JPS6035989A - Control system of dc motor - Google Patents

Control system of dc motor

Info

Publication number
JPS6035989A
JPS6035989A JP58144405A JP14440583A JPS6035989A JP S6035989 A JPS6035989 A JP S6035989A JP 58144405 A JP58144405 A JP 58144405A JP 14440583 A JP14440583 A JP 14440583A JP S6035989 A JPS6035989 A JP S6035989A
Authority
JP
Japan
Prior art keywords
motor
pulse width
counter
time
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58144405A
Other languages
Japanese (ja)
Inventor
Norifumi Ito
伊藤 憲文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58144405A priority Critical patent/JPS6035989A/en
Publication of JPS6035989A publication Critical patent/JPS6035989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/2913Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To suppress the irregular rotation of a DC motor at the constantly rotating time by lengthening the pulse width modulation synchronization at the constantly rotating time as compared with that at the rising time. CONSTITUTION:A CPU3 inputs an output from an encoder 1 through a rotating direction detecting waveform forming circuit 3, calculates the detected result of speed and rotating direction, outputs a control amount to a programmable counter 4, and applies a trigger to the counter 4. As a result, the counter 4 outputs a pulse of the pulse width proportional to the control amount to a motor driver 5. The driver 5 supplies a current to a DC motor 1 during a time proportional to the pulse width in accordance with the rotating direction. Then, the CPU3 controls to shorten a trigger interval at the rising time and to lengthen at the constantly rotating time. Thus, the irregular rotation at the constantly rotating time can be suppressed to low value.

Description

【発明の詳細な説明】 (技術分野) 本発明は直流モーターに取り付けられたエンコーダー出
力により、モーター速度を検出し、CPUで内部演算全
行ない、パルス幅変11(PWM)により直流モーター
を制御する方式に関するものである。
[Detailed Description of the Invention] (Technical Field) The present invention detects the motor speed using the encoder output attached to the DC motor, performs all internal calculations using the CPU, and controls the DC motor using pulse width variation 11 (PWM). It is related to the method.

(従来技術) この種直流モーターの制御方式において、CPUの内部
演算により、PID制御を行なうものは広く知られてい
るが、例えば、複写機の光学系駆動モーターのように立
上り時と空回転時で必要電力が大きく変化する場合はC
PUからの制御量も大きく変化する。
(Prior art) Among the control methods for this type of DC motor, one that performs PID control using internal calculations of the CPU is widely known. If the required power changes significantly in
The amount of control from the PU also changes significantly.

このため電力を必要としない定回転域では操作量が小さ
くなるため平均制御量に対する1変化制御量の比率が大
きくなり、細かな制御ができ彦くなる欠点がある。
For this reason, in a constant rotation range where electric power is not required, the amount of operation becomes small, and the ratio of the one-change control amount to the average control amount becomes large, resulting in a disadvantage that fine control becomes difficult.

(目的) 本発明はこのような事情に鑑みてなされたものであり、
空回転時のPWM周期を立上り時より長くすることによ
り、空回転時のモーターの回転ムラを低く押さえること
を目的とする。
(Purpose) The present invention was made in view of the above circumstances, and
By making the PWM cycle during idle rotation longer than that during startup, the purpose is to suppress uneven rotation of the motor during idle rotation.

(構成) 以下本発明の構成を図示の実施例に基づき説明する、 まず第1図は本発明に係る直流モーターの制御回路ブロ
ック図である。
(Structure) The structure of the present invention will be explained below based on illustrated embodiments. First, FIG. 1 is a block diagram of a control circuit for a DC motor according to the present invention.

図において1は直流モーターであり、とのエンコーダ出
力が回転方向検知波形成形回路2を経てCPU3に取り
込まれるようになっている。
In the figure, reference numeral 1 denotes a DC motor, the encoder output of which is input to the CPU 3 via a rotational direction detection waveform shaping circuit 2.

CPU3内部では速度、回転方向の検出結果を演算し、
カウンター(プログラマブルカウンター)4に制御tt
出力し、一方このカウンター4にCPU3よりトリガー
をかける。
Inside the CPU 3, the speed and rotation direction detection results are calculated,
Counter (programmable counter) 4 to control tt
On the other hand, this counter 4 is triggered by the CPU 3.

この結果カウンター4は制御量に比例したパルス幅をモ
ータードライバー5に出力する。
As a result, the counter 4 outputs a pulse width proportional to the controlled amount to the motor driver 5.

モータードライバー5は回転方向指令に従ってこのパル
ス幅に比例した時間だけ特定のトランジスタ(図示せず
)をオン状態にし、直流モーター1への供給電力をフィ
ードバック制御する。
The motor driver 5 turns on a specific transistor (not shown) for a time proportional to this pulse width in accordance with the rotation direction command, and feedback-controls the power supplied to the DC motor 1.

一般に、負荷摩擦トルクTL、負荷慣性モーメントJL
の負荷を、モーター回転子慣性モーメン)JMのモータ
ーで、速度0からVまで加速するのに必要々モーター必
要トルクT1は、(1)式で示される。
Generally, load friction torque TL, load inertia moment JL
The motor torque T1 required to accelerate the load from speed 0 to V with a motor of motor rotor inertia moment) JM is expressed by equation (1).

また回転数Nで定回転を行なう場合には、(1)式にお
Lnfdw/dt= Oとなるため、モーター必要トル
クT、は、 T!:TL (2) となる。
Also, when constant rotation is performed at the rotation speed N, Lnfdw/dt=O in equation (1), so the required motor torque T is T! :TL (2).

この関係管第2図、第3図に示す。This related pipe is shown in FIGS. 2 and 3.

即ち第2図は縦軸にモーター回転数をとり、横軸に時間
をとつ九ものであり、速度0からV (回転数N)に達
するのに時間t0要するものである。
That is, in FIG. 2, the vertical axis shows the motor rotation speed and the horizontal axis shows time, and it takes time t0 to reach the speed from 0 to V (rotation speed N).

また第3図は縦軸にモーター必要トルクをとり、横軸に
時間をとったものであり、時間t。までは必要トルクT
、であり、それ以降はT、であることを示している。
In addition, in Figure 3, the vertical axis shows the required motor torque and the horizontal axis shows time, ie, time t. Until the required torque T
, and thereafter T.

また直流モーターの特性は、第4図に示される。Further, the characteristics of the DC motor are shown in FIG.

第4図において電圧が一定ならば、回転数とトルクは逆
比例の関係にあり電流とトルクは正比例の関係にある。
In FIG. 4, if the voltage is constant, the rotation speed and torque are inversely proportional, and the current and torque are directly proportional.

今回回転数で必要トルクがT I> T * の時には
、第4図より供給電圧もvt > vt 、同じく電流
もI、)I、の関係になる。
When the required torque at this rotational speed is T I > T *, the supply voltage is also vt > vt from FIG. 4, and the current is also I, )I.

PWMでは、電源電圧一定で、モーターへの通電時間を
パルス幅で制御し、モーターへ供給する平均電圧を制御
する。この平均電圧とパルス幅(=通電時間)とは比例
し、パルス幅が1/2 になれば平均電圧も1/2 と
なる。第3図において、立上り時に必要なトルクT、f
発生するだめの供給電力を、第5図に示すパルス幅で得
られるとすると、定回転時はそれよりはるかに小さな電
力で十分なため、第6図に示すようにパルス幅は狭くな
る。
In PWM, the power supply voltage is kept constant, and the duration of energization to the motor is controlled by the pulse width, thereby controlling the average voltage supplied to the motor. This average voltage and pulse width (=current application time) are proportional, and if the pulse width becomes 1/2, the average voltage also becomes 1/2. In Figure 3, the torques T and f required at startup
Assuming that the generated power can be obtained with the pulse width shown in FIG. 5, much smaller power is sufficient during constant rotation, so the pulse width becomes narrower as shown in FIG.

しかしここで、PWM周期を長くすると第6図と同等の
電力を供給するためには、−個あたりのパルス幅は広く
なる。
However, if the PWM cycle is made longer, the pulse width per - piece becomes wider in order to supply the same power as in FIG.

この様子を第7図に示す。このパルス列はCPU 3の
内部演算によって得られた2進データーをカウンター4
にロードしトリガがかかつてから、その2進データー分
基準クロックをカウントし、2進データーに比例した幅
をもって出力されるパルスである。
This situation is shown in FIG. This pulse train converts binary data obtained by internal calculations of CPU 3 to counter 4.
This is a pulse that is output with a width proportional to the binary data by counting the reference clock for the binary data after the trigger is activated.

従って、トリガ間隔をCPU3で制御するととにより、
PWM周期は制御可能となる。
Therefore, by controlling the trigger interval with the CPU 3,
The PWM cycle becomes controllable.

ところで、CP U3の演算は2進数で行なわれルタめ
、パルス幅の変化は最低、カウンター4のクロツク入力
1パルス分あるわけである。これはパルス幅がどのよう
に変化しても、カウンター4のクロック人力が一定の場
合常に等しく、この制御量1変化を1とし、第6図のパ
ルス幅を25、第7図のパルス幅を50とすると、制御
量1変化のパルス幅に対する割分け、それぞれ1/25
 、1150となる。
Incidentally, since the calculations of the CPU 3 are performed in binary numbers, the pulse width changes at least by one pulse of the clock input to the counter 4. This means that no matter how the pulse width changes, if the clock power of counter 4 is constant, it will always be equal.If one change in this control amount is 1, then the pulse width in Figure 6 is 25, and the pulse width in Figure 7 is 50, the division of one change in control amount to the pulse width is 1/25, respectively.
, 1150.

またパルス幅はモーター供給電力に比例しているため、
第6図では、1つ制御量を変化させると1/25 X平
均電圧変化するのに対し、第7図では、その十分の11
50X平均電圧しか変化しない。
Also, since the pulse width is proportional to the motor supply power,
In Fig. 6, changing one control amount changes the average voltage by 1/25, whereas in Fig. 7, it changes by 1/25 x the average voltage.
Only 50X average voltage changes.

従って、PWM周期を長cくすることにより、より細か
h制御が可能となり、回転ムラを押さえることができる
Therefore, by increasing the PWM period c, more fine h control becomes possible and rotational unevenness can be suppressed.

特に複写機の光学系駆動においては、立上り時と定回転
時のトルク差が大きく、さらに定回転域では画像に影響
がでなか様に、回転ムラを低くする必要があり、有効な
制御方式といえる。
In particular, in the optical system drive of a copying machine, there is a large torque difference between startup and constant rotation, and it is necessary to reduce rotational unevenness in the constant rotation range so that it does not affect the image. I can say that.

尚、立上り時と定回転時でPWM周期を変化させている
が、PWM周期の変化は、CPU3で任意に制御可能な
ため、常に適切なPWM周期の制御も可能〒ある。
Note that although the PWM cycle is changed at startup and during constant rotation, the change in the PWM cycle can be arbitrarily controlled by the CPU 3, so it is always possible to control the PWM cycle appropriately.

(効果) 本発明は以上の通りのものであり、本発明によれば、定
回転時のPWM周期を立上り時より長くするように制御
したため、より細かいモーター回転制御が可能となり、
回転ムラを押えることが出来る。
(Effects) The present invention is as described above.According to the present invention, since the PWM cycle during constant rotation is controlled to be longer than that during startup, more detailed motor rotation control is possible.
It can suppress uneven rotation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るモーター制御回路ブロ
ック図、第2図は所定回転数までの立ち上がり金示す特
性図、第3図はトルクパヨーン図、第4図はモーター特
性図、第5図、第6図、第7図はPWMによるパルス波
形図である。 1・・・・・・直流モーター、2・・・・・・CPU、
4・・・・・・カウンター、5・・・・・・モータード
ライバー。
Fig. 1 is a motor control circuit block diagram according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the rise speed up to a predetermined rotation speed, Fig. 3 is a torque payon diagram, Fig. 4 is a motor characteristic diagram, and Fig. 5 is a motor characteristic diagram. 6 and 7 are pulse waveform diagrams by PWM. 1...DC motor, 2...CPU,
4...Counter, 5...Motor driver.

Claims (1)

【特許請求の範囲】[Claims] 直流モーターのエンコーダーのパルスによって、速度、
回転方向を検出し、CPU内部の演算により、制御量を
カウンターに出力し、このカウンターにCPUよりトリ
ガーをかけることにより、カウンターは制御量に比例し
たパルス幅をモータードライバーに出力し、モータード
ライバーは回転方向指令に従って、このパルス幅に比例
しり時間だけ特定のトランジスタをオン状態KL、直流
モーターへの供給電力をフィードバック制御する回路に
おいて、加、減速時と定回転時にトリガーをかける周期
を変化させることを特徴とする直流モーターの制御方式
The speed is determined by the encoder pulses of the DC motor.
The direction of rotation is detected, the CPU internally calculates the control amount to the counter, the counter is triggered by the CPU, the counter outputs a pulse width proportional to the control amount to the motor driver, and the motor driver In accordance with the rotation direction command, a specific transistor is turned on (KL) for a time proportional to this pulse width, and in a circuit that feedback controls the power supplied to the DC motor, the cycle at which the trigger is applied during acceleration, deceleration, and constant rotation is changed. A DC motor control system featuring:
JP58144405A 1983-08-09 1983-08-09 Control system of dc motor Pending JPS6035989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144405A JPS6035989A (en) 1983-08-09 1983-08-09 Control system of dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144405A JPS6035989A (en) 1983-08-09 1983-08-09 Control system of dc motor

Publications (1)

Publication Number Publication Date
JPS6035989A true JPS6035989A (en) 1985-02-23

Family

ID=15361405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144405A Pending JPS6035989A (en) 1983-08-09 1983-08-09 Control system of dc motor

Country Status (1)

Country Link
JP (1) JPS6035989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272886A (en) * 1986-05-20 1987-11-27 Fujitsu Ltd Dc motor drive circuit
JPH01180499A (en) * 1988-01-11 1989-07-18 Framatome Et Cogema <Fragema> Stainless steel tubular element having improved wear resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272886A (en) * 1986-05-20 1987-11-27 Fujitsu Ltd Dc motor drive circuit
JPH01180499A (en) * 1988-01-11 1989-07-18 Framatome Et Cogema <Fragema> Stainless steel tubular element having improved wear resistance

Similar Documents

Publication Publication Date Title
US5572105A (en) Stepping motor control method including varying the number of split sections in one step drive period of a stepping motor
KR960010364A (en) Electric vehicle control device
US4536691A (en) Method of controlling a stepping motor
JPS6035989A (en) Control system of dc motor
US3983468A (en) Motor drive system including a feedback loop
US3706020A (en) Capstan motor control system
JPS62244287A (en) Digital control device for dc motor
JP3710925B2 (en) Speed limiter
JPH01194899A (en) Driving unit for stepping motor
JPS6352698A (en) Controlling method for stepping motor
JPH11299276A (en) Method for controlling stoppage of electric motor
JPH03173392A (en) Speed control of brushless motor
JPH0284092A (en) Speed controller for pulse width modulation type motor
JP3327298B2 (en) Method of generating speed command in tuning phase control of servo system
JP2579172B2 (en) Motor stop control method for sewing machine
JPS6329514B2 (en)
JPH08103092A (en) Servo controller and servo control method
JP3723884B2 (en) Motor drive pulse generation circuit
JPS62185593A (en) Controller for fan motor
JPH11146670A (en) Driving equipment of vibrator motor
JPH03265481A (en) Motor control circuit for serial printer
JPH03293986A (en) Motor control circuit
JP2580394B2 (en) DC servo motor control method
JPH07285745A (en) Speed control device for inverter for elevator
JPH02228204A (en) Speed control device of electric motor car