JPS6035987B2 - Aluminum↓-Lead-based bearing manufacturing method - Google Patents

Aluminum↓-Lead-based bearing manufacturing method

Info

Publication number
JPS6035987B2
JPS6035987B2 JP8923478A JP8923478A JPS6035987B2 JP S6035987 B2 JPS6035987 B2 JP S6035987B2 JP 8923478 A JP8923478 A JP 8923478A JP 8923478 A JP8923478 A JP 8923478A JP S6035987 B2 JPS6035987 B2 JP S6035987B2
Authority
JP
Japan
Prior art keywords
powder
layer
bearing
alloy powder
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8923478A
Other languages
Japanese (ja)
Other versions
JPS5518522A (en
Inventor
原嗣 小山
克巳 近藤
慎治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8923478A priority Critical patent/JPS6035987B2/en
Publication of JPS5518522A publication Critical patent/JPS5518522A/en
Publication of JPS6035987B2 publication Critical patent/JPS6035987B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Description

【発明の詳細な説明】 本発明は、アルミニウム−鉛系軸受の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an aluminum-lead bearing.

一般に軸受は使用目的上、耐摩耗性、耐煉付性、耐荷重
性、耐疲労性に優れていることが必要であり、このため
軸受本体を形成する鋼板などのバックメタル表面に例え
ばアルミニウム−鉛系の皮膜を形成したりして長期間の
使用にも十分耐えうるように従来から多くの工夫がなさ
れてきた。
In general, bearings must have excellent wear resistance, brick resistance, load resistance, and fatigue resistance for the purpose of use. Many efforts have been made in the past to make it durable enough for long-term use, such as by forming a lead-based film.

このアルミニウム−鉛系(以下、AI−Pb系と記す。
)皮膜を形成する方法としては、グールド法、大同法な
どの煉給による鋳造圧延による0.M.法等の種々の方
法があるが、AI粉末とPb粉末を混合して、バックメ
タル上へ供給する大同法では、AI粉末とPb粉末の比
重差が大きく均一な分布が得にくい。また、暁結法では
、バックメタルとの密着力及び層内の強度を得るために
は、相当の圧延率を要するため、Pb粒子が長く延び、
耐疲労性に問題が生ずる。グールド法はこの点AI一P
b合金粉末を使用のため比較的細かいPbの分布が得ら
れるが、AI中へ多くのPbを細かく分散した粉末を得
ることは困難で、10%以上のPb量にすることはむず
かしい。このため性能面でや)不充分な面がある。一方
、鋳造法では、やはりPbを均一に分散させるためには
溶湯を急冷するなどの操作が必要であるが、相当困難で
ある。本発明の目的は上記欠点を解消し、従来法に比べ
て耐摩耗性、耐糠付性、耐疲労耐、耐荷重性に優れた山
一Pb系皮膜を有する軸受の製造方法を提供するにある
。更に本発明の目的は、Pbが微粒子状に分散されてい
るAI−Pb合金粉末を溶射することにより皮膜中にP
bが微細均一に分散している軸受の製造方法を提供する
にある。
This aluminum-lead system (hereinafter referred to as AI-Pb system).
) The method for forming the film is 0.0000. M. There are various methods, such as the Daido method, which mixes AI powder and Pb powder and supplies them onto the back metal, but the difference in specific gravity between the AI powder and Pb powder is large and it is difficult to obtain a uniform distribution. In addition, in the glazing method, a considerable rolling rate is required in order to obtain adhesion with the back metal and strength within the layer, so the Pb particles are elongated and
Problems arise in fatigue resistance. The Gould method is AI1P in this respect.
Although a relatively fine distribution of Pb can be obtained because b alloy powder is used, it is difficult to obtain a powder in which a large amount of Pb is finely dispersed in AI, and it is difficult to achieve a Pb content of 10% or more. For this reason, there are some insufficiencies in terms of performance. On the other hand, the casting method requires operations such as rapidly cooling the molten metal in order to uniformly disperse Pb, which is quite difficult. An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for manufacturing a bearing having a Yamaichi Pb-based coating that has superior wear resistance, bran resistance, fatigue resistance, and load resistance compared to conventional methods. be. A further object of the present invention is to spray Pb into a film by thermal spraying an AI-Pb alloy powder in which Pb is dispersed in fine particles.
To provide a method for manufacturing a bearing in which b is finely and uniformly dispersed.

更に本発明の目的は、従来困難であった10%以上のP
bを含む軸受層を得ることである。
Furthermore, the purpose of the present invention is to reduce P by 10% or more, which has been difficult in the past.
The purpose is to obtain a bearing layer containing b.

即ち、本発明によるAI−Pb系軸受の製造方法は、P
b5なし、し40重量%を含有するAI合金粉末を鋼板
等のバックメタル上に熔射し、その後圧延、椀鈍、成形
することを特徴とするものである。
That is, the method for manufacturing an AI-Pb bearing according to the present invention
This method is characterized in that an AI alloy powder containing 40% by weight without B5 is sprayed onto a back metal such as a steel plate, and then rolled, blunted, and formed.

本発明による軸受の製造方法は、例えば次の順序で行わ
れる(なお、第1図に軸受の一部拡大断面図を示す、)
:バックメタルA形成→(中間層b形成)→AI−Pb
系熔射層C形成→圧延→焼錨→成形このとき中間層b及
びN−Pb系溶射層cは、下記第1表記萩の条件より選
択される。
The method for manufacturing a bearing according to the present invention is carried out, for example, in the following order (a partially enlarged sectional view of the bearing is shown in FIG. 1).
: Formation of back metal A → (formation of intermediate layer b) → AI-Pb
Formation of sprayed layer C → rolling → sintered anchor → molding At this time, the intermediate layer b and the N-Pb sprayed layer c are selected according to the conditions of the first notation Hagi below.

第1表 AI−Pb系溶射後の圧延・燐鈍したときの厚さをいう 本発明方法において、中間層bの厚さは0ないし0.4
8側が好ましい。
Table 1: Thickness after rolling and phosphor annealing after AI-Pb thermal spraying In the method of the present invention, the thickness of the intermediate layer b is 0 to 0.4
8 side is preferred.

低荷重軸受の場合あるいは後から形成するとAI−Pb
系溶射中のPb含有量が少ない場合は中間層bを必ずし
も形成しなくてもよいが、耐荷重性、耐疲労性の面から
は中間層を設けることが望ましい。一方、二層軸受ある
いは三層軸受の場合、バックメタル(鋼板)上に形成さ
れるべき層厚さは通常0.5側以上を必要としないため
、AI−Pb系熔射層の最低厚さ0.02肌を考慮すれ
ば中間層bの最大厚さは多くとも0.48職でよい。ま
た、中間層bの役割は、基本的にはバックメタルaと溶
射層cの接着力強化にあるため中間層bを純Nとしても
よいが、山層の強度向上のためにCu,Sb,Si等を
添加してもよい。
For low load bearings or when formed later, AI-Pb
When the Pb content in the thermal spraying system is low, it is not necessary to form the intermediate layer b, but it is desirable to provide the intermediate layer from the viewpoint of load resistance and fatigue resistance. On the other hand, in the case of two-layer bearings or three-layer bearings, the layer thickness to be formed on the back metal (steel plate) usually does not require a layer thickness of 0.5 or more, so the minimum thickness of the AI-Pb sprayed layer is Considering the thickness of 0.02 mm, the maximum thickness of the intermediate layer b may be at most 0.48 mm. The role of the intermediate layer b is basically to strengthen the adhesive force between the back metal a and the sprayed layer c, so the intermediate layer b may be made of pure N, but in order to improve the strength of the peak layer, Cu, Sb, Si or the like may be added.

一方、AI−Pb系溶射層を薄くするときは、溶射層が
摩耗した場合中間層が軸受の一部としての作用を行う場
合もあるので、AIに潤滑成分としてPb,Sn,Cd
,Zn等を加えもよく、また所望によりAI素地強化の
目的でCu,Sb,Si等を添加してもよい。中間層b
の形成は、例えば熔解圧延接着法、粉末暁結法、溶射法
、溶融めつき、亀気めつき、薄膜の圧嬢等従来公知の方
法にて行われる。次に、本発明によるAI−Pb系合金
粉末は合金中に微粒状に分散したPbないし40重量%
を含むことよりなる。
On the other hand, when making the AI-Pb sprayed layer thinner, if the sprayed layer wears out, the intermediate layer may act as part of the bearing, so it is necessary to add Pb, Sn, and Cd as lubricating components to the AI.
, Zn, etc. may be added, and if desired, Cu, Sb, Si, etc. may be added for the purpose of strengthening the AI substrate. middle class b
The formation is carried out by conventionally known methods such as melt rolling adhesion method, powder deposition method, thermal spraying method, melt plating, flash plating, and thin film pressing. Next, the AI-Pb alloy powder according to the present invention contains 40% by weight of Pb dispersed in fine particles in the alloy.
It consists of including.

これはPbが5重量%以下ではAIに添加しても良好な
潤滑効果を挙げることは期待できず、また4の重量以上
でも逆に耐荷重性、耐疲労性が劣化して好ましくないか
らである。またN−Pb系合金粉末は、潤滑油に対する
耐食性向上のためPbに対し2なし、し10重量%のS
nを含ませることができる。更に所望により、その他の
金属成分、例えばCd,C山 Zn,Ni,Si,Cr
,Sb,Bi等を潤滑性向上及びN素地強化のため0な
いし5重量%の範囲で添加してもよい。このN−Pb系
溶射層を形成するには、従来は単にAI,Pb,及び他
の金属粉末を混合して得た混合粉末を溶射していたに過
ぎなかった。
This is because if Pb is less than 5% by weight, it cannot be expected to have a good lubrication effect even if added to AI, and if Pb is more than 4% by weight, the load resistance and fatigue resistance will deteriorate, which is undesirable. be. In addition, the N-Pb alloy powder contains 2% by weight and 10% by weight of S for Pb to improve corrosion resistance against lubricating oil.
n can be included. Furthermore, if desired, other metal components such as Cd, C mountain, Zn, Ni, Si, Cr
, Sb, Bi, etc. may be added in an amount of 0 to 5% by weight to improve lubricity and strengthen the N matrix. In order to form this N-Pb based thermal spray layer, conventionally, a mixed powder obtained by mixing AI, Pb, and other metal powders was simply thermal sprayed.

そのためPb粒子の分布が不均一で粒子サイズも粗く、
良好な溶射層が得られなかった。本発明方法では各金属
成分を予じめ溶融した後、アトマィズ法等により微粒子
状にするので、各々の成分粒子が互いの間に間隙を形成
せず細かく分散するので、均一で微細なP雌位子が平均
して存在するAI−Pb系粉末が得られる。Pbの分布
状態の一例を第2図イ,口,ハに示すが、1つのN−P
b系粉末粒子1にPb粒子2が1つ以上、好ましくはな
るべく多く存在するとよく、第2図でイは好ましくなく
、口望しくはハの状態にすべきである。
Therefore, the distribution of Pb particles is uneven and the particle size is coarse.
A good sprayed layer could not be obtained. In the method of the present invention, each metal component is melted in advance and then made into fine particles by an atomization method, etc., so each component particle is finely dispersed without forming any gaps between them, so that uniform and fine P particles are formed. An AI-Pb based powder is obtained in which ions are present on average. An example of the distribution state of Pb is shown in Figure 2 A, C and C.
It is preferable that one or more Pb particles 2 exist in the b-based powder particles 1, preferably as many as possible. In FIG.

また1つのAI−Pb系粉末粒子中Pb粒子の占める面
積割合はN素地に対し1′沙〆下であるようにすること
が望ましい。この場合、Pb粒子はSn及びその他の元
素を含んでいてもよい。また合金粉末を純アルミニウム
粉末との混合粉末の溶射も可能で、Pq粉末とAI粉末
を混合したものよりも微細なPbの分散層が得られる。
AI−Pb系粉末の溶射装置は通常用いられるプラズマ
溶射機(例えばメテコ 乳 M,7M)、ガス(サーモ
スプレ−)溶射機(例えばメテコ 坪,解)等が用いら
れる。
Further, it is desirable that the area ratio occupied by the Pb particles in one AI-Pb powder particle is 1' below the N substrate. In this case, the Pb particles may contain Sn and other elements. It is also possible to thermal spray a mixed powder of alloy powder and pure aluminum powder, and a finer Pb dispersed layer can be obtained than a mixture of Pq powder and AI powder.
As a thermal spraying apparatus for the AI-Pb powder, a commonly used plasma spraying machine (for example, Metco Milk M, 7M), gas (thermo spray) spraying machine (for example, Metco Tsubo, Kai), etc. is used.

次に、上記のような方法にて溶射層を形成した鋼板をロ
ール圧延等の方法で、N−Pb系溶射層について圧延率
が10なし、し80%程度となるように圧延する。
Next, the steel plate on which the sprayed layer has been formed by the method described above is rolled by a method such as roll rolling so that the N--Pb sprayed layer has a rolling ratio of about 10 to 80%.

このとき、圧延率が10%以下であると表面を滑らかに
し、層を繊密にするという当初の目的を達成することが
できず、また80%以上にするとPb粒子が伸びて耐荷
電性、耐疲労性が劣化してしまうので好ましくない。糠
鈍は300〜45000の温度にて、0.5〜5時間、
水素雰囲気等非酸化性の雰囲気中にて行う。
At this time, if the rolling rate is less than 10%, the original purpose of making the surface smooth and the layer dense will not be achieved, and if it is more than 80%, the Pb particles will stretch and the charge resistance will deteriorate. This is not preferable because fatigue resistance deteriorates. For bran bran, at a temperature of 300 to 45,000 ℃, for 0.5 to 5 hours,
It is carried out in a non-oxidizing atmosphere such as a hydrogen atmosphere.

次に本発明方法を実施例及び比較例を用いて更に詳しく
説明する。但し、%は重量%を表わす。実施例 11.
2脚の冷間圧延鋼板をトリクレン脱脂し、ベルトサンダ
−で粗面化を行った。
Next, the method of the present invention will be explained in more detail using Examples and Comparative Examples. However, % represents weight %. Example 11.
Two cold-rolled steel plates were degreased using trichlene and their surfaces were roughened using a belt sander.

次に、この鋼板に下記の条件でAI−Pb(一Sn)合
金粉末を厚さ0.5帆になるように熔射した。熔射装置
:40kwプラズマ礎射装置 溶射用合金粉末: A AI−38.2%Pb−2.1%Sn合金粉末(ア
トマィズ粉末)100〜250メッシュB AI−30
.3%Pb−1.6%Sn合金粉末(アトマィズ粉末)
100〜250メッシュC AI−19.6%Pb−0
.9%Sn合金粉末(アトマィズ粉末)100〜250
メッシュD AI−10.3%Pb−0.6%Sn合金
粉末(アトマィズ粉末)100〜250メッシュE A
I−6.2%Pb−0.4%Sn合金粉末(アトマィズ
粉末)100〜250〆ツシュ溶射条件 プラズマガス・・・アルゴン;15庇CFH、水素;虫
CFH電流・電圧・・・50船、75V 溶射距離・・・12仇廠 冷却ェア・・・50PS1、クロスジェット距離170
粉末供聯合速度・・・3.15k9/Hr予熱温度・・
・25000 得られた溶射組織の断面組織をみると、Pb−Sn合金
粒子はアルミニウム中に細かく、均一に分布していた。
Next, AI-Pb(-Sn) alloy powder was sprayed onto this steel plate under the following conditions to a thickness of 0.5 mm. Spraying equipment: 40kw plasma spraying equipment Alloy powder for thermal spraying: A AI-38.2%Pb-2.1%Sn alloy powder (atomized powder) 100-250 mesh B AI-30
.. 3%Pb-1.6%Sn alloy powder (atomized powder)
100-250 mesh C AI-19.6%Pb-0
.. 9% Sn alloy powder (atomized powder) 100-250
Mesh D AI-10.3%Pb-0.6%Sn alloy powder (atomized powder) 100-250 mesh E A
I-6.2%Pb-0.4%Sn alloy powder (atomized powder) 100-250〆Tsch thermal spraying conditions Plasma gas... Argon; 15 eaves CFH, hydrogen; Insect CFH Current/voltage... 50 ships, 75V Spraying distance...12 stations Cooling air...50PS1, Cross jet distance 170
Powder supply combination speed...3.15k9/Hr Preheating temperature...
-25000 Looking at the cross-sectional structure of the obtained thermal sprayed structure, the Pb-Sn alloy particles were finely and uniformly distributed in the aluminum.

一例として、AI−40%Pb−2%Sn合金粉末を溶
射した場合の、断面組織の顕微鏡写真を第3図に示す。
なお、溶射層中のPb−Sn量は溶射前の値に対し、約
5〜10%減少していた(第2表参照)。次に前記の熔
射鋼板を溶射層の圧延率50%に圧延し、35000で
2時間水素雰囲気中で焼鈍した。
As an example, FIG. 3 shows a micrograph of a cross-sectional structure when sprayed with AI-40%Pb-2%Sn alloy powder.
Note that the amount of Pb-Sn in the sprayed layer was reduced by about 5 to 10% compared to the value before spraying (see Table 2). Next, the above-mentioned hot-sprayed steel sheet was rolled to a rolling ratio of 50% of the sprayed layer, and annealed at 35,000° C. for 2 hours in a hydrogen atmosphere.

この結果得られた圧延板から平板試験片を作成し、機械
試験型摩擦摩耗試験機により、焼付面圧及び摩擦係数を
求めた。試験の条件は下記の通りである。・ 相手材(
円筒試験片):S4皮、硬さHv210〜230 ・ 円筒試験片回転数:100仇.p.m.(すべり速
度119.3仇/sec)・潤滑油:キヤツスルクリー
ンカスタム SAE300 ・ 油温35〜4000(但し、試験開始時)この結果
及び軸受層の成分、硬さ、表面粗さを第2表に示す。
A flat plate test piece was prepared from the resulting rolled plate, and the seizure surface pressure and friction coefficient were determined using a mechanical test type friction and wear tester. The test conditions are as follows.・Mating material (
Cylindrical test piece): S4 skin, hardness Hv210-230 ・Cylindrical test piece rotation speed: 100 m. p. m. (Sliding speed 119.3 m/sec) - Lubricating oil: Cattle Clean Custom SAE300 - Oil temperature 35-4000 (however, at the start of the test) This result and the components, hardness, and surface roughness of the bearing layer were Shown in the table.

第 2 表 × 250kg/の以上の試験は不能(機械能力)*失
摩擦係数は250kタイあのものはその面圧、195
kgイめで暁付いたものは暁付前の値を示した。
Table 2 × Tests over 250 kg/impossible (mechanical ability)
Those that reached dawn in kg showed the values before dawn.

比較例 1溶射粉末が下記のようなNとPb−Sn合金
の混合粉末である以外は、実施例1と全く同様のことを
行った。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the thermal spray powder was a mixed powder of N and Pb-Sn alloy as shown below.

・ 溶射粉末…AI粉末(100〜250メッシュ)と
Pb−Sn合金粉末(100〜250メッシュ)をV型
ツクスウェル で10分間緊密に混合する。
- Thermal spray powder: AI powder (100-250 mesh) and Pb-Sn alloy powder (100-250 mesh) are intimately mixed in a V-shaped Tuxwell for 10 minutes.

F 純AI粉末60%十Pb(95%)一Sn(5%)
合金粉末 40%G 純AI粉末70%十Pb(95
%)−Sn(5%)合金粉末 30%H 純AI粉末
80%十Pb(95%)−Sn(5%)合金粉末 2
0%1 純AI粉末90%十Pb(95%)−Sn(5
%)合金粉末 10%J 純AI粉末95%十Pb(
95%)−Sn(5%)合金粉末この漆射層の断面組織
をみると、Pb−Sn合金粒子は粗く、しかも不均一な
分布であった。
F Pure AI powder 60% - Pb (95%) - Sn (5%)
Alloy powder 40%G Pure AI powder 70%10Pb (95
%)-Sn (5%) alloy powder 30%H Pure AI powder 80% 10Pb (95%)-Sn (5%) alloy powder 2
0%1 Pure AI powder 90%10Pb(95%)-Sn(5
%) Alloy powder 10%J Pure AI powder 95% 10Pb (
95%)-Sn(5%) alloy powder Looking at the cross-sectional structure of this lacquered layer, the Pb-Sn alloy particles were coarse and non-uniformly distributed.

一例として試料Fの粉末による断面組織の顕微鏡写真図
を第4図に示す。なお、溶射層中のPb−Sn量は溶射
前の値に対し、約10〜30%減少していた。圧延・暁
鎚後の軸受層の成分、硬さ、表面粗さ、及び機械試験所
型摩擦摩耗における暁付面圧及び摩擦係数を第3表に示
す。第 3 表 実施例 2 幅31肌、肉厚1.5肌(バックメタル厚1.2肌)、
径47.80の平軸受を下記第4表のように12種類作
成した。
As an example, FIG. 4 shows a micrograph of the cross-sectional structure of the powder of Sample F. Note that the amount of Pb-Sn in the sprayed layer was reduced by about 10 to 30% compared to the value before spraying. Table 3 shows the components, hardness, surface roughness, and surface pressure and friction coefficient of the bearing layer after rolling and hammering, as well as the rolling contact pressure and friction coefficient in mechanical testing laboratory type friction wear. Table 3 Example 2 Width: 31 skins, wall thickness: 1.5 skins (back metal thickness: 1.2 skins),
Twelve types of plain bearings with a diameter of 47.80 mm were prepared as shown in Table 4 below.

この軸受を倉田式動荷重試験機を用いて、軸受の耐疲労
性を調べた。
The fatigue resistance of this bearing was examined using a Kurata dynamic load tester.

第4表に疲労面圧(繰り返し数107回に於る)を示す
。なお本試験は下記条件のもとで行われた。・ 回転数
・…・・280仇.p.m(速度7m/sec)・ 軸
材質・・・・・・S5に(硬さHRC50、粗さ0.8
山Rz)・ 潤滑油・・・・・・SAF30メッシュ、
MS−DM級・ 給油圧・・・・・・4.0k9/地・
給油温度・・・・・・8000 ・ オイルクリアランス…・・・0.04〜0.06帆
第 4 表任‐1) 溶射粉末、溶射条件は実施例1、
比較例1と同じ圧2 ) 溶射後は圧延(50略)、燐
鈍(350℃×2時市母)を行った。
Table 4 shows the fatigue surface pressure (at 107 repetitions). This test was conducted under the following conditions.・ Number of revolutions...280. p. m (speed 7m/sec)・Shaft material...S5 (hardness HRC50, roughness 0.8
Mountain Rz)・Lubricating oil・・・SAF30 mesh,
MS-DM class・Supply oil pressure...4.0k9/earth・
Oil supply temperature...8000 ・Oil clearance...0.04~0.06 Sails 4th assignment-1) Thermal spray powder and thermal spraying conditions are as in Example 1,
The same pressure as in Comparative Example 1) After thermal spraying, rolling (50 omitted) and phosphor annealing (350° C. x 2 o'clock molding) were performed.

注3)平軸受の製造方法は公知の方法によった。上記結
果より明らかなように、軸受を本発明方法により製造す
ると、メタル部分にPb粒子が細かく均一に分布し、し
かもPb量の自由度の高い漆射層が形成されるため軸受
の耐摩耗性及び耐焼付性が向上し、良好な軸受を得るこ
とができる。
Note 3) The plain bearing was manufactured using a known method. As is clear from the above results, when a bearing is manufactured by the method of the present invention, Pb particles are finely and uniformly distributed in the metal part, and a lacquered layer with a high degree of freedom in the amount of Pb is formed, which improves the wear resistance of the bearing. And the seizure resistance is improved, and a good bearing can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は軸受の一部拡大断面図、第2図イ〜ハは本発明
方法で得られるN−Pb系合金粉末中のPb分布を示す
拡大模式図、第3図は実施例1で得られるAI一Pb系
溶射層の顕微鏡写真図(×100)、第4図は比較例1
で得られるAI−Pb系溶射層の顕微鏡写真図(×10
0)、を表わす。 図中、a・・・・・・バックメタル、b・・・…中間層
、c・・・…溶射層、1・・・・・・AI−Pb系粉末
、2……Pb粒子を表わす。第1図 第2図 第3図 第4図
Fig. 1 is a partially enlarged sectional view of the bearing, Fig. 2 A to C are enlarged schematic diagrams showing the Pb distribution in the N-Pb alloy powder obtained by the method of the present invention, and Fig. 3 is a partially enlarged sectional view of the bearing. A microscopic photograph (×100) of the AI-Pb sprayed layer, Figure 4 is Comparative Example 1.
Microscopic photograph of the AI-Pb sprayed layer obtained in (×10
0). In the figure, a...back metal, b...intermediate layer, c...sprayed layer, 1...AI-Pb powder, 2...Pb particles. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 鉛5ないし40重量%を含有する鉛粒子が分散され
ているアルミニウム合金粉末をバツクメタル上に溶射し
、その後圧延、焼鈍、成形することを特徴とするアルミ
ニウム−鉛系軸受の製造方法。
1. A method for manufacturing an aluminum-lead bearing, which comprises spraying aluminum alloy powder in which lead particles containing 5 to 40% by weight of lead are dispersed onto a back metal, followed by rolling, annealing, and forming.
JP8923478A 1978-07-21 1978-07-21 Aluminum↓-Lead-based bearing manufacturing method Expired JPS6035987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8923478A JPS6035987B2 (en) 1978-07-21 1978-07-21 Aluminum↓-Lead-based bearing manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8923478A JPS6035987B2 (en) 1978-07-21 1978-07-21 Aluminum↓-Lead-based bearing manufacturing method

Publications (2)

Publication Number Publication Date
JPS5518522A JPS5518522A (en) 1980-02-08
JPS6035987B2 true JPS6035987B2 (en) 1985-08-17

Family

ID=13965048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8923478A Expired JPS6035987B2 (en) 1978-07-21 1978-07-21 Aluminum↓-Lead-based bearing manufacturing method

Country Status (1)

Country Link
JP (1) JPS6035987B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634099B2 (en) 2017-09-25 2020-04-28 Woodward, Inc. Passive pumping for recirculating exhaust gas
US10995705B2 (en) 2019-02-07 2021-05-04 Woodward, Inc. Modular exhaust gas recirculation system
US11293382B2 (en) 2020-01-08 2022-04-05 Woodward, Inc. Passive pumping for recirculating exhaust gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9908752B1 (en) * 1998-03-14 2009-01-13 process for forming a single bearing inner liner on a substrate, and, bearing material.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634099B2 (en) 2017-09-25 2020-04-28 Woodward, Inc. Passive pumping for recirculating exhaust gas
US10995705B2 (en) 2019-02-07 2021-05-04 Woodward, Inc. Modular exhaust gas recirculation system
US11293382B2 (en) 2020-01-08 2022-04-05 Woodward, Inc. Passive pumping for recirculating exhaust gas

Also Published As

Publication number Publication date
JPS5518522A (en) 1980-02-08

Similar Documents

Publication Publication Date Title
US4121928A (en) Method for the manufacture of multi-layer sliding material
EP1434665B1 (en) Lead-free bearing
JP2624693B2 (en) Composite material having at least one smooth layer deposited by sputtering and method for producing the same
US4406857A (en) Alloy for antifriction bearing layer and process of forming an antifriction layer on steel supporting strip
JP5132806B1 (en) Plain bearing
US4189522A (en) Multi-layer sliding material and method for manufacturing the same
JPH08199327A (en) Swash plate for swash plate type compressor
US4361629A (en) Bearing material and method of producing same
GB2386610A (en) A sliding bearing material
JP3013946B2 (en) Multi-layer composite sliding material with excellent seizure resistance
JP2525538B2 (en) Copper alloy plain bearing having high strength backing and method of manufacturing the same
JP2733736B2 (en) Copper-lead alloy bearings
JP3472198B2 (en) Plain bearing
GB2080336A (en) Method of producing multi-layer sliding material
US3221392A (en) Method of making bearings
KR950007666B1 (en) Low-friction structure and method of making the same
US3365777A (en) Method for producing a multi-layer bearing
KR20000048230A (en) Swash-Plate of Swash-Plate Type Compressor
WO1999050556A1 (en) Swash plate of swash plate compressor
JPH0280813A (en) Bearing material made of double-layered iron-copper-lead system sintered alloy
JPS6035987B2 (en) Aluminum↓-Lead-based bearing manufacturing method
JP2733735B2 (en) Copper lead alloy bearing
US2555497A (en) Process of manufacturing bearings
JPS5844140B2 (en) Composite sliding material
JP3753981B2 (en) Aluminum alloy sprayed layer and sliding material with excellent sliding properties