JPS6036304A - Apparatus for purification of reagent - Google Patents

Apparatus for purification of reagent

Info

Publication number
JPS6036304A
JPS6036304A JP14368083A JP14368083A JPS6036304A JP S6036304 A JPS6036304 A JP S6036304A JP 14368083 A JP14368083 A JP 14368083A JP 14368083 A JP14368083 A JP 14368083A JP S6036304 A JPS6036304 A JP S6036304A
Authority
JP
Japan
Prior art keywords
vessel
reagent
inner container
tube
support tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14368083A
Other languages
Japanese (ja)
Other versions
JPS6353847B2 (en
Inventor
Yukio Terunuma
照沼 幸雄
Nariyuki Mitachi
成幸 三田地
Shiro Takahashi
志郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14368083A priority Critical patent/JPS6036304A/en
Publication of JPS6036304A publication Critical patent/JPS6036304A/en
Publication of JPS6353847B2 publication Critical patent/JPS6353847B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the peeling and recovery of sublimed and purified reagent, by using a quartz glass tube furnished with corrosion-resistant inner vessel as the raw reagent container of a vacuum sublimative purification apparatus of a fluoride for the raw material of fluoride glass fiber. CONSTITUTION:The inner vessel 3 made of platinum cylinder is placed in a quartz glass support tube 2 of a sublimative purification apparatus, and the vessel 3 is divided into two parts 3a, 3b which are introduced into the high-temperature zone and the low-temperature zone, respectively. The staring reagent, NH4F.HF is put into the container 3a, the ground-in part 4 is connected to the pipe 2, and the support tube 2 is evacuated with the vacuum pump 8. After ascertaining the complete evacuation of the pipe 2 by a vacuum gauge 7, the electric furnace 1 is electrified and the tube 2 is cooled from outside by the cooling device 1'. NH4F.HF sublimes and is deposited to the inner wall of the vessel 3b. After a definite time, the furnace 1 is switched off, and the pump 8 is stopped to finish the sublimation. The ground connection 4 is disconnected, the vessel 3 is taken out of the pipe 2, and the sublimed NH4F.HF is peeled and recovered from the inner wall of the vessel 3b.

Description

【発明の詳細な説明】 本発明はガラス浸蝕性試薬を超高純度に精製する精製装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a purification device for purifying a glass corrosive reagent to ultra-high purity.

低損失光ファイバを得るには、吸収を示す不純物、たと
えば遷移金属、水分等の含有量を極端に減少させた原料
を使用してファイバを作製しなければならないことは周
知のことである。
It is well known that in order to obtain a low-loss optical fiber, the fiber must be fabricated using a raw material that has an extremely reduced content of absorbing impurities such as transition metals, water, and the like.

フッ化物ガラスファイバにおいて、含有不純物を減少さ
せるには、ガラス原料となるフッ化物、たとえばBaF
 * GdF r ZrF + IF8などおよび2 
8 4 フッ素化剤NH,F−HFの超高純度な試薬の使用が不
可欠である。
In order to reduce the impurities contained in fluoride glass fiber, fluoride as a glass raw material, such as BaF
*GdF r ZrF + IF8 etc. and 2
8 4 It is essential to use ultrapure reagents for the fluorinating agents NH, F-HF.

従来、この種試薬の精製においては、耐腐蝕性材料、た
とえばプラスデック容器を用いた湿式精製法が用いられ
てきた。この方法により精製したフッ化物ガラス原料を
用い、ガラスファイバを作製した。作製したファイバの
損失特性には遷移金属不純物による損失増のピークが生
じ、低損失値が得られなかった。したがってこの試薬で
は不純物の除来が充分にされていないことが明らかとな
った。
Conventionally, in the purification of this type of reagent, a wet purification method using a corrosion-resistant material, such as a PlusDeck container, has been used. A glass fiber was produced using the fluoride glass raw material purified by this method. The loss characteristics of the fabricated fiber showed a peak of increased loss due to transition metal impurities, and low loss values could not be obtained. Therefore, it became clear that this reagent did not sufficiently remove impurities.

一方、本発明者らは、より高純度化せしめるため、減圧
中での昇華精製を試みた。この場合、減圧下でaOO〜
1800°Cまでの加熱が必要であるので、容器にはプ
ラスチックの使用が不可能である。さらに本精製装置で
は高純度であることが大切であるので、従来使用されて
いるニッケル合金等の金属製容器も使用できない。もち
論、腐蝕されず高温に耐える金属として白金が考えられ
るが、本減圧機能を有する精製装Mをすべて白金製にす
ることは、経済的なデメリットが大きすぎる。
On the other hand, the present inventors attempted sublimation purification under reduced pressure in order to achieve higher purity. In this case, under reduced pressure aOO~
Since heating up to 1800°C is required, it is not possible to use plastic for the container. Furthermore, since high purity is important in this purification device, conventional metal containers such as nickel alloy cannot be used. Of course, platinum can be considered as a metal that does not corrode and can withstand high temperatures, but it would be economically disadvantageous to make all of the refining equipment M having the pressure reduction function made of platinum.

容器として超高純度の得られる石英ガラスを用・いてフ
ッ化物ガラス試薬の精製を施したところ、昇華が可能で
あり、精製法として有効であることが判明した。
When a fluoride glass reagent was purified using ultra-high purity quartz glass as a container, it was found that sublimation was possible and that this was an effective purification method.

しかしながら、フッ化物ガラス試薬は腐蝕性が強く、原
料試薬を設置する部分の石英ガラスを腐蝕(浸蝕)し、
数回の使用で穴があき、使用不可能となった。これは石
英ガラスからの汚染が極めて大きいことを意味する。さ
らに昇華揮発した試薬が付着する部分の低温部で、付着
した試薬が石英ガラス管内壁に焼結し、剥離せず回収が
困難になるという不都合な点があった。
However, fluoride glass reagents are highly corrosive and corrode (erode) the quartz glass where the raw material reagents are placed.
After using it a few times, it developed a hole and became unusable. This means that contamination from quartz glass is extremely large. Furthermore, in the low-temperature region where the sublimated and volatilized reagent adheres, the adhered reagent is sintered on the inner wall of the quartz glass tube, making it difficult to recover without being peeled off.

本発明はこれらの欠点を解決するため、石英ガラス製の
サポート管内に耐腐蝕性材料によって作製した内側容器
を配置し、またこの容器が縦割り可能な構造とし、昇華
精製試薬の回収を可能にしたことを特徴とする薬品の精
製装置を提供することを目的とする。以下図面により本
発明の実施例について説明する。
In order to solve these drawbacks, the present invention arranges an inner container made of a corrosion-resistant material inside a support tube made of quartz glass, and also has a structure in which this container can be divided vertically, making it possible to recover the sublimation purification reagent. An object of the present invention is to provide a chemical purification device characterized by the following features. Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図は本発明の一実施例の構成を示す概略図であって
、1は加熱用電気炉、11.は冷却装置、2は石英ガラ
ス管からなるサポート管、3は白金製円筒からなる内側
容器、4はすり合わせ、5はコネクタ、6は排気用管、
7は真空計、8は真空ポンプである。
Embodiment 1 FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, in which 1 is an electric furnace for heating, 11. is a cooling device, 2 is a support tube made of a quartz glass tube, 3 is an inner container made of a platinum cylinder, 4 is a joint, 5 is a connector, 6 is an exhaust pipe,
7 is a vacuum gauge, and 8 is a vacuum pump.

第2図は内側容器8の実施例で、高温部に入る部分と低
温部に入る部分が分割できる例な示す。
FIG. 2 shows an embodiment of the inner container 8, which can be divided into a portion that enters the high temperature section and a section that enters the low temperature section.

8aは高温部内側容器、8bは低温部内側容器、9は分
割防止用リングである。低温部内側容器3bは、第21
m(C)に示すように、四つに分割された部分からなり
、第21ffl(a)、(b)に示すように、分割防止
リング9で止められている。
8a is a high temperature section inner container, 8b is a low temperature section inner container, and 9 is a division prevention ring. The low temperature section inner container 3b is the 21st
As shown in m(C), it consists of four divided parts, and as shown in 21st ffl(a) and (b), it is stopped by a division prevention ring 9.

本装置によりNEI、F−)IFの昇華精製を行うには
、すり合わせ4をはずし、高温部内側容器3a内に出発
試薬のNH,F−1(Fを入れる。
To perform sublimation purification of NEI,F-)IF using this apparatus, remove the grinder 4 and place the starting reagents NH,F-1(F) into the high temperature section inner container 3a.

次にすり合わせ4の部分をサポート管2に接続した後、
真空ポンプ8によって管内を排気し減圧する。このとき
の真空度は真空計7で読み取れる。
Next, after connecting the joint 4 part to the support pipe 2,
The inside of the tube is evacuated and depressurized by the vacuum pump 8. The degree of vacuum at this time can be read with a vacuum gauge 7.

管内が充分に排気されたら電気炉1の温度を200°C
に上げ、さらに冷却装置1′でサポート管2の外・側か
ら冷却した。NH,F−f(Fは200℃で昇華して、
下流側低i?ii1部の低温部内側容器3bの内壁に付
着する。200°Cで約5時間保った後、電気炉1の電
源を切り真空ポンプ8を止めることにより、出発試薬は
約8〜9割昇華し、昇華精製は終了する。
Once the inside of the tube is sufficiently exhausted, increase the temperature of electric furnace 1 to 200°C.
The support tube 2 was further cooled from the outside/side using a cooling device 1'. NH, F-f (F sublimes at 200℃,
Downstream low i? ii1 part adheres to the inner wall of the low temperature section inner container 3b. After maintaining the temperature at 200° C. for about 5 hours, the power to the electric furnace 1 is turned off and the vacuum pump 8 is stopped, whereby the starting reagent is sublimed by about 80 to 90%, and the sublimation purification is completed.

精製されたNH,F−HFの取り出しは、すり合わせ4
の部分をはずし、内側容器8をサポート管2から取り出
す。゛内壁に昇華したNH,F−HFが付着した低温部
内側容器3bは、分割防止リング9を取りはずすことに
より四つに分割でき、NH,F−)(Fは容易に剥離し
回収される。ここで内側容器8は電気炉1の内に入る部
分、すなわち出発試薬のNH4F−HFを入れる高温部
内側容器3aは白金でできており、低温部内側容器8b
は白金でもよいし、テフロン等の耐腐食性の材料でもよ
い。
Removal of purified NH, F-HF is done by grinding 4.
Remove the inner container 8 from the support tube 2. ``The low-temperature section inner container 3b with sublimated NH, F-HF attached to the inner wall can be divided into four parts by removing the division prevention ring 9, and NH, F-) (F is easily peeled off and recovered. Here, the inner container 8 is a part that enters the electric furnace 1, that is, the high temperature inner container 3a containing the starting reagent NH4F-HF is made of platinum, and the low temperature inner container 8b.
may be platinum or a corrosion-resistant material such as Teflon.

実施例2 ZrF、の昇華精製は試薬を入れ、管内を排気するまで
は実施例1と同じ方法によった。その後電気炉]の温度
を900°Cに上げ、さらに冷却装置1/でサポート管
2の外側から冷却した0ZrF、は900°Cで昇華し
て、低温部内側容器8bの内壁に付着した。900°C
で5分間保つことにより出発ZrF4を約9割昇華させ
た後、電気炉lの電源を切った。精製したZrF、の回
収は実施例1と同じ方法によった。
Example 2 Sublimation purification of ZrF was carried out in the same manner as in Example 1, except for adding the reagent and evacuating the inside of the tube. Thereafter, the temperature of the electric furnace was raised to 900°C, and the 0ZrF cooled from the outside of the support tube 2 by the cooling device 1/ was sublimed at 900°C and adhered to the inner wall of the low temperature section inner container 8b. 900°C
After sublimating the starting ZrF4 by about 90% by keeping the temperature at 5 minutes, the power to the electric furnace 1 was turned off. The purified ZrF was recovered by the same method as in Example 1.

同様にしてAlF2も精l!!!を行った。In the same way, AlF2 is also the best! ! ! I did it.

実施例3 BaF2は実施例1.2とは逆に不純物を揮発(昇華)
する方法によった。出発試薬のBaF 、を白金製ボ・
−ト内に入れ、サポート管2に入れ電気炉lの中央部に
挿入した。このとき実施例1,2で用いた低温部内側容
器は入れる必要がない。
Example 3 BaF2 volatilizes impurities (sublimation) contrary to Example 1.2
It depends on how you do it. The starting reagent, BaF, was added to a platinum bottle.
- into the support tube 2 and inserted into the center of the electric furnace 1. At this time, there is no need to insert the low temperature section inner container used in Examples 1 and 2.

次に管内を真空に排気し、電気炉lの温度を1100℃
に上げ、出発試薬中の遷移金属を揮発させた。1100
°Cで5時間保った後、電気炉の温度を下げ、白金製ボ
ートを取り出し、ボート内のBaF2を回収した。
Next, the inside of the tube was evacuated to a vacuum, and the temperature of the electric furnace was set to 1100℃.
to volatilize the transition metal in the starting reagent. 1100
After being kept at °C for 5 hours, the temperature of the electric furnace was lowered, the platinum boat was taken out, and BaF2 inside the boat was recovered.

同様にして GdF3も精製した。GdF3 was also purified in the same manner.

第3図は実j、Ili例1.2.8の方法を用いて精製
したフッ化物ガラス原料(7) BaF 、 、GdF
3. ZrF、 tAlF3とフッ素化剤のNH,F−
HFをti量秤量し作製したフッ化物ガラスロッドを線
引きした光7アイパの損失特性の代表例を実線で示す。
Figure 3 shows the fluoride glass raw material (7) BaF, , GdF purified using the method of Example 1.2.8.
3. ZrF, tAlF3 and fluorinating agent NH,F-
The solid line shows a representative example of the loss characteristics of the Hikari 7 Eyeper, which was drawn from a fluoride glass rod prepared by weighing the ti amount of HF.

比較のために、湿式精製法によって精製した市販品の特
級純度をもつ各ガラス原料とNH4F−HFで作製した
光ファイバの損失特性を破線で示す。
For comparison, the loss characteristics of optical fibers made from commercially available special grade purity glass raw materials purified by the wet refining method and NH4F-HF are shown by broken lines.

湿式精製原料からなる破線の損失特性で0.8〜0.9
μmと1.4〜1.7μmに現われているピークはFe
不純物によるもの、1〜1.8μmはN1不純物による
ものであり、0.7〜1.7μm域における損失値は1
000dB/Km以上となっている。
The loss characteristic of the broken line consisting of wet refining raw materials is 0.8 to 0.9.
The peaks appearing at μm and 1.4 to 1.7 μm are Fe
The loss value in the 0.7 to 1.7 μm region is due to impurities, and the loss value in the 0.7 to 1.7 μm range is 1.
000dB/Km or more.

一方、本精製法の昇華精製を施した実線の損失特性には
、不純物によるピークは見られない。また損失値も1.
7μmで20dB/Kmを下まわり、減圧精精効果が明
確に現われている。
On the other hand, no peaks due to impurities are observed in the solid line loss characteristics obtained by sublimation purification using the present purification method. Also, the loss value is 1.
At 7 μm, it was less than 20 dB/Km, clearly showing the effect of reduced pressure.

以上説明したように、本発明の耐腐蝕性材料による内側
容器を使用した減圧精製装置を用いて精製した、各種フ
ッ化物ガラス原料によって作製されたフッ化物ガラスフ
アイバの損失特性には、遷移金属不純物によって生じる
吸収ピークは見当らず、はぼ完全に不純物が除去されて
いることがわかる。
As explained above, the loss characteristics of fluoride glass fibers produced from various fluoride glass raw materials refined using a vacuum purification apparatus using an inner container made of the corrosion-resistant material of the present invention include transition metal impurities. No absorption peak was observed, indicating that impurities were almost completely removed.

さらに、本発明による薬品の精製装置に使用した石英管
からなるサポート管はIO向の繰り返し使用にもかかわ
らず、はとんど腐蝕されず、長期間の反復使用及可能な
利点がある。また耐腐蝕性内側容器が縦割りできるから
、付着した精製物が簡単に剥離できるので、回収、作業
も簡便である。
Further, the support tube made of quartz tube used in the drug refining device according to the present invention hardly corrodes even though it is repeatedly used for IO, and has the advantage that it can be used repeatedly for a long period of time. Furthermore, since the corrosion-resistant inner container can be divided vertically, the adhered purified product can be easily peeled off, making recovery and work easier.

なお本発明の実施例で耐腐蝕性、材料による内側容器に
は白金を使用したが、白金に限らず、耐腐蝕性があり、
また耐熱性があれば、金、テフロン等でも可能である。
In the examples of the present invention, platinum was used for the inner container made of corrosion-resistant material, but platinum is not limited to platinum.
Gold, Teflon, etc. can also be used as long as they have heat resistance.

さらに本発明の実施例では、最も高純度を要求する光フ
アイバ用原料に対して示したが、池の用途の高純度試薬
の精製に有効であることは言うまでもない。
Further, in the embodiments of the present invention, the raw materials for optical fibers which require the highest purity are shown, but it goes without saying that the present invention is effective in purifying high-purity reagents for use in ponds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の一例の構成を示
す概略図、 第2図(a)、(b)、(01は内側容器のそれぞれ正
面図、側面図、分割した状態を示す図、第3図は不発明
の実施例で精製した原料および未精製原料を用いて作製
した光7アイパの損失特性を示す図である。 ]・・・加熱用電気炉、1/・・・冷却装置、2・・・
石英ガラス管からなるサポート管、3・・・内側容器、
3a・・・10高濡部内側容器、3b・・・低温部内側
容器、4・・・すり合わせ、5・・・コネクタ、6・・
・排気用管、7・・・真空計、8・・・真空ポンプ、9
・・・分割防止リング。 第 ( (b) 2図
FIG. 1 is a schematic diagram showing the configuration of an example of a device for carrying out the present invention. Figures 3 and 3 are diagrams showing the loss characteristics of Hikari 7 Eyepa manufactured using refined raw materials and unrefined raw materials in the uninvented embodiments. ]...Electric furnace for heating, 1/... Cooling device, 2...
Support tube made of quartz glass tube, 3...inner container,
3a...10 high wet part inner container, 3b...low temperature part inner container, 4...grinding, 5...connector, 6...
・Exhaust pipe, 7... Vacuum gauge, 8... Vacuum pump, 9
...Split prevention ring. ((b) Figure 2

Claims (1)

【特許請求の範囲】 1 排気系に接続され内部が排気できる一方を閉じた石
英ガラス管からなるサポート管と、その内部に設置され
た耐腐食性材料からなる内側容器と、この内側容器を含
むサポート管の長手方向に温度分布を与えるため・の加
熱装置および冷却装置とからなることを特徴とする薬品
の精製装置。 区 耐腐食性材料からなる内側容器が縦割り可能な構造
を有することを特徴とする特許請求の範囲第1項記載の
薬品の精製装置。
[Scope of Claims] 1. Includes a support tube made of a quartz glass tube with one end closed and connected to an exhaust system so that the inside can be exhausted, an inner container made of a corrosion-resistant material installed inside the support tube, and this inner container. A chemical purification device comprising a heating device and a cooling device for providing temperature distribution in the longitudinal direction of a support tube. 2. The chemical refining device according to claim 1, wherein the inner container made of a corrosion-resistant material has a structure that can be vertically divided.
JP14368083A 1983-08-08 1983-08-08 Apparatus for purification of reagent Granted JPS6036304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14368083A JPS6036304A (en) 1983-08-08 1983-08-08 Apparatus for purification of reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14368083A JPS6036304A (en) 1983-08-08 1983-08-08 Apparatus for purification of reagent

Publications (2)

Publication Number Publication Date
JPS6036304A true JPS6036304A (en) 1985-02-25
JPS6353847B2 JPS6353847B2 (en) 1988-10-25

Family

ID=15344441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14368083A Granted JPS6036304A (en) 1983-08-08 1983-08-08 Apparatus for purification of reagent

Country Status (1)

Country Link
JP (1) JPS6036304A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114743A (en) * 1999-10-28 2002-04-16 Hodogaya Chem Co Ltd Method for refining electronic product material
JP2007175698A (en) * 2005-12-02 2007-07-12 Semiconductor Energy Lab Co Ltd Purification apparatus
KR101129449B1 (en) * 2011-05-23 2012-03-26 (주)씨에스엘쏠라 Inner tube for organic submlimation refiner
US20120118459A1 (en) * 2010-11-12 2012-05-17 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
KR101160329B1 (en) * 2011-05-23 2012-06-28 (주)씨에스엘쏠라 Inner tube for organic submlimation refiner
CN104667563A (en) * 2015-02-13 2015-06-03 安徽贝意克设备技术有限公司 Multi-combined high-vacuum purifying system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162850U (en) * 1988-05-06 1989-11-13
JPH0489451U (en) * 1990-09-18 1992-08-05

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114743A (en) * 1999-10-28 2002-04-16 Hodogaya Chem Co Ltd Method for refining electronic product material
JP2007175698A (en) * 2005-12-02 2007-07-12 Semiconductor Energy Lab Co Ltd Purification apparatus
US20120118459A1 (en) * 2010-11-12 2012-05-17 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
KR101129449B1 (en) * 2011-05-23 2012-03-26 (주)씨에스엘쏠라 Inner tube for organic submlimation refiner
KR101160329B1 (en) * 2011-05-23 2012-06-28 (주)씨에스엘쏠라 Inner tube for organic submlimation refiner
CN104667563A (en) * 2015-02-13 2015-06-03 安徽贝意克设备技术有限公司 Multi-combined high-vacuum purifying system

Also Published As

Publication number Publication date
JPS6353847B2 (en) 1988-10-25

Similar Documents

Publication Publication Date Title
CA2135542C (en) Shaped body having a high silicon dioxide content and process for producing such shaped bodies
JPS6036304A (en) Apparatus for purification of reagent
NO321946B1 (en) Melting pot with protective layer of silicon and use of the same
JPH06510739A (en) Preparation of tetrafluorosilane and aluminum fluoride by hydrofluoric acid digestion of silica/alumina matrix
Robinson et al. Growth of Laser‐Quality Rare‐Earth Fluoride Single Crystals in a Dynamic Hydrogen Fluoride Atmosphere
JP2583306B2 (en) Reagent purification device and purification method
CN102329978A (en) Preparation method of porous material by utilizing non-solid solution alloy corrosive sintering
FR2471951A1 (en) METHOD FOR RECOVERING BORIC ACID FROM AN AQUEOUS EFFLUENT CONCENTRATE OF A NUCLEAR POWER PLANT
CN113337738A (en) Method for recovering germanium waste
US3053636A (en) Boron deposition method
JPS62265105A (en) Method and device for purifying chalcogenide material
Owen et al. Effects of hydrogen on some mechanical properties of vanadium-titanium alloys
Robinson Preparation and purification of fluoride glass starting materials
Robinson High purity components for fluorozirconate glass optical fibers
Barkatt et al. The corrosion process of fluoride glass in water and the effects of remelting and of glass composition
Warshaw et al. Hydrofluorination unit for purification of fluoride laser materials
JPS6343089A (en) Composite pipe of ceramic and metal
JP3134896B2 (en) Production method of high purity rare earth fluoride
JPH0725644A (en) Production of indium-based fluoride fiber preform
Bolz et al. Some observations on growing crystals of argon
JPS6011239A (en) Manufacture of optical fluoride fiber
US4544537A (en) Method for purifying cyclic dichlorophosphazene trimer of catalytic impurities
Barker et al. The solubility of aluminium in Pb-17Li
Morrison et al. The HERMEX process for metal decontamination by mercury processing
FR2614213A1 (en) PROCESS FOR THE PREPARATION OF ULTRA-HIGH PURITY METAL INORGANIC COMPOUNDS