JPS6034890B2 - Dry deodorization equipment - Google Patents

Dry deodorization equipment

Info

Publication number
JPS6034890B2
JPS6034890B2 JP55105792A JP10579280A JPS6034890B2 JP S6034890 B2 JPS6034890 B2 JP S6034890B2 JP 55105792 A JP55105792 A JP 55105792A JP 10579280 A JP10579280 A JP 10579280A JP S6034890 B2 JPS6034890 B2 JP S6034890B2
Authority
JP
Japan
Prior art keywords
impregnated
carrier
activated carbon
ozone
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55105792A
Other languages
Japanese (ja)
Other versions
JPS5730530A (en
Inventor
邦宏 土居
哲 竹山
健国 吾妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55105792A priority Critical patent/JPS6034890B2/en
Priority to US06/211,286 priority patent/US4370301A/en
Publication of JPS5730530A publication Critical patent/JPS5730530A/en
Publication of JPS6034890B2 publication Critical patent/JPS6034890B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 この発明は、オゾン、臭化水素または臭化水素酸の添着
体およびアルカリ金属またはアルカリ士類金属のョゥ化
物の添着体を用いた乾式脱臭装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry deodorizing apparatus using an impregnated body of ozone, hydrogen bromide or hydrobromic acid, and an impregnated body of an alkali metal or alkali metal chloride.

従来この種の乾式脱臭装置としては第1図に示す様な活
性炭を用いた吸着脱臭装置があった。図において、1は
ブロア、2は吸着塔、3は吸着塔2内に充填された活性
炭層である。悪臭を帯びた被処理空気Aは、ブロア1‘
こより吸着塔2に送入され、活性炭層3を通気する間に
主として物理吸着により、一部は活性炭中の不純物(灰
分)として存在する金属成分との化学吸着等につて悪臭
成分が吸着除去され、処理空気Bとして放出される。こ
の様な装置では、脱臭性能は、活性炭の物理吸着能力に
依存し、例えば代表的な悪臭成分である硫化メチル・二
硫化メチル等の中性悪臭成分や、アンモニア等の様に活
性炭の平衡吸着量が低く、吸着帯の長い成分を除去する
には、多量の活性炭を充填しなければ充分な脱臭性能が
得られないため、経済的に実用化が困難である場合が多
かつた。また、特開昭50一13067y号公報に開示
されているように、活性炭に臭素または臭素化合物を担
持させた添着炭を用いて、硫化水素やメルカプタン類の
除去を行なう脱臭方法があるが、被処理ガスにオゾンを
添加する酸化除去を併用して除去能力を高めた方法では
、被処理ガス中の硫化水素濃度が高い場合、処理ガスと
ともに残存せるオゾンおよび臭素のもれ出しがおこり易
いという難点がある。
Conventionally, as a dry deodorizing apparatus of this type, there has been an adsorption deodorizing apparatus using activated carbon as shown in FIG. In the figure, 1 is a blower, 2 is an adsorption tower, and 3 is an activated carbon layer filled in the adsorption tower 2. The foul-smelling air A to be treated is sent to the blower 1'.
From this, it is fed into the adsorption tower 2, and while the activated carbon layer 3 is aerated, the malodorous components are adsorbed and removed mainly through physical adsorption, and some through chemical adsorption with metal components present as impurities (ash) in the activated carbon. , is released as process air B. In such devices, the deodorizing performance depends on the physical adsorption capacity of activated carbon. In order to remove components with low amounts and long adsorption zones, sufficient deodorizing performance cannot be obtained unless a large amount of activated carbon is filled, so it has often been difficult to put them into practical use economically. Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 50-13067y, there is a deodorizing method in which hydrogen sulfide and mercaptans are removed using impregnated carbon in which bromine or bromine compounds are supported on activated carbon. A method that increases the removal capacity by adding ozone to the treated gas in combination with oxidative removal has the disadvantage that ozone and bromine remaining with the treated gas tend to leak out if the hydrogen sulfide concentration in the treated gas is high. There is.

この発明は上記の様な活性炭吸着法や臭素または臭化化
合物を担持させた活性炭による脱臭方法の欠点を除去す
るためになされたもので、被処理空気にオゾンを添加す
るとともにこの被処理空気を臭化水素または臭化水素酸
(以下両者を合わせてEBrと略記する)の添着体と接
触させて悪臭成分を酸化分解するとともに、この処理空
気をアルカリ金属あるいはアルカリ士類金属のョウ化物
の添着体層を通過させ、余剰のオゾン、ともれ出し臭素
を除去すると同時に、反応活性なヨウ素(以下12と略
記する)を生成させて、さらに悪臭成分の酸化分解を行
なわせることにより使用する添着体量が少ないにもかか
わらず高い脱臭性能を有する脱臭装置としたものである
This invention was made in order to eliminate the drawbacks of the above-mentioned activated carbon adsorption method and deodorization method using activated carbon carrying bromine or brominated compounds. The malodorous components are oxidized and decomposed by contacting with an impregnator of hydrogen bromide or hydrobromic acid (hereinafter both abbreviated as EBr), and the treated air is treated with an alkali metal or alkali metal iodide. An impregnant that is used by passing through an impregnant layer to remove excess ozone and leaking bromine, and at the same time generate reactive iodine (hereinafter abbreviated as 12) to further oxidize and decompose malodorous components. This deodorizing device has high deodorizing performance despite its small volume.

第2図はこの発明の一実施例を示すフロー図で、4はオ
ゾナィザ、5はオゾン化空気の散気管、6はオゾン混合
槽、7は反応塔、8は臭化水素またはその水溶液をアル
ミナあるいは活性炭等の担体に添着した添着体(HBr
添着体)の充填層、9はョウ化カリウム水溶液を活性炭
に添着した添着体(KI添着体)の充填層である。
FIG. 2 is a flow diagram showing an embodiment of the present invention, in which 4 is an ozonizer, 5 is an ozonized air diffuser, 6 is an ozone mixing tank, 7 is a reaction tower, and 8 is a flowchart showing hydrogen bromide or its aqueous solution. Alternatively, an impregnated body (HBr
9 is a packed bed of an impregnated body (KI impregnated body) in which activated carbon is impregnated with an aqueous potassium iodide solution.

この様に構成された装置ではブロアーで吸引された悪臭
を含む被処理空気Aはオゾナィザ4から送給されるオゾ
ン化空気が散気管5から散気され、オゾン混合槽6を通
る間に混合された後反応塔7に入り、まずHBn添着体
充填層8を通過する。この過程では、反応式‘1に従っ
て、オゾンとHBrの迅速な反応によって生成する臭素
(以下Br2と略記する)により、添着体の表面におい
て悪臭成分が接触酸化されるとともに、気相においても
酸化反応が行なわれ、悪臭成分は酸化除去される。公田
r+03→Br2十は○十02 …mつ
ぎにHBn添着体充填層8を通過した処理空気は、KI
添着体充填層9を通過する。
In the device configured in this way, the air to be treated A containing a bad odor is sucked in by the blower, and the ozonized air supplied from the ozonizer 4 is diffused from the aeration pipe 5 and mixed while passing through the ozone mixing tank 6. After that, it enters a reaction tower 7 and first passes through a bed 8 packed with HBn impregnated material. In this process, malodorous components are catalytically oxidized on the surface of the impregnator by bromine (hereinafter abbreviated as Br2) generated by the rapid reaction of ozone and HBr, and an oxidation reaction also occurs in the gas phase, according to reaction formula '1. The malodorous components are removed by oxidation. Kouda r+03 → Br20 is ○102...m Next, the treated air that has passed through the HBn impregnated body packed bed 8 is KI
It passes through the adhering body filling layer 9.

この過程では気中に残存せる徴量のオゾンおよびBr2
とKIとが、反応式■,{3}の様に反応して、03十
2KI十日20→2KOH+12十02 ・・
・{2’Br2十2KI→2KBr十を
…‘3}添着体表面の12を生成する。
In this process, the amount of ozone and Br2 remaining in the air is
and KI react as shown in the reaction formula ■, {3}, 03 12 KI 10 days 20 → 2 KOH + 12 102...
・{2'Br2 ten 2KI → 2KBr ten
...'3} Generate 12 on the surface of the adhering body.

この12は酸化剤として作用し、未反応の悪臭成分の酸
化分解が行なわれた後、清浄空気となって系外に放出さ
れる。この発明の構成の概略は以上のようであるが以下
に悪臭成分との反応および効果について詳細に説明する
。オゾンと反応してBr2を生成する臭化物としては、
HBrのほか、臭化カリウム、臭化アンモニウムなども
あるが、この発明はオゾンとの反応で、特に効率よく臭
素を生成するのはHBrであること、生成した臭素によ
る上記酸化反応が活性炭による除去能の低い硫化メチル
や二硫化メチルに対して効果的であること、アンモニア
、トリメチルアミン等の塩基性悪臭成分はHBrとの中
和反応によっても除去されること、HBrの添着が鉄分
の少ないガス吸着用のアルミナ、シリカ、アルミナ、活
性白土、活性炭等では容易に行なえること、さらに、K
I添着体層に臭素あるいはオゾンを添加するとりS除去
能が向上することなどの知見に基づいてなされた。
This 12 acts as an oxidizing agent, and after oxidizing and decomposing unreacted malodorous components, it becomes clean air and is released outside the system. Although the outline of the structure of this invention is as above, the reaction with malodorous components and effects will be explained in detail below. Bromides that react with ozone to produce Br2 are:
In addition to HBr, there are also potassium bromide, ammonium bromide, etc., but this invention is based on the fact that HBr produces bromine particularly efficiently through its reaction with ozone, and that the above oxidation reaction by the generated bromine is removed by activated carbon. It is effective against methyl sulfide and methyl disulfide, which have low levels of oxidation, and basic malodorous components such as ammonia and trimethylamine are also removed by neutralization reaction with HBr. This can be easily done using alumina, silica, alumina, activated clay, activated carbon, etc.
This was done based on the knowledge that adding bromine or ozone to the I-impregnated layer improves the S removal ability.

この発明に係る装置において、HBr添着体層8で考え
られる中和反応、気相および接触酸化反応のうちの代表
的な反応例を化学反応式で表わすと式【4}〜‘91’
と考えられる。
In the apparatus according to the present invention, representative reaction examples among the neutralization reaction, gas phase reaction, and catalytic oxidation reaction that can be considered in the HBr impregnated layer 8 are expressed by chemical reaction formulas [4} to '91'.
it is conceivable that.

第3図は、代表的な悪臭成分である硫化メチルを処理し
た場合の結果を示す特性図で、HBrを添着した4〜6
メッシュのアルミナ(紬孔容積0.43の【/夕、比表
面積140でノの を層厚4.仇磯こ充填した直径4仇
肌の反応管に硫化メチル2.7ppm、オゾン10〜l
ippmを含有する空気を流速10夕/min(空間速
度;約24000hr‐1)で通気したとき、層厚20
肋の位置で得られた硫化メチルの除去率を特性曲線Aで
示し、参照用として活性炭層を、同じ混合空気を同じ条
件で通気したときの結果を特性曲線Bに示したものであ
る。
Figure 3 is a characteristic diagram showing the results when treated with methyl sulfide, a typical malodorous component.
Methyl sulfide 2.7 ppm and ozone 10 to 10 liters were filled in a reaction tube with a diameter of 4 mm filled with mesh alumina (pore volume 0.43 mm, specific surface area 140 mm, layer thickness 4 mm).
When air containing ippm is aerated at a flow rate of 10 pm/min (space velocity; approximately 24,000 hr-1), the layer thickness is 20 pm.
Characteristic curve A shows the removal rate of methyl sulfide obtained at the rib position, and characteristic curve B shows the results when the activated carbon layer was aerated with the same mixed air under the same conditions as a reference.

即ち、特性曲線Aでは1畑寺間運転後も硫化メチルの除
去率は、98.5%以上で、実験開始時から除去率の低
下はみられない。一方、特性曲線Bでは初期除去率は8
7%であるが1船寺間後には80%を下まわる様になる
。ところで、オゾンと硫化メチルの気相反応速度数は室
温で8×107で/kg−mol・hr程度であり、前
記実験条件下で5秒間反応させたとしても硫化メチルの
除去率は高々5%となり、オゾンによる気相酸化反応は
期待できない。従って、HBr添着体とオゾンによる硫
化メチルの除去能は、反応式{1)で生成される臭素と
悪臭成分との気相および担体上における接触酸化反応に
よるもので、特に硫化メチルに対して効果的であった。
第4図は硫化メチルとともに代表的な悪臭成分であるメ
チルメルカプタンを処理した場合の結果を示す特性図で
、HBh添着体を層厚2比伽充填した直径40柳の反応
管にメチルメルカプタン2.33ppm、オゾン10〜
lippmを含有する空気を流速10そ/肌で通気した
ときのメチルメルカプタンのもれ出し率C/Co(出口
濃度/入口濃度)を、担体に活性白土または活性炭を用
いた場合を特性曲線Aに、アルミナを用いた場合を特性
曲線Bで示す。
That is, in characteristic curve A, the removal rate of methyl sulfide was 98.5% or more even after one operation, and no decrease in the removal rate was observed from the start of the experiment. On the other hand, in characteristic curve B, the initial removal rate is 8
The rate is 7%, but it drops to below 80% after 1 hour. By the way, the gas phase reaction rate number between ozone and methyl sulfide is about 8 x 107/kg-mol/hr at room temperature, and even if the reaction is made for 5 seconds under the above experimental conditions, the removal rate of methyl sulfide is at most 5%. Therefore, a gas phase oxidation reaction due to ozone cannot be expected. Therefore, the removal ability of methyl sulfide by the HBr impregnated body and ozone is due to the catalytic oxidation reaction between bromine and malodorous components produced by reaction formula {1) in the gas phase and on the carrier, and is particularly effective against methyl sulfide. It was a target.
FIG. 4 is a characteristic diagram showing the results when methyl mercaptan, a typical malodorous component, is treated with methyl sulfide. A 40-diameter willow reaction tube filled with HBh impregnate to a thickness of 2. 33ppm, ozone 10~
Characteristic curve A shows the leakage rate C/Co (outlet concentration/inlet concentration) of methyl mercaptan when air containing lippm is aerated through the skin at a flow rate of 10 cm when activated clay or activated carbon is used as the carrier. , characteristic curve B shows the case where alumina is used.

なお特性曲線Cは、参照用としてHBrを添着していな
い活性炭を用いた場合を示す。また、特性曲線A′,A
″,B′,〇は担体に活性白土、活性炭、アルミナを用
いた場合および無添着活性炭を用いた場合に生成した二
硫化メチルの出口濃度のメチルメルカプタン換算値CM
M(2モルのメチルメルカプタンから1モルの二硫化メ
チルが生成されると仮定した値)のメチルメルカプタン
入口濃度Coに対する比CMM/Coの経時変化を示し
たものである。特性曲線A,B,Cから判るように、H
Bn添着体を用いた場合のメチルメルカプタンの除去能
は無添着活性炭より優れており、5即時間後においても
95%を維持している。
Note that characteristic curve C shows the case where activated carbon not impregnated with HBr was used as a reference. Also, the characteristic curves A', A
″, B′, 〇 are the methyl mercaptan equivalent values CM of the outlet concentration of methyl disulfide produced when activated clay, activated carbon, alumina is used as a carrier, and when unimpregnated activated carbon is used.
This figure shows the change over time in the ratio CMM/Co of M (a value assuming that 1 mole of methyl disulfide is produced from 2 moles of methyl mercaptan) to the methyl mercaptan inlet concentration Co. As can be seen from the characteristic curves A, B, and C, H
The ability to remove methyl mercaptan using the Bn impregnated body is superior to that of unimpregnated activated carbon, and remains at 95% even after 5 hours.

また特性曲線A′,A′′,B′,〇から判るように、
二硫化メチルの放散も、5虫時間後においても無添着活
性炭にあっては80%が放散されるのに対し、添着体を
用いた場合は35%以下であり、かつそのもれ出し率の
時間変化は小さく、すぐれた除去性能を発揮することが
わかる。つぎにKI添着体層9においては、HBr添着
体層8を通過した気中に残存する徴量のオゾンおよびB
r2がKIと反応して、上記‘2),糊式に従って容易
に12を遊離し、活性炭自体はアルカリ性となる。
Also, as can be seen from the characteristic curves A', A'', B', and 〇,
Even after 5 hours, 80% of methyl disulfide was released using unimpregnated activated carbon, while it was less than 35% when using impregnated material, and the leakage rate was lower. It can be seen that the change over time is small and exhibits excellent removal performance. Next, in the KI adhesion layer 9, the amount of ozone and B remaining in the air that has passed through the HBr adhesion layer 8 is
r2 reacts with KI to easily liberate 12 according to the glue formula described in '2) above, and the activated carbon itself becomes alkaline.

酸性ガスである硫化水素、メチルメルカプタン等はHB
G添着体層8では除去されにくいが、アルカリ性の活性
炭には化学吸着されやすく、遊離した12と反応式(1
の,(11)に従って容易に反応して硫黄となり除去さ
れる。日2S十12→2HI+S ・
・・(10)CH3SH+12→C比1十HI+S
…(11)第5図はKI添着炭により硫化水素を
処理した場合の結果を示す特性図で8〜10メッシュの
無添着活性炭またはKI添着炭を層厚50柳で充填した
直径26側の反応管に、硫化水素30ppmを含有する
空気を、流速10夕/minで通気した場合の硫化水素
のもれ出し率C/Co(Co:入口濃度、C:出口濃度
)の経時変化を示した特性図で、特性曲線Aは無添着活
性炭、特性曲線BはKI添着炭の場合である。
Hydrogen sulfide, methyl mercaptan, etc., which are acidic gases, are HB.
Although it is difficult to be removed by the G impregnator layer 8, it is easily chemically adsorbed by alkaline activated carbon, and the reaction formula (1
According to (11), it easily reacts to form sulfur and is removed. Day 2S 112 → 2HI+S ・
...(10) CH3SH+12→C ratio 10HI+S
...(11) Figure 5 is a characteristic diagram showing the results when hydrogen sulfide is treated with KI-impregnated carbon, and shows the reaction on the 26-diameter side filled with 8 to 10 mesh unimpregnated activated carbon or KI-impregnated carbon with a layer thickness of 50 willow. Characteristics showing the change over time in the hydrogen sulfide leakage rate C/Co (Co: inlet concentration, C: outlet concentration) when air containing 30 ppm of hydrogen sulfide is vented through the pipe at a flow rate of 10 min/min. In the figure, characteristic curve A is for unimpregnated activated carbon, and characteristic curve B is for KI-impregnated carbon.

また特性曲線Cは硫化水素3蛇pmとオゾン30ppm
とを含有する空気をKI添着炭に通気した場合の結果で
ある。約3畑時間通気後のもれ出し率は、無添着炭の場
合65%、KI添着炭の場合22.5%、オゾンを添加
したKI添着炭の場合18%となり、オゾンを添加して
KI添着炭を通気した場合に最もすぐれた硫化水素除去
能が得られた。従って、HBr添着体層のあとにKI添
着体層を設けたこの発明によれば、HBn添着体層8を
もれ出した硫化水素は、KI添着体層9に於て、残留オ
ゾンとKI添着体との相乗作用により効率よく除去され
るので、優れた脱臭装置を構成することができる。なお
これらの実験例において使用したHBn添着体は、各担
体を10%臭化水素酸水溶液に1時間浸潰したのち窒素
ガス中で乾燥させて調整した。
Characteristic curve C is hydrogen sulfide 3pm and ozone 30ppm.
These are the results when air containing . After approximately 3 hours of aeration in the field, the leakage rate was 65% for unimpregnated coal, 22.5% for KI impregnated coal, and 18% for KI impregnated coal with ozone added. The best hydrogen sulfide removal ability was obtained when the impregnated coal was aerated. Therefore, according to the present invention in which the KI impregnant layer is provided after the HBr impregnant layer, the hydrogen sulfide leaked out of the HBn impregnant layer 8 is transferred to the residual ozone and the KI impregnate layer 9. Since it is efficiently removed due to its synergistic effect with the body, it can constitute an excellent deodorizing device. The HBn-impregnated bodies used in these experimental examples were prepared by soaking each carrier in a 10% hydrobromic acid aqueous solution for 1 hour and then drying it in nitrogen gas.

10%臭化水素酸の蒸気圧は4×10‐4脚Hgを低く
、刺激臭はほとんどなく、取扱いが容易であり、窒素に
よる乾燥時における臭化水素の放散も少ない。
The vapor pressure of 10% hydrobromic acid is as low as 4 x 10-4 legs Hg, has almost no irritating odor, is easy to handle, and releases little hydrogen bromide during drying with nitrogen.

しかし、30%以上の水溶液を用いて臭化水素酸添着体
を調整する場合には乾燥の結果、臭化水素の放散が著し
く大きく、経済的ではない。10%臭化水素水溶液を用
いた場合の各種担体への添着量は各担体の単位重量あた
りの重量%として、臭素換算で表わすと、活性炭の場合
0.8〜1.5%、活性白土4.8〜5%、アルミナ2
.5〜3%であった。
However, when a hydrobromic acid impregnated body is prepared using an aqueous solution of 30% or more, as a result of drying, a significant amount of hydrogen bromide is released, which is not economical. When a 10% aqueous hydrogen bromide solution is used, the amount impregnated on various carriers is expressed in terms of bromine as weight% per unit weight of each carrier: 0.8 to 1.5% for activated carbon, activated clay 4 .8-5%, alumina 2
.. It was 5-3%.

このように臭化水素水溶液は10%程度を用いて添着炭
を調整するのが好ましいが、2%溶液を用いても実用上
支障のない性能が得られた。なお、このようにして調整
した添着体には臭化水素酸と共に臭化水素も添着されて
おり、臭化水素酸水溶液を使う代わりもこ臭化水素を含
むガスを通気しても同様な添着体が得られた。
As described above, it is preferable to adjust the impregnated carbon using a hydrogen bromide aqueous solution of about 10%, but even when a 2% solution was used, performance with no practical problems was obtained. In addition, the impregnated body prepared in this way is impregnated with hydrogen bromide as well as hydrobromic acid, and instead of using an aqueous solution of hydrobromic acid, the same impregnated body can be obtained even if a gas containing hydrogen bromide is passed through the impregnated body. was gotten.

また上記実施例では、担体に活性白土およびアルミナを
用いた例を示したがこの例に限られるものではなくシリ
カ、アルミナ、ゼオライト、ベントナィトなども適用可
能である。
Further, in the above embodiment, activated clay and alumina were used as the carrier, but the carrier is not limited to this example, and silica, alumina, zeolite, bentonite, etc. can also be used.

また、KI添着炭はャシガラ破砕炭を40%ョゥ化カリ
ウム水溶液に30分間浸債後、窒素ガス中で乾燥させて
調整した。ョウ素添着量は12換算値として0.9%で
あった。20%以上のKI水溶液を用いると、薬品代が
添着炭の50%以上となり経済的に問題となるので、添
着率は0.5〜5%がよい。
Further, KI-impregnated coal was prepared by soaking crushed charcoal in a 40% potassium iodide aqueous solution for 30 minutes and then drying it in nitrogen gas. The amount of iodine impregnated was 0.9% as a 12 equivalent value. If a KI aqueous solution of 20% or more is used, the chemical cost will be 50% or more of the impregnated coal, causing an economical problem, so the impregnation rate is preferably 0.5 to 5%.

添着量はKI添着炭を熱水に浸潰して、ョウ化物を抽出
後、硝酸第2水銀法を用いる滴定法により求めた。ここ
では、KI添着炭について説明したが、アルカリ金属、
アルカリ士類金属のョウ化物であっても同様の効果を発
揮する。
The amount of impregnation was determined by soaking KI-impregnated coal in hot water, extracting iodide, and then titration using the mercuric nitrate method. Although KI-impregnated carbon has been explained here, alkali metal,
Similar effects can be achieved even with iodine of alkali metals.

ところで、KI添着炭は12の吸着容量が大きいため、
放射性ヨウ素の吸着除去剤として古くから用いられてお
り、余剰の12がもれ出す可能性は4・さし、が、もれ
出した場合の対策と亜硫酸ガス等の反応生成物の除去を
兼ねてKI添着炭の後段に活性炭層またはアルカリ添着
体層を設けてもよい。
By the way, since KI impregnated coal has a large adsorption capacity of 12,
It has been used for a long time as an adsorbent and remover for radioactive iodine, and although there is a 4.0 chance that excess 12 will leak out, it can also be used as a countermeasure in the event of leakage and to remove reaction products such as sulfur dioxide gas. An activated carbon layer or an alkali impregnated layer may be provided after the KI impregnated carbon.

また、彼処理ガス中の硫化水素濃度が低い場合には、H
Br添着体層、活性炭層、KI添着体層の順にオゾンと
悪臭ガスの混合空気を通気する構成としてもよい。この
発明は以上詳細に説明したように、オゾナィザとこのオ
ゾナィザから送給されるオゾン化空気を悪臭成分を含む
被処理空気中に散気させる装置と、臭化水素または臭化
水素酸を担体に添着せる添着体の充填層と、アルカリ金
属またはアルカリ±頚金属のョウ化物を担体に添着せる
添着体の充填層と、上記オゾンが添加された被処理空気
を上記HBn添着体層、ついで上記ョウ化物添着体層の
順に通過させる送気装置とを備えたもので、オゾンと臭
化水素または臭化水素酸の反応により生成される臭素に
より悪臭成分を酸化除去する様にしたので、活性炭によ
る吸着除去が困難なアンモニア、硫化メチル、二硫化メ
チル等の成分を効率よく除去することができる。
In addition, when the hydrogen sulfide concentration in the H treatment gas is low, H
A configuration may be adopted in which mixed air of ozone and malodorous gas is passed through the Br impregnation layer, the activated carbon layer, and the KI impregnation layer in this order. As explained in detail above, the present invention comprises an ozonizer, a device for aerating ozonized air supplied from the ozonizer into air to be treated containing malodorous components, and hydrogen bromide or hydrobromic acid as a carrier. A packed layer of an impregnant to be impregnated, a packed layer of an impregnant to impregnate an alkali metal or an alkali±cervical metal bromide onto a carrier, and a packed layer of an impregnant to impregnate the carrier with the ozone-added air to be treated, and then the HBn impregnant layer, and then the HBn impregnant layer. It is equipped with an air supply device that passes through the iodide impregnated layer in order, and the malodorous components are oxidized and removed by bromine produced by the reaction of ozone and hydrogen bromide or hydrobromic acid, so activated carbon It is possible to efficiently remove components such as ammonia, methyl sulfide, and methyl disulfide, which are difficult to remove by adsorption.

さらに理空気中に残存するオゾンおよび臭素をョウ化物
添着体層に通じて除去すると同時に、ョゥ化物を酸化し
て12を生成させて硫化水素、メチルメルカプタン等の
酸性悪臭ガスを効果的に除去するので、二次公害の発生
がなく、実用上の効果が大きい。
Furthermore, ozone and bromine remaining in the air are removed through the iodide impregnation layer, and at the same time, the iodide is oxidized to produce 12, which effectively removes acidic malodorous gases such as hydrogen sulfide and methyl mercaptan. Since it is removed, there is no secondary pollution, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、活性炭を用いた従釆の乾式脱臭装置のフロー
図、第2図はこの発明の一実施例を示すフロー図、第3
図はHBh添着体充填層における硫化メチル処理能力を
示す特性図、第4図はメチルメルカブタン、二硫化メチ
ルの処理能力を示す特性図、第5図はKI添着体層にお
ける硫化水素の処理能力を示す特性図である。 図において1はブロア、3は活性炭の充填層、4はオゾ
ナィザ、7は反応塔、8は臭化水素または臭化水素酸添
着体の充填層、9はアルカリ金属あるいはアルカリ士類
金属のョウ化物添着体の充填層である。 なお図中同一符号はそれぞれ同一または相当部分を示す
。第1図 第2図 第3図 第4図 第5図
Figure 1 is a flow diagram of a secondary dry deodorizing device using activated carbon, Figure 2 is a flow diagram showing one embodiment of the present invention, and Figure 3 is a flow diagram of a secondary dry deodorizing device using activated carbon.
The figure is a characteristic diagram showing the processing capacity of methyl sulfide in the HBh impregnant packed bed, Figure 4 is the characteristic diagram showing the processing capacity of methyl mercabutane and methyl disulfide, and Figure 5 is the processing capacity of hydrogen sulfide in the KI impregnant layer. FIG. In the figure, 1 is a blower, 3 is a packed bed of activated carbon, 4 is an ozonizer, 7 is a reaction column, 8 is a packed bed of hydrogen bromide or hydrobromic acid impregnated material, and 9 is a bed of alkali metal or alkali metal. This is a packed layer of compound-impregnated material. Note that the same reference numerals in the figures indicate the same or corresponding parts. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 オゾナイザと、このオゾナイザから送給されるオゾ
ン化ガスを悪臭成分を含む被処理空気中に散気させて混
合する手段と、臭化水素または臭化水素酸を担体に添着
せる添着体の充填層と、アルカリ金属またはアルカリ土
類金属のヨウ化物を担体に添着せる添着体の充填層と、
上記オゾンが添加された被処理空気を上記臭化水素また
は臭化水素酸添着体の充填層、ついで上記ヨウ化物添着
体の充填層の順に通過させる送気装置とを備えた乾式脱
臭装置。 2 担体が活性炭、シリカ、アルミナ、ゼオライトまた
はアルミナである特許請求の範囲第1項記載の乾式脱臭
装置。 3 担体への臭化水素又は臭化水素酸の添着量が臭素換
算値で0.1〜10重量%、好ましくは0.5〜5重量
%の範囲内とした特許請求の範囲第1項記載の乾式脱臭
装置。 4 担体へのアルカリ金属あるいはアルカリ土類金属の
ヨウ化物の添着量が0.1〜10重量%、好ましくは0
.5〜5重量%の範囲内とした特許請求の範囲第1項記
載の乾式脱臭装置。
[Claims] 1. An ozonizer, means for aerating and mixing ozonized gas supplied from the ozonizer into air to be treated containing malodorous components, and hydrogen bromide or hydrobromic acid as a carrier. a packed layer of an impregnant to be impregnated; a packed bed of an impregnant to impregnate an alkali metal or alkaline earth metal iodide to a carrier;
A dry deodorizing device comprising an air supply device that causes the air to be treated to which ozone has been added to pass through the packed bed of the hydrogen bromide or hydrobromic acid impregnated body, and then the packed bed of the iodide impregnated body. 2. The dry deodorizing device according to claim 1, wherein the carrier is activated carbon, silica, alumina, zeolite, or alumina. 3. The amount of hydrogen bromide or hydrobromic acid impregnated onto the carrier is within the range of 0.1 to 10% by weight, preferably 0.5 to 5% by weight in terms of bromine. dry deodorizing equipment. 4 The amount of alkali metal or alkaline earth metal iodide impregnated on the carrier is 0.1 to 10% by weight, preferably 0.
.. The dry deodorizing device according to claim 1, wherein the content is within the range of 5 to 5% by weight.
JP55105792A 1979-11-28 1980-07-31 Dry deodorization equipment Expired JPS6034890B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55105792A JPS6034890B2 (en) 1980-07-31 1980-07-31 Dry deodorization equipment
US06/211,286 US4370301A (en) 1979-11-28 1980-11-28 Dry deodorizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55105792A JPS6034890B2 (en) 1980-07-31 1980-07-31 Dry deodorization equipment

Publications (2)

Publication Number Publication Date
JPS5730530A JPS5730530A (en) 1982-02-18
JPS6034890B2 true JPS6034890B2 (en) 1985-08-12

Family

ID=14416975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55105792A Expired JPS6034890B2 (en) 1979-11-28 1980-07-31 Dry deodorization equipment

Country Status (1)

Country Link
JP (1) JPS6034890B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183168A (en) * 1982-04-20 1983-10-26 三菱電機株式会社 Dry deodorizing method

Also Published As

Publication number Publication date
JPS5730530A (en) 1982-02-18

Similar Documents

Publication Publication Date Title
US4370301A (en) Dry deodorizing apparatus
JPH0115606B2 (en)
JPS6034892B2 (en) Dry deodorization equipment
JPH06142440A (en) Oxidation treatment of gas containing harmful gas and device for the same
JPS6034890B2 (en) Dry deodorization equipment
JPS6034891B2 (en) Dry deodorization equipment
CA1104795A (en) Odorous gas purification
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JPS625646B2 (en)
JPS62163726A (en) Simple deodorizer
JPS60216827A (en) Process for oxidizing decomposition of oxidizable sulphur compound
JPS6341612B2 (en)
JPH02258015A (en) Deodorization method and apparatus
JPS6033072B2 (en) Deodorizing device
CN104338432A (en) Phosphine gas treatment agent and preparation method thereof
JP4222607B2 (en) Deodorizing method and deodorizing liquid
JPS625008B2 (en)
JP4138289B2 (en) Method for removing malodorous substances generated from composting equipment
JPH0224539B2 (en)
JPH05154333A (en) Method for purifying harmful gas
JPS5933011B2 (en) Ozone deodorization equipment
JPH05154376A (en) Air cleaning agent and production thereof
JPS60114328A (en) Treatment of gas containing hydrogen arsenide
JPS56115619A (en) Ozone decoloration and deodorization method
JPS5821528B2 (en) Deodorizing method