atが凹族元素、すなわち本実施例においてはGaに対
してモル比で1チ未満になるようにしなければならない
。1係以玉添加すると、成長G a A sエピタキシ
ャル結晶層中にAIが取り込まれ、GaAs結晶中での
不純物散乱の原因となったの、或いはGaAlAs混晶
が成長し1合金散乱や空間電荷散乱、格子欠陥の生成等
を伴い、成長結晶j―の移動度が著しく低下することが
確認されている。
The addition of At to the Af feed material must be such that the At supplied thereby has a molar ratio of less than 1 to the concave group element, that is, Ga in this example. When added, AI was incorporated into the growing GaAs epitaxial crystal layer and caused impurity scattering in the GaAs crystal, or the GaAlAs mixed crystal grew and caused 1-alloy scattering, space charge scattering, and lattice defect formation. It has been confirmed that the mobility of the grown crystal j- decreases significantly as a result of the formation, etc.

本実施例では、アンド−ブトG’aAsエピタキシャル
結晶について述べたが、結晶成長用材料としてH2Se
、 H2S+ (C2H3)3Znなどのp型またはn
型上−パン) (dopant )材料を追加的に反応
管(1)へ供給して得られるp型又はn型GaAsエピ
タキシャル結晶についても同様に本発明を適用でき、同
様の効果が得られることが確認されている。
In this example, an and-button G'aAs epitaxial crystal was described, but H2Se was used as a material for crystal growth.
, H2S+ p-type or n such as (C2H3)3Zn
The present invention can be similarly applied to p-type or n-type GaAs epitaxial crystals obtained by additionally supplying dopant material to the reaction tube (1), and similar effects can be obtained. Confirmed.

また、本実施例では、 (A)Aff供給材料叫全2Ga系結晶成長用材料(9
)のキャリアガスにのせる方法5をとったが、(B)A
J供給材料αりを、Ga系結晶成長用材料(9)に直接
混合する方法、 (C)Al供給材料01を、As系結晶成長用材料αυ
に直接混合するか、或いはAs系結晶成長用材料θυの
キャリアガスにのせる方法。
In addition, in this example, (A) Aff supply material and total 2Ga-based crystal growth material (9
), but (B) A
(C) Method of directly mixing J supply material α into Ga-based crystal growth material (9); (C) Al supply material 01 is mixed directly into As-based crystal growth material αυ
or by placing it on a carrier gas of As-based crystal growth material θυ.

■)Al供給材料O4を、追加的結晶成長用材料として
のドーパント材料に直接混合するか、或いはドーパント
材料のキャリアガスにのせる方法。
2) A method in which the Al feed material O4 is directly mixed with the dopant material as a material for additional crystal growth or is placed on the carrier gas of the dopant material.

@玉記(A)〜(至)の方法の2つ以上を同時に採用し
、全体としてhlの添加斌が■族元素のGaに対してモ
ル比で1チ未満になるようにAL供給材料(+CIを供
給する方法、のいずれの方法でも同様の効果を得ること
ができ、特に、 (E)の方法は、供給される全ての種
類の結晶成長用材料およびその供給ラインに付随する不
純物を取り除くことができるという意味で特に優れた効
果が得られるものである。
@ Two or more of the methods from Yuki (A) to (to) are adopted simultaneously, and the AL supply material ( The same effect can be obtained by any method of supplying +CI, and in particular, method (E) removes all types of supplied crystal growth materials and impurities accompanying the supply line. This means that particularly excellent effects can be obtained.

なお、本実施例では、m−v族化合物半導体としてGa
Asを例にとったが、InPやInAs等の他のIII
−V族化合物半導体についても本発明を適用できること
はいうまでもない。
In this example, Ga is used as the m-v group compound semiconductor.
Although As is taken as an example, other III such as InP and InAs
It goes without saying that the present invention can also be applied to -V group compound semiconductors.

発明の詳細 な説明したように、本発明にがかる■−■族化合物半尋
体結晶成長方法では、結晶成長方法料が反応管に到達す
る前に、結晶成長用材料またはそのキャリアガスに、結
晶1jZ長用材料における■族元素に対してモル汁で1
チ未満のA4を含むhl供給材料を添加するようにしで
あるので1反応管に到達する前に不純物を除去すること
ができ、反応管内で成長形成される化合物半導体結晶に
不純物が侵入するのを防止することができるものである
。従って、本発明の結晶成長方法は、半導体レーザ、太
陽電池、FET、フォトダイオード、およびこれらを複
合化した光束回路などを作製する際の結晶成長方法とし
て有望なものである。
As described in detail of the invention, in the method for growing a hemihybrid crystal of a ■-■ group compound according to the present invention, a crystal is added to the crystal growth material or its carrier gas before the crystal growth method material reaches the reaction tube. 1 molar juice for the group ■ element in the material for 1jZ length
Since the HL feed material containing less than 10% of A4 is added, impurities can be removed before they reach the reaction tube, and impurities can be prevented from entering the compound semiconductor crystals that are grown in the reaction tube. It is something that can be prevented. Therefore, the crystal growth method of the present invention is promising as a crystal growth method for producing semiconductor lasers, solar cells, FETs, photodiodes, and light flux circuits that combine these.

【図面の簡単な説明】 図面は本発明が適用されるMOCVD法を実施するため
の装置を示す概略構成図である。 (1)・・・反応管、(2)・・・高周波加熱コイル、
(5)・・・サセプタ、り6)・・・GaAs単結晶基
板、(7) (R)・・・材料供給ライン、(9)・・
・Ga系結晶成長用材料、αQ・・・A1.供給材料、
01)・・・As系結晶成長用材料代理人 森 本 義
 弘
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a schematic configuration diagram showing an apparatus for implementing the MOCVD method to which the present invention is applied. (1)...Reaction tube, (2)...High frequency heating coil,
(5)...Susceptor, 6)...GaAs single crystal substrate, (7) (R)...Material supply line, (9)...
- Ga-based crystal growth material, αQ...A1. feed materials,
01)...As-based crystal growth material agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] 1、結晶成長用材料が反応管に到達する前に、結晶成長
用材料またはそのキャリアガスに、結晶成長用材料にお
ける損族元累に対してモル比で1ヂ未満のAjを含むA
ノ供給材料を添加することにより、反応管に到達する以
前に不純物をそのAJ化合物として除去した上で、反応
管内で結晶成長用材料から結晶成長させるようにした璽
−V族化合物半導体結晶成長方法。
1. Before the crystal growth material reaches the reaction tube, the crystal growth material or its carrier gas contains A in a molar ratio of less than 1 to the loss group element in the crystal growth material.
A method for growing crystals of group V compound semiconductors, in which impurities are removed as AJ compounds before they reach the reaction tube by adding a supply material, and then crystals are grown from the crystal growth material in the reaction tube. .
JP14621683A 1983-08-09 1983-08-09 Method for growing crystal of iii-v group compound semiconductor Pending JPS6036395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14621683A JPS6036395A (en) 1983-08-09 1983-08-09 Method for growing crystal of iii-v group compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14621683A JPS6036395A (en) 1983-08-09 1983-08-09 Method for growing crystal of iii-v group compound semiconductor

Publications (1)

Publication Number Publication Date
JPS6036395A true JPS6036395A (en) 1985-02-25

Family

ID=15402730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14621683A Pending JPS6036395A (en) 1983-08-09 1983-08-09 Method for growing crystal of iii-v group compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6036395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989541A (en) * 1989-02-23 1991-02-05 Nobuo Mikoshiba Thin film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989541A (en) * 1989-02-23 1991-02-05 Nobuo Mikoshiba Thin film forming apparatus

Similar Documents

Publication Publication Date Title
US4147571A (en) Method for vapor epitaxial deposition of III/V materials utilizing organometallic compounds and a halogen or halide in a hot wall system
US6104039A (en) P-type nitrogen compound semiconductor and method of manufacturing same
USRE41890E1 (en) Methods for growing semiconductors and devices thereof from the alloy semiconductor GaInNAs
USRE29845E (en) GaAs1-x Px electroluminescent device doped with isoelectronic impurities
US7727333B1 (en) HVPE apparatus and methods for growth of indium containing materials and materials and structures grown thereby
KR100271030B1 (en) Method for Producing Group III-V Compound Semiconductor, and Semiconductor Light Emitting Device Using Such Semiconductor and Method for Producing the Same
CA1242623A (en) Vapor phase epitaxial growth method by organometallic chemical vapor deposition
US7255742B2 (en) Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
Beneking et al. MO-CVD growth of GaP and GaAlP
JP2897821B2 (en) Method for growing semiconductor crystalline film
JPS6036395A (en) Method for growing crystal of iii-v group compound semiconductor
Shin et al. Trisdimethylaminoantimony: a new Sb source for low temperature epitaxial growth of InSb
JP2010050176A (en) Method for manufacturing compound semiconductor, method for manufacturing semiconductor light-receiving element, compound semiconductor, and the semiconductor light-receiving element
EP0332198A1 (en) Method for producing semiconductive single crystal
JP3274907B2 (en) Method for growing indium gallium nitride compound semiconductor
JPH04212478A (en) Growth method for organic metal and semiconductor light-emitting element
CN112349817B (en) Epitaxial growth method of gallium nitride quantum well
Goetz et al. LOW TEMPERATURE PHOTOLUMINESCENCE AND ABSORPTION OF GaxIn1-xAs/InP
JP2006024964A (en) Method for manufacturing semiconductor and semiconductor device
JP2519232B2 (en) Method for producing compound semiconductor crystal layer
Sano et al. Growth and characterization of ZnSe epitaxial layers grown by the solution growth method
JPS5987814A (en) Manufacture of group iii-v compound semiconductor
JP2002175994A (en) Manufacturing method of gallium-nitride based compound semiconductor
CN113802185A (en) Group III nitride crystal, group III nitride substrate, and method for producing group III nitride crystal
CN101665978A (en) Doping methods in vapor phase epitaxy technique and devices thereof