JPS6034545B2 - Manufacturing method of pyridine - Google Patents

Manufacturing method of pyridine

Info

Publication number
JPS6034545B2
JPS6034545B2 JP52105655A JP10565577A JPS6034545B2 JP S6034545 B2 JPS6034545 B2 JP S6034545B2 JP 52105655 A JP52105655 A JP 52105655A JP 10565577 A JP10565577 A JP 10565577A JP S6034545 B2 JPS6034545 B2 JP S6034545B2
Authority
JP
Japan
Prior art keywords
pyridine
reaction
oxygen
alkylpyridine
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52105655A
Other languages
Japanese (ja)
Other versions
JPS5439079A (en
Inventor
勝博 柿田
寛治 幸野
晴彦 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP52105655A priority Critical patent/JPS6034545B2/en
Publication of JPS5439079A publication Critical patent/JPS5439079A/en
Publication of JPS6034545B2 publication Critical patent/JPS6034545B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Description

【発明の詳細な説明】 本発明はアルキルピリジン類の接触脱アルキルによるピ
リジンの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing pyridine by catalytic dealkylation of alkylpyridines.

更にくわしくは、アルキルピリジン類を銀又は銭化合物
を含有する触媒上を高められた温度で酸素含有気体と共
に接触的に通すことによって、脱アルキルを行なわせる
ことを特徴とするピリジンの製造法に関する。本発明の
目的は、アルキルピリジン類のァルキル基の種類、数お
よび置換の位置に関係なく客易に脱アルキルを起こさし
め、かつ高収率にピリジンを得る方法を提供することに
ある。ピリジンは、古くから化学工業の基礎原料、又す
ぐれた特徴をもつ有礎溶媒として、多方面に幅広く使用
されてきたが、殊に近年ジピリジル系農薬の原料として
大量に使用されるに至った産業上極めて有用な物質であ
る。
More particularly, the present invention relates to a process for producing pyridine, characterized in that dealkylation is carried out by passing an alkylpyridine catalytically over a catalyst containing silver or a silver compound together with an oxygen-containing gas at an elevated temperature. An object of the present invention is to provide a method for easily carrying out dealkylation regardless of the type, number and position of substitution of alkyl groups in alkylpyridines and obtaining pyridine in high yield. Pyridine has been used in a wide range of fields since ancient times as a basic raw material in the chemical industry and as a basic solvent with excellent characteristics.In recent years, however, pyridine has been used in large quantities as a raw material for dipyridyl-based pesticides. It is an extremely useful substance.

一般にピリジンを含めてピリジン塩基類は、工業的には
コールタール分留あるいは合成により製造されるが、い
ずれの場合に於いても、各種のアルキルピリジン類を多
量に併産し、それらの比率を任意に操作することは極め
て困難なことである。しかるにアルキルピリジン類の各
種は夫々に見合った需要があるわけでなく、これらを脱
アルキルとしてピリジンとする方法、特に置換されたア
ルキル基の種類、数、およびピリジン核上の位置に関係
なく脱アルキルする方法が強く望まれている。従来、ア
ルキルピリジン類のアルキル基を取り除いてピリジンを
得ようとする試みはいるいると行なわれ、例えば日本特
許出願公告昭43−21735(ソシェタ.エジソン社
)は2−メチル−5ーェチルピリジンを625一900
00、5〜6ぴ気圧、二硫化炭素又は硫化水素の存在下
に水素化脱アルキルし、ピリジン及びアルキルピリジン
を、日本特許出願公告昭42−5857(ソシェタ.エ
ジソン社)は2ーメチル−5−エチルピリジンをNi−
AI203触媒にて250〜500qoで水蒸気により
脱アルキル3−エチルピリジンを、更にドクラデイ.ア
カデミ.ナウクSSSR〔110.79〜82(195
6)はNi−Aら03触媒を用いて、2−メチルピリジ
ンを水蒸気脱メチルしピリジンを得る方法を提案してい
る。
Pyridine bases, including pyridine, are generally produced industrially by coal tar fractionation or synthesis, but in either case, large amounts of various alkylpyridines are co-produced and their ratios are It is extremely difficult to manipulate it arbitrarily. However, there is not a corresponding demand for each type of alkylpyridine, and there is a method to dealkylate them to give pyridine, especially a dealkylation method that is independent of the type, number, and position of the substituted alkyl group on the pyridine nucleus. A method to do so is strongly desired. In the past, many attempts have been made to obtain pyridine by removing the alkyl group from alkylpyridines. For example, Japanese Patent Application Publication No. 43-21735 (Sochetta Edison Co.) 900
00, 5 to 6 p atm, in the presence of carbon disulfide or hydrogen sulfide to give pyridine and alkylpyridine, Japanese Patent Application Publication No. 1983-5857 (Socheta.Edison) is 2-methyl-5- Ni- ethylpyridine
Dealkylated 3-ethylpyridine is treated with steam at 250-500 qo over an AI203 catalyst, followed by de-alkylated 3-ethylpyridine. Academy. Nauk SSSR [110.79~82 (195
6) proposes a method of steam demethylating 2-methylpyridine to obtain pyridine using a Ni-A et al. 03 catalyst.

又ドイツ民主共和国特許59568にみられる水蒸気共
存下、酸素による酸化脱アルキルではAI203一V2
05(更にクロム、カドミウム、ケイ素、コバルト酸化
物を含む)触媒を用いて、2−メチルピリジンからピリ
ジンを得るなどの方法が報告されている。これらの方法
はアルキルピリジン類を効率よく脱アルキルして直接ピ
リジンを得ようとするためには、それぞれ問題点があり
、充分なものとは言い難い。すなわち水素化脱アルキル
については非常な高温を要するため、設備上の問題と共
に脱アルキルに際して、ピリジン核の分解もかなり伴な
うため収率が充分でなく、収率を上げようとすると反応
率が充分でない。
In addition, in the case of oxidative dealkylation with oxygen in the coexistence of water vapor as seen in German Democratic Republic Patent No. 59568, AI203-V2
05 (further containing chromium, cadmium, silicon, and cobalt oxides) catalyst has been reported to obtain pyridine from 2-methylpyridine. These methods each have their own problems and cannot be said to be sufficient for efficiently dealkylating alkylpyridines to directly obtain pyridine. In other words, since hydrodealkylation requires extremely high temperatures, there are equipment problems and a considerable amount of decomposition of the pyridine nucleus occurs during dealkylation, resulting in insufficient yields, and attempts to increase the yield result in lower reaction rates. Not enough.

又水蒸気などによる緩和な脱アルキル方法は、Q−位置
のアルキル基脱離に対してはその選択性が優れているが
、8−位置及び丁−位置に置換されたアルキル基には適
合され難い。通常、ピリジン核上のQ−位置のアルキル
基は脱離され易いが、これに比べて6一及び丁−位置の
アルキル基はピリジン核と非常に強い結合をしているも
のである。
In addition, mild dealkylation methods using steam etc. have excellent selectivity for elimination of alkyl groups at the Q-position, but are difficult to apply to alkyl groups substituted at the 8-position and the D-position. . Usually, the alkyl group at the Q-position on the pyridine nucleus is easily eliminated, but in comparison, the alkyl group at the 6-1 and C-positions has a very strong bond with the pyridine nucleus.

本発明者らはこの置換位置に関係のない無選択脱ァルキ
ルの重要性にかんがみ鋭意研究の結果、接触酸化用触媒
に適量の銀又は銀化合物を含有させることによって、従
来にみられない高活性で無選択脱アルキル効果のあるこ
とを発見し、この触媒を使用することによって、アルキ
ルピリジン類から直接ピリジンを製造する方法を見出し
たものである。
In view of the importance of non-selective dealkylation, which is unrelated to the substitution position, the present inventors conducted extensive research and found that by incorporating an appropriate amount of silver or a silver compound into the catalyst for catalytic oxidation, we achieved an unprecedented level of activity. They discovered that pyridine has a non-selective dealkylation effect, and by using this catalyst, they discovered a method for producing pyridine directly from alkylpyridines.

本発明に使用する銀又は銀化合物を含有させた触媒は、
反応の形態から気相酸化用の触媒であり、一般的にはバ
ナジウム、モリブデン或はタングステンなどの酸化物を
アルミナ、シリカ、シリカカァルミナ、酸化チタン、蓬
藻土、軽石等普通の担体に担持させたものをベースとし
、これに重要成分として銭又は銀の化合物を含有させた
ものである。
The catalyst containing silver or a silver compound used in the present invention is
It is a catalyst for gas phase oxidation due to the form of the reaction, and generally oxides such as vanadium, molybdenum, or tungsten are supported on common carriers such as alumina, silica, silica alumina, titanium oxide, turquoise earth, and pumice. It is based on silver, and contains a compound of silver or silver as an important component.

触媒中の銀又は銭化合物の含有量は重要成分元素である
銀化合物が存在するということにあって広い範囲に於い
て適合でき、特に含有量に制限はない。
The content of silver or silver compound in the catalyst can be adjusted within a wide range since the silver compound, which is an important component element, is present, and there is no particular restriction on the content.

しかし、一般的な担体使用の場合成型触媒中の銀元素の
含有量は0.1〜30%、好ましくは0.5〜20%で
の使用が都合がよい。また、本発明の銀化合物とは酸化
銀、ハロゲン化繊(AgC1,AgBr等)、酸素酸銀
(AgN03、Ag2S04、A&C03、Ag2P0
4等)、有機酸銀(AgCHよ02、Ag2C204等
)、シアン化銀等である。
However, when a general carrier is used, it is convenient to use a shaped catalyst with an elemental silver content of 0.1 to 30%, preferably 0.5 to 20%. In addition, the silver compounds of the present invention include silver oxide, halogenated synthetic fibers (AgC1, AgBr, etc.), silver oxyoxides (AgN03, Ag2S04, A&C03, Ag2P0, etc.).
4, etc.), organic acid silver (AgCHyo2, Ag2C204, etc.), silver cyanide, etc.

更に酸化性能を上げるための助けを行なう物質として、
ナトリウム、カリウム、クロム、マンガン、コバルト、
ニッケル、パラジウム、白金、金6、ビスマス、錫、ア
ンチモン等の元素又ははこれらの化合物を当該触媒に添
加することは一向にさしつかえなく、時によっては好ま
しいことである。
Furthermore, as a substance that helps improve oxidation performance,
Sodium, potassium, chromium, manganese, cobalt,
Adding elements such as nickel, palladium, platinum, gold-6, bismuth, tin, antimony, or compounds thereof to the catalyst is not at all prohibited, and may sometimes be preferable.

触媒の調製方法及び組成には特に制限はなく、その状況
に応じて適当に選択しうる。
The preparation method and composition of the catalyst are not particularly limited and can be appropriately selected depending on the situation.

反応器の形態は触媒を反応管に充填した固定床方式でも
、粉又は粒状分散させた流動床方式でもどちらでも取り
うる。本発明に適合するアルキルピリジン類とは、ピリ
ジン類(Q−ピコリン、6ーピコリン及び7−ピコリン
)、ルチジン類(2,3ールチジン、2.4−ルチジン
、2.5−ルチジン、2,6−ルチジン類、3,4ール
チジン類及び3,5ージメチルピリジン、更に2ーェチ
ルピリジン、3−エチルピリジン及び4−エチルピリジ
ン)、コリジン類(2,3,4−トリメチルピリジン、
2,3,5ートリメチルピリジン、2,3,6ートリメ
チルピリジン、2,4,5−トリメチルピリジン、2,
4,6−トリメチルピリジン及び3,4.5−トリメチ
ルピリジン、又メチルエチルピリジン類、更にプロピル
ピリジン類)、ジェチルピリジン類、メチルエチルピリ
ジン類及び更に高度なアルキル基あるいは種々アルキル
基の多数の組合わせを有するアルキルピリジン類であり
、又ビニルピリジン類、メチルビニルピリジン類などの
不飽和炭化水素基をも含み総称するものである。
The form of the reactor may be either a fixed bed type in which the catalyst is packed in a reaction tube or a fluidized bed type in which the catalyst is dispersed in powder or granules. Alkylpyridines that are compatible with the present invention include pyridines (Q-picoline, 6-picoline, and 7-picoline), lutidines (2,3-lutidine, 2,4-lutidine, 2,5-lutidine, 2,6-lutidine, lutidines, 3,4 lutidines and 3,5-dimethylpyridine, as well as 2-ethylpyridine, 3-ethylpyridine and 4-ethylpyridine), collidines (2,3,4-trimethylpyridine,
2,3,5-trimethylpyridine, 2,3,6-trimethylpyridine, 2,4,5-trimethylpyridine, 2,
(4,6-trimethylpyridine and 3,4,5-trimethylpyridine, also methylethylpyridines, also propylpyridines), diethylpyridines, methylethylpyridines and higher alkyl groups or a large number of different alkyl groups. It is a general term that includes alkylpyridines having a combination of alkylpyridines and unsaturated hydrocarbon groups such as vinylpyridines and methylvinylpyridines.

これらのアルキルピリジン類はそれぞれ単独のものであ
ってもよいが、2種以上が任意の比率で混合していても
よく、工業的に分留困難なピリジン塩基高沸混合物又は
高糠のアルキルピリジン類含有の蒸留残の様な組成を確
定しがたい混合物であってもよい。アルキル基の完全酸
化に必要な理論酸素量は例えばピコリン類では1.母音
モル、ルチジン類では3倍モル、そしてコリジン類では
4.劫音モルであるが、この値は必らずしも本発明の反
応を進行させる絶対的範囲を限定するものではないが、
安全に酸化反応を行なうためには、通常爆発限界をさげ
又反応熱の除去のために空気大過剰の状態で行なうのも
好ましいが、爆発下限界以下の酸素濃度小の状態で行な
ってもよい。
Each of these alkylpyridines may be used alone, or two or more types may be mixed in any ratio, and a high-boiling mixture of pyridine bases or a high-bran alkylpyridine that is difficult to fractionate industrially may be used. It may also be a mixture whose composition is difficult to determine, such as a distillation residue containing similar substances. For example, the theoretical amount of oxygen required for complete oxidation of an alkyl group is 1. Vowel molar, 3 times molar for lutidines, and 4 times molar for collidines. Although this value does not necessarily limit the absolute range in which the reaction of the present invention proceeds,
In order to carry out the oxidation reaction safely, it is usually preferable to lower the explosion limit and carry out the reaction in a large excess of air to remove the reaction heat, but it is also possible to carry out the reaction in a state with a small oxygen concentration below the lower explosion limit. .

更には水蒸気又は窒素、二酸化炭素などの不活性ガスで
稀釈した状態で行なってもよく、この場合酸素量は上記
の理論酸素量の0.5〜5倍、特に1〜2.5倍の状態
で好適に実施しうる。本発明の脱アルキル反応には水蒸
気は存在してもしなくともよいが、円滑に且つ安定に反
応を進行させるためには、原料アルキルピリジン類の5
倍モル以上好ましくは3の苦〜9の音モルの存在がよい
。更に多いのは反応には好影響を与えても実用上それ程
の意味がない。酸化を行なうための酸素源としては通常
空気を使うが、不活性ガス、特に水蒸気との組合わせで
危険のない状況下で酸素ガスを直接導入してもよい。反
応温度は250〜700午0の広い範囲で実施し得るが
、ピリジン核の分解を抑え、かつ反応率を上げるために
300〜4500○の範囲が好ましい。接触時間は0.
3〜4秒で実施し得るが、同上の意味で0.5〜1.2
砂が好ましい。本反応は加圧でも常圧でもどちらでもと
り得る。本発明の実施に当っては、アルキルピリジン原
料中のピリジン核に対するアルキル基の炭素数を予備分
析(例えばアルキルピリジンのみを混合物のときN−元
素分析からピリジン核の含量を求め、その残りをアルキ
ル基とするなど)によって**大略を求め、それをもと
に計算設定した必要酸素又は空気を流量計で制御して供
給、そして別に発生させた原料アルキルピリジン蒸気と
混合、子熱器を経て反応器に送入する。この際水蒸気、
窒素、二酸化炭素などの不活性ガスを使用するときは同
時に混合するが、水蒸気を使用するとき、アルキルピリ
ジン類が水溶性であれば、このアルキルピリジン類を所
定量の水で混合熔解したものを蒸発器に送り込んで同時
に蒸気化させてもよい。反応器より出た反応ガスは普通
実施される方法でピリジンを分離精製すればよい。例え
ば反応ガスを冷却して凝縮物として瓶集し、更に非凝縮
ガスを洗浄、吸収などして非凝縮ガス中のピリジンを瓶
集した後、排出或は一部排出して循環などの方法をとり
得る。次いで得られた捕集液は抽出、蒸留或はアルカリ
脱水など一般的な方法でピリジン精製単離し得る。この
様にして本発明により得たピリジンは分離し難い不純物
の副生も殆んどなく容易に高純度品とすることが出来る
Furthermore, it may be carried out diluted with water vapor or an inert gas such as nitrogen or carbon dioxide, in which case the amount of oxygen is 0.5 to 5 times, particularly 1 to 2.5 times, the theoretical amount of oxygen mentioned above. It can be suitably implemented. Although steam may or may not be present in the dealkylation reaction of the present invention, in order for the reaction to proceed smoothly and stably, it is necessary to
Preferably, the amount is 3 to 9 moles or more. Furthermore, even if they have a positive effect on the reaction, they are of no practical significance. Air is usually used as the oxygen source for carrying out the oxidation, but oxygen gas may also be introduced directly under non-hazardous conditions in combination with an inert gas, especially water vapor. The reaction temperature can be carried out in a wide range of 250 to 700 degrees, but is preferably in the range of 300 to 4,500 degrees in order to suppress decomposition of the pyridine nucleus and increase the reaction rate. Contact time is 0.
It can be carried out in 3 to 4 seconds, but in the same sense as above, it takes 0.5 to 1.2 seconds.
Sand is preferred. This reaction can be carried out under either elevated pressure or normal pressure. In carrying out the present invention, the number of carbon atoms in the alkyl group relative to the pyridine nucleus in the alkylpyridine raw material is preliminarily analyzed (for example, in the case of a mixture containing only alkylpyridine, the content of the pyridine nucleus is determined from N-element analysis, and the remaining The required oxygen or air is calculated and set based on that information, and is controlled by a flow meter and supplied, mixed with the raw material alkylpyridine vapor generated separately, and passed through a subheater. Pour into reactor. At this time, water vapor,
When using inert gases such as nitrogen and carbon dioxide, they are mixed at the same time, but when using steam, if the alkylpyridine is water-soluble, the alkylpyridine is mixed and dissolved with a predetermined amount of water. It may be fed into an evaporator and vaporized at the same time. Pyridine may be separated and purified from the reaction gas discharged from the reactor using a commonly practiced method. For example, the reaction gas is cooled and collected as a condensate in a bottle, the non-condensable gas is washed and absorbed, the pyridine in the non-condensable gas is collected in a bottle, and then it is discharged or partially discharged for circulation. Possible. Then, the obtained collection liquid can be purified and isolated from pyridine by a common method such as extraction, distillation, or alkaline dehydration. The pyridine thus obtained according to the present invention has almost no by-product of impurities that are difficult to separate, and can easily be made into a high-purity product.

本発明の方法を行うことによって今まで考えられなかっ
た300〜450qoという低温城に於てピリジ核のQ
−位置のみならず3一位置及び、シー位置のアルキル基
が容易に脱アルキルされ、純度の高いピリジンを高い転
化率、高い収率で得ることが出来ることは驚くべきこと
である。
By carrying out the method of the present invention, the Q of the pyridine nucleus can be reduced at a low temperature of 300 to 450 qo, which was previously unimaginable.
It is surprising that not only the alkyl groups at the - position but also the 3-position and the C position can be easily dealkylated, and highly pure pyridine can be obtained with high conversion and high yield.

又触媒の寿命も長期の連続使用に耐え、殆んど休止再生
の必要がない工業上極めて優れた性能を有している。以
下、本発明を実施例により具体的に説明するが、実施例
のみに限定されるものでないことはいうまでもない。な
お実施例において用いられる反応率、収率、転化率は次
のように定義される。反応率=仕込みの原料アルキルピ
リジン類(モル数)−未反応の原料ァルキルピリジン類
(モル数)仕込みの原料アルキルピリジン類(モル数)
生成ピリジン(モル数)収率=仕込みの原料ァルキルピ
リジン類(モル数)−未反応の原料アルキルピリジン類
(モル数)転化率=反応率x収率実施例 1 メタバナジン酸アンモニウム128.6gを水400叫
に投入し、燈拝しながら70〜8000に加熱し、修酸
180gを、更に硝酸銀58.6gを少量づつ注意しな
がら加えた。
In addition, the catalyst has extremely excellent performance in industry, withstanding long-term continuous use and almost no need for pauses and regeneration. Hereinafter, the present invention will be specifically explained with reference to Examples, but it goes without saying that the present invention is not limited only to the Examples. Note that the reaction rate, yield, and conversion rate used in the examples are defined as follows. Reaction rate = Charged raw material alkylpyridine (number of moles) - Unreacted raw material alkylpyridine (number of moles) Charged raw material alkylpyridine (number of moles)
Pyridine produced (number of moles) Yield = Charged raw material alkylpyridines (number of moles) - Unreacted raw material alkylpyridine (number of moles) Conversion rate = Reaction rate x Yield Example 1 128.6 g of ammonium metavanadate was mixed with 400 g of water The mixture was poured into a pot and heated to 70 to 8,000 ℃ while heating the mixture, and 180 g of oxalic acid and 58.6 g of silver nitrate were carefully added little by little.

いまら〈凝洋を続け、放冷後酸化チタン86雌の中に注
ぎ水分を調整しながら乳鉢で露練し得た泥状物をうどん
状に成型し室温で乾燥、更に100〜12000で1独
時間乾燥した。乾燥したものを約4側粒に揃え、約45
00付近で1幼時間焼成した。この様にして調整した触
媒を2物肋径のステンレス反応管に150cm充填した
した。3−ピコリン93gと水900gの混合水溶液を
836.7gノhrで蒸発し、N.T.P.換算37.
7そ/hrの酸素ガスと混合物200〜25000の予
熱管を通して370〜390qoで反応を行なった。
Continuing to coagulate, after cooling, pour into a titanium oxide 86 female and expose in a mortar while adjusting the water content. Form the slurry into a noodle shape and dry at room temperature. I left it to dry for a while. Arrange the dried grains into about 4 grains, about 45
It was fired for 1 hour at around 0.00. The catalyst prepared in this manner was filled in a stainless steel reaction tube with a diameter of 2 diameters to a depth of 150 cm. A mixed aqueous solution of 93 g of 3-picoline and 900 g of water was evaporated in 836.7 g/hr, and N. T. P. Conversion 37.
The reaction was carried out at 370 to 390 qo by passing the mixture through a preheating tube of 7 so/hr of oxygen gas and 200 to 25,000 qo.

反応ガスは水冷により凝縮させ、更に一30〜一500
0に冷却したメタノールに吸収させた。4時間補集の後
液状物を単蒸留し、メタノール蟹去後の留出物を苛性ソ
ーダで脱水後油分を分液し、ガスクロマトグラフにより
定量した所、未反応8−ピコリン34.舷及びピリジン
170夕の存在を確認した。
The reaction gas is condensed by water cooling, and further
Absorbed in methanol cooled to 0. After collecting for 4 hours, the liquid was subjected to simple distillation, and the distillate after methanol was removed was dehydrated with caustic soda, and the oil was separated and quantified by gas chromatography, and it was found that 34. The presence of 170 yen of pyridine was confirmed on the ship's side.

(原料8−ピコリンの反応率88.9%、ピリジン収率
71.7%)実施例 2メタバナジン酸アンモニウム1
28.6gを水400の【に投入し燈拝しながら70〜
80ooに加熱し、修酸180gを加えた後三塩化アン
チモン156.5gを更に硝酸銀58.6gを除々に加
えた。
(Raw material 8 - Reaction rate of picoline 88.9%, pyridine yield 71.7%) Example 2 Ammonium metavanadate 1
Pour 28.6g into 400ml of water and boil for 70~
The mixture was heated to 80°C, 180g of oxalic acid was added, and then 156.5g of antimony trichloride and 58.6g of silver nitrate were gradually added.

いまら〈損梓を続けた後、冷却、酸化チタン760gに
注ぎ、水分を調整しながら乳鉢で充分濠練し得た泥状物
を実施例1同様の方法で調整した。この触媒を2仇奴径
のステンレス反応管に70狐充填した。y−ピコリン9
3gと水1260gの混合水溶液を343つ08/hr
で蒸発し、N.T.P.換算90夕/hrの空気と混合
して約200〜250ooに予熱、340〜345午○
で反応を行った。
After continued sanding, the slurry was cooled, poured into 760 g of titanium oxide, and thoroughly kneaded in a mortar while adjusting the moisture content.The resulting slurry was prepared in the same manner as in Example 1. A stainless steel reaction tube with a diameter of 2 mm was filled with 70 pieces of this catalyst. y-picoline 9
343 mixed aqueous solutions of 3g and 1260g of water 08/hr
evaporated at N. T. P. Preheat to about 200~250oo by mixing with air of equivalent 90 pm/hr, 340~345 pm○
The reaction was carried out.

反応ガスを1脚時間補集の後実施例1と同様の方法で処
理しガスクロマトグラフで定量、未反応yーピコリン及
びピリジン143.衣の存在を確認した。尚単蒸留後の
釜残からはィソニコチン酸が17.槌得られた。(原料
y−ピコリンの反応率98.9%、ピリジン収率72.
3%)分液油分を再精留して99.5%以上の純度のピ
リジン12雌を得た。
After collecting the reaction gas for one hour, it was treated in the same manner as in Example 1 and quantified by gas chromatography, unreacted y-picoline and pyridine 143. I confirmed the existence of the clothes. In addition, isonicotinic acid is 17% from the residue after simple distillation. Got a hammer. (Reaction rate of raw material y-picoline 98.9%, pyridine yield 72.
3%) The separated oil was rectified again to obtain pyridine 12 female with a purity of 99.5% or more.

尚同様の触媒で硝酸銀を含まないものを使用して同条件
で反応した所使用したy−ピコリンの反応率は92.0
%ピリジンへの転化率は5%にすぎなかった。実施例
3 実施例2と同様の触媒を70cm充てんした反応管にQ
ーピコリン9総及水72雌の混合水溶液を50舷/hr
で蒸発し、NTP換算28そ/hrの酸素ガスと混合し
て、約25000に子熱後反応管に送入し、310〜3
20qoで反応を行った。
Furthermore, when the reaction was carried out under the same conditions using a similar catalyst that did not contain silver nitrate, the reaction rate of y-picoline used was 92.0.
The conversion to % pyridine was only 5%. Example
3 In a reaction tube filled with 70 cm of the same catalyst as in Example 2, Q
- A mixed aqueous solution of Picoline 9 and 72 females at 50 ships/hr.
It is evaporated at 100 ml, mixed with oxygen gas at a rate of 28 som/hr in terms of NTP, heated to about 25,000 ℃, and then sent to a reaction tube at 310 to 300 ml.
The reaction was carried out at 20qo.

反応ガスを実施例1と同様の方法で5時間補集し、処理
し、油分中には未反応Q−ピコリン2.9g.及ピリジ
ン197.1gが確認された。
The reaction gas was collected and treated for 5 hours in the same manner as in Example 1, and 2.9 g of unreacted Q-picoline was found in the oil. and 197.1 g of pyridine were confirmed.

(原料Qーピコリン反応率99.0%、ピリジン収率8
.09%)実施例 4B−ピコリン6酸、yーピコリン
2総及び水558gの混合水溶液を43暖/hrで蒸発
し、NTP換算22.4夕/hの酸素ガスと混合して約
250q0に子熱、実施例2と同様の触媒を70肌充填
した反応管に送入して350〜360qoで反応を行っ
た。
(Raw material Q - picoline reaction rate 99.0%, pyridine yield 8
.. 09%) Example A mixed aqueous solution of 4B-picoline 6 acid, total y-picoline 2, and 558 g of water was evaporated at 43 warm/hour and mixed with oxygen gas of 22.4 night/h in terms of NTP to give a child heat of about 250 q0. The same catalyst as in Example 2 was introduced into a reaction tube filled with 70 quarts of the same catalyst as in Example 2, and the reaction was carried out at 350 to 360 qo.

4時間補集後の処理油分中には未反応ピコリン87.6
g及びピリジン99.7g存在した。
Unreacted picoline in the treated oil after 4 hours of collection 87.6
g and 99.7 g of pyridine were present.

(原料ピコリンの反応率64.7%、ピリジンの収率7
3.3%)実施例 5ピリジン塩基類の混合物(ガスク
ロマトグラフで数成分の主要ピークがあり、各種のメチ
ルエチルピリジン、プロピルピリジン及びフ。
(Reaction rate of raw material picoline 64.7%, yield of pyridine 7
3.3%) Example 5 A mixture of pyridine bases (with several main peaks in the gas chromatograph, including various methylethylpyridine, propylpyridine, and pyridine bases).

。べニルピリジンを含有する。中和滴定よりコリジンと
して94.2%に相当する。)を70.難/hrで蒸発
し、別に発生させた水蒸気822.8夕/hr及びNT
Pで88.0ぞ/トrの酸素ガスと混合して約250q
oに子熱し、硝酸銀が、29.滋である外は実施例2と
同様にして得た触媒を150cの充てんした反応管に送
入し、365〜405qoで反応を行った。4時間補集
後の処理油分中には未反応コリジン30.1g及びピリ
ジン105.鴇が存在した。
. Contains benylpyridine. According to neutralization titration, it corresponds to 94.2% as collidine. ) to 70. Water vapor 822.8 pm/hr and separately generated water vapor 822.8 pm/hr and NT
Approximately 250q when mixed with oxygen gas of 88.0 z/tr at P
29. A catalyst obtained in the same manner as in Example 2 except for the presence of water was introduced into a 150c filled reaction tube, and the reaction was carried out at 365 to 405 qo. After 4 hours of collection, the treated oil contained 30.1 g of unreacted collidine and 10.5 g of pyridine. A tow existed.

Claims (1)

【特許請求の範囲】 1 アルキルピリジン類を酸素又は酸素含有気体と共に
高められた温度で酸化バナジウム、酸化銀及び酸化チタ
ンを含有する触媒に接触させることを特徴とするピリジ
ンの製造法。 2 酸素の量がアルキルピリジン類のアルキル基を完全
酸化するに必要な理論酸素量、ないし該理論酸素量の2
・5倍である特許請求の範囲第1項記載の方法。 3 アルキルピリジン類1モルに対して、5〜90倍モ
ルの水蒸気を併用することからなる特許請求の範囲第1
項記載の方法。 4 酸化バナジウム、酸化銀及び酸化チタンを含有する
触媒が、ナトリウム、カリウム、クロム、マンガン、コ
バルト、ニツケル、パラジウム、白金、鉛、ビスマス、
錫及びアンチモンからなる群より選ばれる少なくとも1
種以上の元素又は化合物を含有する特許請求の範囲第1
項記載の方法。
[Claims] 1. A method for producing pyridine, which comprises bringing an alkylpyridine into contact with a catalyst containing vanadium oxide, silver oxide, and titanium oxide at an elevated temperature together with oxygen or an oxygen-containing gas. 2 The theoretical amount of oxygen necessary to completely oxidize the alkyl group of the alkylpyridine, or 2 of the theoretical amount of oxygen.
- The method according to claim 1, which is 5 times as large. 3 Claim 1 consisting of using water vapor in an amount of 5 to 90 times in mole per 1 mole of alkylpyridine.
The method described in section. 4 The catalyst containing vanadium oxide, silver oxide and titanium oxide is sodium, potassium, chromium, manganese, cobalt, nickel, palladium, platinum, lead, bismuth,
At least one selected from the group consisting of tin and antimony
Claim 1 containing more than one element or compound
The method described in section.
JP52105655A 1977-09-01 1977-09-01 Manufacturing method of pyridine Expired JPS6034545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52105655A JPS6034545B2 (en) 1977-09-01 1977-09-01 Manufacturing method of pyridine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52105655A JPS6034545B2 (en) 1977-09-01 1977-09-01 Manufacturing method of pyridine

Publications (2)

Publication Number Publication Date
JPS5439079A JPS5439079A (en) 1979-03-24
JPS6034545B2 true JPS6034545B2 (en) 1985-08-09

Family

ID=14413450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52105655A Expired JPS6034545B2 (en) 1977-09-01 1977-09-01 Manufacturing method of pyridine

Country Status (1)

Country Link
JP (1) JPS6034545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240061A (en) * 1989-03-14 1990-09-25 Agency Of Ind Science & Technol Production of quinoline

Also Published As

Publication number Publication date
JPS5439079A (en) 1979-03-24

Similar Documents

Publication Publication Date Title
JPH04275266A (en) Ammoxidation of paraffin
US2807618A (en) Synthesis of pyridine and 3-picoline
US5028713A (en) Ammoxidation of methyl substituted heteroaromatics to make heteroaromatic nitriles
US2543424A (en) Catalytic reaction of hydrofuryl carbinols with ammonia or amines
JPS6034545B2 (en) Manufacturing method of pyridine
JP5080081B2 (en) Process for the preparation of cyanopyridine and suitable catalyst
JPS6130659B2 (en)
US6596872B2 (en) Process for preparing alkenyl-substituted heterocycles
JP3055913B2 (en) Method for synthesizing pyridine base and catalyst therefor
US2749351A (en) Process for the production of pyridine aldehydes and pyridoines
US4332943A (en) Process for the preparation of pyridine
US3472860A (en) Production of 3,4-lutidine
US6118003A (en) Processes for producing 3-cyanopyridine from 2-methyl-1,5-pentanediamine
US3020282A (en) Process of preparing quinoline
US4215063A (en) Oxidation catalyst and use in the production of anthraquinone
US2854457A (en) Process of preparing dipyridyls
US3020281A (en) Method of preparing quinoline
JP2631866B2 (en) Method for producing pyrimidines
KR0128541B1 (en) Process for preparation of cyanopyrazing
DE2736269C2 (en) Process for the preparation of pyridine
JP4321880B2 (en) Method for producing 3-cyanopyridine from 2-methyl-1,5-pentanediamine
JPS6021981B2 (en) Production method of cyanopyridines
US4523016A (en) Process for the catalytic dehydrogenation of piperidine
US3335144A (en) Method of producing pyridine and 2-picoline by decarboxylation
US3020280A (en) Quinoline synthesis