JPS6035968A - Sensible heat recovering method of high temperature gas - Google Patents

Sensible heat recovering method of high temperature gas

Info

Publication number
JPS6035968A
JPS6035968A JP58142432A JP14243283A JPS6035968A JP S6035968 A JPS6035968 A JP S6035968A JP 58142432 A JP58142432 A JP 58142432A JP 14243283 A JP14243283 A JP 14243283A JP S6035968 A JPS6035968 A JP S6035968A
Authority
JP
Japan
Prior art keywords
heat
sensible heat
gas
temperature
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58142432A
Other languages
Japanese (ja)
Inventor
Michiaki Sakakibara
榊原 路晤
Norio Kotabe
小田部 紀夫
Oji Tachimori
日月 應治
Kunio Fukamachi
深町 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAAMOBONITSUKU KK
Thermovonics Co Ltd
Nippon Steel Corp
Original Assignee
SAAMOBONITSUKU KK
Thermovonics Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAAMOBONITSUKU KK, Thermovonics Co Ltd, Nippon Steel Corp filed Critical SAAMOBONITSUKU KK
Priority to JP58142432A priority Critical patent/JPS6035968A/en
Publication of JPS6035968A publication Critical patent/JPS6035968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To efficiently recover the sensible heat of high temperature gas by converting the sensible heat of the high temperature gas into that of thermal medium, and further converting it by a thermoelectric element into electric energy. CONSTITUTION:High temperature gas 10 applies considerable portion of sensible heat of itself via a heat exchanger 12 to thermal medium 13, the temperature of itself is decreased in the amount corresponding to the given quantity of heat, and exhausted by a blower 11 out of a system. The medium 13, to which the sensible heat of the gas 10 is applied, applies its sensible heat to a thermoelectric generator 15. The medium 13 itself decreases it temperature to the original value, supplies via a pump 14 to the exchanger 12, and sensible heat is applied again from the gas 10. The thermoelectric element of the generator 15 generates electric power in response to the thermoelectric capacity. Coolant is circulated through a pump 17 and a cooling tower 18 to the generator 15. The generated power is produced to an electric line 19, and converted to AC via a DC/AC exchanger 20.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気体顕熱を熱電発電によって電力として回収
する気体の顕熱回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for recovering gaseous sensible heat in the form of electric power through thermoelectric power generation.

(従来技術) 非常に多くの産業排熱が気体の顕熱として排出されてお
Q、特に鉄鋼業においてはその量も膨大であり、排ガス
の顕熱の回収は極めて重要である。
(Prior Art) A very large amount of industrial waste heat is emitted as gaseous sensible heat, Q, and the amount is especially enormous in the steel industry, so recovery of sensible heat from waste gas is extremely important.

ところで熱を直接電気に変換する熱電発電は、良質なエ
ネルギーへの変換、顕熱回収工程の簡素化、発電設備の
小型化などの利点があ多重要な排熱回収の手段であり、
従来より、第1図に示すような高温の気体1の流路2の
中に受熱器3を取シつけ、受熱器3の背面に熱電素子群
4の高温接合部5を接着I2、一方熱電累子群4の低温
接合部6を放熱器7の背面に接着し、放熱器7を低温流
体8の流路9の中に配置した構造の熱電発電装置が気体
を熱源とした熱電発電に用いられている。
By the way, thermoelectric power generation, which directly converts heat into electricity, is an important means of waste heat recovery with many advantages such as conversion into high-quality energy, simplification of the sensible heat recovery process, and miniaturization of power generation equipment.
Conventionally, a heat receiver 3 is installed in a flow path 2 of a high-temperature gas 1 as shown in FIG. A thermoelectric power generation device having a structure in which the low-temperature joint 6 of the separator group 4 is bonded to the back of a radiator 7 and the radiator 7 is placed in a flow path 9 of a low-temperature fluid 8 is used for thermoelectric power generation using gas as a heat source. It is being

しかしながら、産業排ガスの顕熱回収に上記の従来方法
を利用しようとした場合、以下に列挙するような欠点が
ある。
However, when attempting to utilize the above conventional method for sensible heat recovery from industrial exhaust gas, there are drawbacks as listed below.

■ 発電効率を上げるためには熱電素子群4の高温接合
部5と低温接合部6との間にできるだけ大きな温度差を
つける必要がある。しかし、一般に気体の境膜熱伝達係
数は高々数10 km/ m2hr℃であシ、気体温度
が低い場合は気体1から受熱器3への伝熱が律速となっ
て熱電素子群4の高温接合部5と低温接合部6の温度差
は大きくとれない・したがって発電効率ならびに発電電
力が小さくなるO ■ 燃焼排ガス等の一般の産業排ガスはダストを含んで
おシ、受熱器3の表面に付着して熱抵抗となりガスから
熱電素子への伝熱を悪化させる。
■ In order to increase power generation efficiency, it is necessary to create as large a temperature difference as possible between the high temperature junction 5 and the low temperature junction 6 of the thermoelectric element group 4. However, in general, the film heat transfer coefficient of a gas is at most several 10 km/m2hr°C, and when the gas temperature is low, the rate of heat transfer from the gas 1 to the heat receiver 3 becomes rate-determining, resulting in high-temperature bonding of the thermoelectric element group 4. The temperature difference between the section 5 and the low-temperature junction section 6 cannot be large. Therefore, the power generation efficiency and the generated power will be reduced.General industrial exhaust gas such as combustion exhaust gas contains dust and adheres to the surface of the heat receiver 3. This creates thermal resistance and worsens heat transfer from the gas to the thermoelectric element.

(発明の目的) 本発明は、上記のような従来方法の欠点を解消し、熱電
素子の高温接合部と低温接合部の温度差を大きくとるこ
とができるようにした気体顕熱の熱電発電による回収方
法を提供するものである。
(Objective of the Invention) The present invention solves the drawbacks of the conventional methods as described above, and utilizes thermoelectric power generation using gas sensible heat, which makes it possible to increase the temperature difference between the high-temperature junction and the low-temperature junction of a thermoelectric element. It provides a collection method.

(発明の構成及び作用) 本発明の要旨とするところは高温ガスの顕熱を液状の熱
媒体の顕熱に変換し、その熱媒体の顕熱を熱電素子によ
って電気エネルギーに変換して回収することを特徴とす
る高温ガスの顕熱回収方法にある。
(Structure and operation of the invention) The gist of the present invention is to convert the sensible heat of a high-temperature gas into the sensible heat of a liquid heat medium, and to convert the sensible heat of the heat medium into electrical energy using a thermoelectric element and recover it. A method for recovering sensible heat from high-temperature gas is characterized by the following.

本発明を実施する設備の概略を第2図によシ説明する。The outline of the equipment for implementing the present invention will be explained with reference to FIG.

10は発生源からの高温ガスで、ブロワ−11により発
生源から吸引されて熱交換器12に供給され、熱交換器
12は高温がス10と、該熱交換器内を通る熱媒体13
との熱交換を行う。
10 is a high temperature gas from a generation source, which is sucked from the source by a blower 11 and supplied to a heat exchanger 12;
exchange heat with the

14は熱媒体13を熱交換器12と熱電発電装置15の
間を循環させるポン1である。一方16は冷却水で7」
ヒンジI7にJ:って熱電発電装置15と冷水堝18の
間全(111i[−fるようになっている。
Reference numeral 14 denotes a pump 1 that circulates the heat medium 13 between the heat exchanger 12 and the thermoelectric generator 15. On the other hand, 16 is 7 for cooling water.
The hinge I7 is arranged so that J: extends between the thermoelectric generator 15 and the cold water basin 18 (111i[-f).

19d′岨気醒路で、2〔)は直交変換器である。In the 19d' diversion path, 2[) is an orthogonal transformer.

この実施装置4による本発明の実施態様を説明する。An embodiment of the present invention using this implementation device 4 will be described.

高温ガス10目熱交換器12でそれ自体の七する顕熱の
相当な部分を熱媒体13に与え、与えた熱量に相当−「
るだけそれ自体の温度を低下して、ブロワ・−11によ
って系外に排出される。高温ガス10の顕熱を−りえら
れた熱媒体13はその顕熱を熱軍発1d装置15の熱電
素子に与え、熱媒1杢1:3自身は温度を元に下げてポ
ンプ14によって熱交換器12に供給され、再び高温ガ
スより顕熱を与えられる。熱電1発電装置1f15の熱
電素子はその熱電能に応じた市、力を発電する。この熱
電素子に与えられた熱のりち発電に使われなかった分は
熱電発電装fi!115において冷却水16によって奪
われる・熱を奪った冷却水16は温度が上昇するので冷
水屹・18ではじめの水温まで冷却してポン7”17で
山び熱′目も発電装置】5に供給される。熱電発電装置
の熱電素子によって発電された電力は、電力取出し端子
を通じて電気線路19に取り出され、直交変換器20に
よって交流に変換して一般の電力系統へ供給される。
The high-temperature gas heat exchanger 12 gives a considerable portion of its own sensible heat to the heating medium 13, and the amount of heat equivalent to the given heat is -
It is discharged from the system by the blower-11. The heating medium 13 that has recovered the sensible heat of the high-temperature gas 10 gives the sensible heat to the thermoelectric element of the thermoelectric generator 1d device 15, and the heating medium 1:3 itself lowers its temperature and generates heat by the pump 14. The gas is supplied to the exchanger 12 and given sensible heat by the high temperature gas again. The thermoelectric element of the thermoelectric generator 1f15 generates power according to its thermoelectric capacity. The heat given to this thermoelectric element that is not used for power generation is used as a thermoelectric generator fi! At 115, the temperature of the cooling water 16 that has been taken away by the cooling water 16 rises, so it is cooled down to the initial water temperature at 18, and the heat is increased at 17. The electric power generated by the thermoelectric element of the thermoelectric generator is taken out to the electric line 19 through the power extraction terminal, converted to alternating current by the orthogonal converter 20, and then supplied to the general power system.

熱媒体13としては、例えばNa2Co、 l NaF
等の溶融塩やアルキルジフェニール等の有機熱媒体を用
いることができる。熱電発電装置115内における熱媒
体13の境膜熱伝達係数は1500〜5000 km/
m”hr Cあシ、ガスの場合の数10km/m”hr
’cの50〜100倍である。したがって、ガスの場合
のように熱媒体から熱電素子の受熱面への伝熱が律速と
なりて熱電素子の高温接合部と低温接合部の温度差が著
しく小さくなることはなく、充分な温度差を取ることが
可能である。また、熱媒体は閉じた流路の中を循環して
いるので、熱電素子の受熱面を汚してその伝熱能力を悪
化させることはない。
As the heat medium 13, for example, Na2Co, lNaF
A molten salt such as or an organic heat carrier such as alkyldiphenyl can be used. The film heat transfer coefficient of the heat medium 13 in the thermoelectric generator 115 is 1500 to 5000 km/
m"hr C foot, several 10km/m"hr in case of gas
It is 50 to 100 times that of 'c. Therefore, unlike in the case of gas, the rate of heat transfer from the heat medium to the heat receiving surface of the thermoelectric element becomes rate-determining, and the temperature difference between the high-temperature junction and the low-temperature junction of the thermoelectric element does not become significantly small. It is possible to take. Further, since the heat medium circulates in a closed flow path, it does not pollute the heat receiving surface of the thermoelectric element and deteriorate its heat transfer ability.

(実施例) 本発明を一片の加熱炉の排ガスに実施した例を説明する
。排ガスの温度は500’Cで、その発生(5) 敬は約IQ Nyn”/hrである。煙道の中に排ガス
と熱媒体との熱交換器を糸目み込み、熱交換後の排ガス
温度を200℃にし7た。熱媒体にはアルキルジフェニ
ール(曲品名;サーム5soo)?使用し、180℃で
熱交換器に入り、300℃で出た。熱媒体の循環量は約
1 (l Ot/hrであった。〔7たがって、熱電発
電装置に対し、ては300℃の熱媒体が供給された。冷
却水の温度は水あかの発生を迎えるため50℃以下に1
また。熱電発電装置は熱媒体の流路と冷却水の流路とが
直交する構造を有し、熱媒体の流路と冷却水の流路の間
にカルコダン化合物からなる熱vM素子を並べてはさん
だ構成とした。この熱電素子d素子内の温度差が200
℃のとき発電効率11,6%、発電hトカ15kW/m
”となる性能を有する。
(Example) An example in which the present invention is applied to a piece of exhaust gas from a heating furnace will be described. The temperature of the exhaust gas is 500'C, and the temperature of its generation (5) is approximately IQ Nyn''/hr.A heat exchanger between the exhaust gas and the heat medium is inserted into the flue, and the exhaust gas temperature after heat exchange is was heated to 200°C. Alkyldiphenyl (song name: Therm 5soo) was used as the heating medium, and it entered the heat exchanger at 180°C and exited at 300°C. The circulating amount of the heating medium was approximately 1 (l). [7] Therefore, a heat medium of 300°C was supplied to the thermoelectric generator.The temperature of the cooling water was kept below 50°C due to the formation of water scale.
Also. The thermoelectric power generation device has a structure in which a heat medium flow path and a cooling water flow path are orthogonal to each other, and thermal vM elements made of a chalcodan compound are arranged and sandwiched between the heat medium flow path and the cooling water flow path. And so. The temperature difference within this thermoelectric element d is 200
℃, power generation efficiency is 11.6%, power generation h is 15kW/m
” has the performance.

この実施例の結果?第1表に示した。The result of this example? It is shown in Table 1.

ま九、比較のために、第3図に示すように排ガス煙道の
中に熱電発電装f132を組み込んで、直接排ガス30
から熱ηf素子の高温接合部に受熱する従来の方法を実
施した。図において、31i、1.プ(6) ロワー、33は冷却水、34はポンプ、35は冷却塔、
36は電気線路、37は直交変換器である。
For comparison, a thermoelectric generator F132 was installed in the exhaust gas flue as shown in Figure 3, and the exhaust gas 30
A conventional method of receiving heat from the high temperature junction of the thermal ηf element was carried out. In the figure, 31i, 1. (6) Lower, 33 is cooling water, 34 is pump, 35 is cooling tower,
36 is an electric line, and 37 is an orthogonal converter.

排プfスの清、性状、冷却水の温度は前記の実施例と同
じである。この実施例の結果も第1表に示したO 第 1 表 (発明の効果) 第1表に示す」:うに、従来法と対比して本発明の効果
は顕著に優才している。発電効率は従来法の約5.7倍
に高まり、発電量は排ガスから熱媒体へ、熱媒体から′
鑞力へという2回の変換にもかかわらず従来法の約5.
4倍と増大している。
The quality and properties of the waste water and the temperature of the cooling water are the same as in the previous embodiment. The results of this example are also shown in Table 1. Table 1 (Effects of the Invention) Table 1 shows that the effects of the present invention are significantly superior to those of the conventional method. The power generation efficiency is approximately 5.7 times higher than that of the conventional method, and the amount of power generated is increased from the exhaust gas to the heat medium and from the heat medium to
Despite the two-time conversion to force, the conventional method is about 5.
It has increased four times.

すなわち9丁、米寿法では、ガスの境膜熱伝達係数が小
さいためにノfスと受熱器の間に大きな温度差が生じ、
熱電素子の高温接合部と低温接合部の間には23℃程度
の小さな温度差しか生せず、そのために発′区′i′1
発電効率共極めて小さい。−力木発明の方法によると熱
媒体の境膜熱伝達係数がガスの100倍近くあるので、
熱媒体と受熱器の間の温度差は小さく、熱を素子の高温
接合部と低温接合部の間に150℃程度の温度差を得る
ことができ、発電量1発電効率とも格段に向上すること
ができる。
In other words, in the 9th generation and Beiju methods, a large temperature difference occurs between the nozzle and the heat receiver due to the small film heat transfer coefficient of the gas.
There is only a small temperature difference of about 23°C between the high-temperature junction and the low-temperature junction of the thermoelectric element.
Power generation efficiency is extremely low. - According to the method invented by Riki, the film heat transfer coefficient of the heat medium is nearly 100 times that of gas, so
The temperature difference between the heat medium and the heat receiver is small, and it is possible to obtain a temperature difference of about 150 degrees Celsius between the high-temperature junction and low-temperature junction of the element, significantly improving both power generation and power generation efficiency. Can be done.

以上の如く本発明は産業排ガスの顕熱を直接電気エネル
ギーに変換するにあたシ、その効率を著しく高めること
ができるので、産業上稗益するところが極めて大である
As described above, the present invention can significantly improve the efficiency of directly converting the sensible heat of industrial exhaust gas into electrical energy, and therefore has great industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来より高温ガス用に使われている熱電発電装
置の断面を模式的に示す説明図、第2図は本発明の高温
ガスの顕熱回収方法の具体的な説明図、第3図は従来の
高温ガスの顕熱回収方法の説明図である。 l・・・高温ガス、2・・・高温ガスの流路、3・・・
受熱(9) 器、4・・・熱電素子群、5・・・高温接合部、6・・
・低温接合部、7・・・放熱器、8・・・低温流体、9
・・・低温流体の流路、10・・・高温ガス、11・・
・プロワ−112・・・熱交換器、13・・・熱媒体、
14・・・ポンプ、15・・・熱電発電装置、16・・
・冷却水、17・・・ポンプ、18・・・冷却塔、19
・・・電気線路、20・・・直交変換器、30・・・高
温ガス、31・・・ブロワ−132・・・熱電発電、装
置、33・・・冷却水、34・・・ポンプ、35・・・
冷却塔、36・・・電気線路、37・・・直交変換器。 (10) φニジ −390−
Fig. 1 is an explanatory diagram schematically showing a cross section of a thermoelectric power generation device conventionally used for high-temperature gas, Fig. 2 is a concrete explanatory diagram of the sensible heat recovery method for high-temperature gas of the present invention, and Fig. 3 The figure is an explanatory diagram of a conventional method for recovering sensible heat from high-temperature gas. l...High temperature gas, 2...High temperature gas flow path, 3...
Heat receiving (9) vessel, 4... thermoelectric element group, 5... high temperature junction, 6...
・Low temperature junction, 7... Heat sink, 8... Low temperature fluid, 9
...low-temperature fluid flow path, 10...high-temperature gas, 11...
- Prower 112... heat exchanger, 13... heat medium,
14... Pump, 15... Thermoelectric generator, 16...
・Cooling water, 17...Pump, 18...Cooling tower, 19
...Electric line, 20...Orthogonal converter, 30...High temperature gas, 31...Blower-132...Thermoelectric power generation, device, 33...Cooling water, 34...Pump, 35 ...
Cooling tower, 36... Electric line, 37... Orthogonal converter. (10) φ Niji-390-

Claims (1)

【特許請求の範囲】[Claims] 高温ガスの顕熱を液状の熱媒体の顕熱に変換し、その熱
媒体の顕熱を熱電素子によって電気エネルギーに変換し
て回収することを特徴とする高温ガスの顕熱回収方法。
A method for recovering the sensible heat of high-temperature gas, which is characterized in that the sensible heat of the high-temperature gas is converted into the sensible heat of a liquid heat medium, and the sensible heat of the heat medium is converted into electrical energy by a thermoelectric element and then recovered.
JP58142432A 1983-08-05 1983-08-05 Sensible heat recovering method of high temperature gas Pending JPS6035968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142432A JPS6035968A (en) 1983-08-05 1983-08-05 Sensible heat recovering method of high temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142432A JPS6035968A (en) 1983-08-05 1983-08-05 Sensible heat recovering method of high temperature gas

Publications (1)

Publication Number Publication Date
JPS6035968A true JPS6035968A (en) 1985-02-23

Family

ID=15315172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142432A Pending JPS6035968A (en) 1983-08-05 1983-08-05 Sensible heat recovering method of high temperature gas

Country Status (1)

Country Link
JP (1) JPS6035968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233441A (en) * 1994-02-21 1995-09-05 Taiheiyo Seiko Kk High hardness caliber forged roll
US5959240A (en) * 1996-12-04 1999-09-28 Ngk Insulators, Ltd. Thermoelectric converter for heat-exchanger
EP1949464A1 (en) * 2005-11-17 2008-07-30 Carrier Corporation Multi-functional energy converter
WO2014013782A1 (en) * 2012-07-17 2014-01-23 Moriya Shigeto Solar thermal power generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233441A (en) * 1994-02-21 1995-09-05 Taiheiyo Seiko Kk High hardness caliber forged roll
US5959240A (en) * 1996-12-04 1999-09-28 Ngk Insulators, Ltd. Thermoelectric converter for heat-exchanger
EP1949464A1 (en) * 2005-11-17 2008-07-30 Carrier Corporation Multi-functional energy converter
EP1949464A4 (en) * 2005-11-17 2011-10-12 Carrier Corp Multi-functional energy converter
WO2014013782A1 (en) * 2012-07-17 2014-01-23 Moriya Shigeto Solar thermal power generation device

Similar Documents

Publication Publication Date Title
CN101316083B (en) Tunnel type waste heat recovery semiconductor power generation device by temperature difference
CN103078518A (en) Heat dissipation device
US4381463A (en) Method and apparatus for producing electrical power and for the simultaneous heating of fluid, utilizing a magnetohydrodynamic generator
JP5826588B2 (en) Co-generation device and co-generation method
JP2007051332A (en) Hardening device, and method for recovering exhaust heat of coolant
CN109595947B (en) Industrial slag sensible heat recovery system and recovery method thereof
JPS6035968A (en) Sensible heat recovering method of high temperature gas
CN101499746A (en) Plate type semiconductor thermo-electric generation apparatus
CN108869213B (en) Photon-enhanced thermionic emission and carbon dioxide circulation combined power generation device and method
JPS5968505A (en) Low boiling point medium cycle plant
JPS62185810A (en) Device for recovering heat energy of blast furnace gas
RU183345U1 (en) DEVICE FOR TRANSFORMING THERMAL ENERGY OF A TRANSFORMER TO ELECTRIC ENERGY
TWI830943B (en) Charging module for electric vehicle
JPH07119412A (en) Waste heat recovery device in turbine facility
CN108548439A (en) A kind of flue gas waste heat power generation device and fume afterheat system
JP3775928B2 (en) Cogeneration equipment
TWM369591U (en) Micro power-generation structure using waste heat
JPS6274009A (en) Method for generating electric power by recovery of pressure from top of blast furnace
AU2020101277A4 (en) Phase Change Inhibited Materials for Photovoltaic Inverter Cooling
JPS6024833B2 (en) Method for recovering coke oven gas waste heat
JPH0443567A (en) Waste heat recovery device for fuel cell power generating plant
JPH09213355A (en) Fuel cell generating apparatus
JP2001283883A (en) Fuel cell generating device
RU2224190C1 (en) Device for generation of thermal and electric energy
JPS6139276Y2 (en)