JPS6034514B2 - Manufacturing method of diamond sintered body - Google Patents

Manufacturing method of diamond sintered body

Info

Publication number
JPS6034514B2
JPS6034514B2 JP53040050A JP4005078A JPS6034514B2 JP S6034514 B2 JPS6034514 B2 JP S6034514B2 JP 53040050 A JP53040050 A JP 53040050A JP 4005078 A JP4005078 A JP 4005078A JP S6034514 B2 JPS6034514 B2 JP S6034514B2
Authority
JP
Japan
Prior art keywords
diamond
pressure
powder
sintered body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53040050A
Other languages
Japanese (ja)
Other versions
JPS54131611A (en
Inventor
昭夫 原
修示 矢津
明彦 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP53040050A priority Critical patent/JPS6034514B2/en
Publication of JPS54131611A publication Critical patent/JPS54131611A/en
Publication of JPS6034514B2 publication Critical patent/JPS6034514B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 ダイヤモンド焼結体は近年開発されたものであるが、工
具用材料としての地位を段々確たるものとしつつあり、
現在線引用ダイス、切削工具などに使われている。
[Detailed Description of the Invention] Diamond sintered bodies have been developed in recent years, and their position as a material for tools is gradually becoming more established.
Currently used for line drawing dies, cutting tools, etc.

切削工具として使った場合には問題となることは多くは
ないが、線引ダイスなどの耐摩用途に使用した場合には
、結合材として含まれている金属相が問題となる場合が
稀ではない。この金属相から摩耗が進行するとか、折角
のダイヤモンドのもつ優れた特性の一つである耐港着性
の少なさを金属相の存在が打消すといったような事項で
ある。この為ダイヤモンドのみからなる焼結体も提案さ
れているが、これを得るには、現在工業的に利用しうる
超高圧、高温装置では得られない超高圧、高温を必要と
するので、工業的ではない。そこで、本発明者らは、こ
のような欠点を改良したダイヤモンド焼結体について種
々検討した。例えば、結合材として非金属を使うことも
検討したが、充分な強度を有する焼結体は得難いことが
分かった。黒鉛からダイヤモンドへの変換触媒となるニ
ッケルなどの金属を使った場合、黒鉛およびダイヤモン
ドは、この溶融金属中に1部溶け込み、その焼結は、い
わゆる液相鱗結となる。ニッケルなどの金属はダイヤモ
ンドとの濡れ性が、WC結晶と溶融コバルトの場合など
のように良くないので、液相焼縞時ダイヤモンドからな
るスケルトンが形成され、金属はこのスケルトンにたま
りの形で存在することとなる。このたまりの大きさと量
が大きい時には前記したような欠点を示す。このあたり
の大きさと量を減らすことを本発明者らは考えた。そし
てこのたまりの成因が、ダイヤモンド粒子型押時にある
ことを見し、出した。一般に前述の如くのダイヤモンド
競結体を作成する場合、まず圧力をかけて、その後温度
を上げる。そして十分高温となった溶けた金属がダィャ
モンド粒子間の隙間に侵入する。従って圧力をかけた時
ダイヤモンド粒子間でひっかかりを生じ、いわゆる架橋
現象を生じた時には、この隙間が大きくなっている訳で
あるので、大きな金属相をこの部分に形成する。この大
きな金属相は、ここで溶着焼付現象を発生させたりして
前述したように焼給体全体の性能を劣化させる。本発明
は、このようなたまりの発生を減少させ、さらに、ダイ
ヤモンド粒子間間隙を減少させ含有される金属量を低下
させることにある。
There are not many problems when used as a cutting tool, but when used for wear-resistant applications such as wire drawing dies, the metal phase contained as a binder often becomes a problem. . Wear progresses from this metallic phase, or the presence of the metallic phase cancels out one of the excellent properties of diamond, which is its poor docking resistance. For this reason, sintered bodies made only of diamond have been proposed, but obtaining them requires ultra-high pressures and high temperatures that cannot be obtained with ultra-high pressure and high-temperature equipment that is currently available industrially. isn't it. Therefore, the present inventors have conducted various studies on diamond sintered bodies that have improved these drawbacks. For example, we considered using a nonmetal as a binding material, but it turned out that it was difficult to obtain a sintered body with sufficient strength. When a metal such as nickel is used as a catalyst for converting graphite to diamond, part of the graphite and diamond dissolves in the molten metal, and the sintering results in so-called liquid phase scaling. Metals such as nickel do not have good wettability with diamond, as in the case of WC crystals and molten cobalt, so a skeleton made of diamond is formed during liquid phase burning, and the metal exists in the form of a pool in this skeleton. I will do it. When the size and amount of this accumulation is large, the above-mentioned drawbacks occur. The present inventors considered reducing the size and amount of this area. They discovered that the cause of this buildup was during the diamond particle embossing process. Generally, when creating a diamond compact as described above, pressure is first applied and then the temperature is increased. The molten metal then reaches a sufficiently high temperature that it penetrates into the gaps between the diamond particles. Therefore, when pressure is applied, when diamond particles are caught and a so-called crosslinking phenomenon occurs, this gap becomes larger, and a large metal phase is formed in this area. This large metal phase causes the welding and seizure phenomenon, thereby degrading the performance of the entire firing body as described above. The object of the present invention is to reduce the occurrence of such accumulations, and further to reduce the amount of metal contained by reducing the gaps between diamond particles.

すなわち架橋を発生させない、もしくは一旦生成した架
橋を破壊することを考案したものである。その方法とし
て次の2通りが考えられる。一つは溶融金属の存在しな
いところで、これを行なうものであり他の一つは、結合
材となる金属の溶融体存在下でこれを行なうものである
。前者は、ダイヤモンド粉末の表面を黒鉛化し、この表
面に生成した黒鉛の強度の弱いことおよび潤滑性を利用
して架橋の発生を失くすというものである。予め粉末を
常圧または減圧下で黒鉛化しておく方法とホットプレス
時に、第1図a,b,c,d,eで示すようにダイヤモ
ンド不安定領域にさらし黒鉛化する方法とがある。後者
の方法は、ホットプレス時、例えば第1図a,b′,c
′eに示すように一日ダイヤモンド不安定領域内の高圧
下で結合材となる金属を溶融し、これをダイヤモンド粉
末と接触せしめダイヤモンド粉末間の架橋をダイヤモン
ド粉末の一部を金属中に溶かし込むこと、あるいは黒鉛
化することで壊すものである。いずれにしてもホットプ
レスの最後工程はダイヤモンド安定領域で行なわれるの
で、黒鉛化した部分は再びダイヤモンドに戻る。尚、第
1図のベルマン−シモン線■より上方■はダイヤモンド
安定領域を示し、下方@はダイヤモンド不安定領域を示
す。
That is, it was devised to prevent crosslinking from occurring or to destroy crosslinking once formed. There are two possible ways to do this: One method is to perform this in the absence of molten metal, and the other is to perform this in the presence of a molten metal serving as a bonding material. The former method involves graphitizing the surface of diamond powder and utilizing the low strength and lubricity of the graphite formed on the surface to prevent crosslinking. There is a method in which the powder is graphitized in advance under normal pressure or reduced pressure, and a method in which the powder is graphitized by exposing it to diamond unstable regions during hot pressing as shown in FIG. 1 a, b, c, d, and e. In the latter method, when hot pressing, for example, Fig. 1 a, b', c
As shown in 'e', the metal serving as the binder is melted under high pressure in the diamond unstable region for one day, and it is brought into contact with the diamond powder, and a part of the diamond powder is dissolved into the metal to form a bridge between the diamond powders. It can be destroyed by oxidation or graphitization. In any case, the final step of hot pressing is carried out in the diamond stable region, so the graphitized portion returns to diamond. In FIG. 1, the area (■) above the Berman-Simon line (■) indicates the diamond stable region, and the area below (@) indicates the diamond unstable region.

■はNi−C共晶線である。本発明の方法で製造された
ダイヤモンド焼結体は結合材のたまりが少なくなり、ダ
イヤモンドの含有量が増加するため強度や耐熱性が向上
する。
(2) is a Ni-C eutectic line. The diamond sintered body produced by the method of the present invention has less binding material and an increased diamond content, resulting in improved strength and heat resistance.

このため本発明の製造法による焼結ダイヤモンドは線引
ダイスのみならず、非金属、セラミック硬質プラスチッ
クの切削、ドリルビット、ドレッサー等にも使用でき優
れた性能を示す。以下実施例について説明する。
Therefore, the sintered diamond produced by the manufacturing method of the present invention can be used not only for wire drawing dies, but also for cutting non-metals, ceramic hard plastics, drill bits, dressers, etc., and exhibits excellent performance. Examples will be described below.

実施例 1 ニッケル製の容器に40/60メッシュのダイヤモンド
粉末を充填しホットプレスした。
Example 1 A nickel container was filled with 40/60 mesh diamond powder and hot pressed.

容器のニッケルの一部がダイヤモンド粉末間隔に侵入し
ても大丈夫なようにニッケル容器の厚みは十分厚くとっ
た。この容器をダイヤモンド合成に使用される超高圧高
温装置を用いてホットプレスした。まず圧力を40kb
にあげたのち1400qoに加熱し5分保持した。この
時はダイヤモンド不安定領域である。この後温度を14
00午0に保持したまま5球bまで圧力をゆっくりあげ
10分保持したのち降温後、更に降圧した。得られた焼
結体はNiが結合材として必要最低限含まれたもので破
面を研摩してみても、いわゆる金属プールは全く認めら
れなかった。得られた焼結体の比重は3.70で結合金
属量が僅か3.&容量%であることを示した。本実施例
の方法をとらず第1図a,b″,eのルートをとった時
には、得られた煉結体の比重は4.05となり、金属量
も多く(容量で10.4%)また沢山の金属プールが認
められた。
The thickness of the nickel container was made sufficiently thick so that even if some of the nickel in the container penetrated into the diamond powder space, there was no problem. This container was hot pressed using an ultra-high pressure and high temperature device used for diamond synthesis. First, increase the pressure to 40kb.
After heating to 1400 qo and holding for 5 minutes. This is the diamond unstable region. After this, increase the temperature to 14
While holding the temperature at 00:00, the pressure was slowly raised to 5 bulbs B and held for 10 minutes, and after the temperature was lowered, the pressure was further lowered. The obtained sintered body contained the necessary minimum amount of Ni as a binder, and even when the fractured surface was polished, no so-called metal pools were observed. The specific gravity of the obtained sintered body was 3.70, and the amount of bonded metal was only 3.70. & capacity%. When the route shown in Figure 1 a, b'', and e was taken instead of using the method of this example, the specific gravity of the obtained brick was 4.05, and the amount of metal was also large (10.4% by volume). Also, many metal pools were recognized.

実施例 2 実施例1と同じ構成の容器に充填した同じ粒度のダイヤ
モンド粉末と同様なダイヤモンド合成に使用される超高
圧高温装置を用いてホットプレスした。
Example 2 Diamond powder of the same particle size was filled in a container with the same configuration as in Example 1 and hot pressed using the same ultra-high pressure and high temperature equipment used for diamond synthesis.

まず圧力を40kb にあげたのち温度を125000
にあげ10分間保持した。その後圧力を5球bまで、ゆ
っくりあげ更に温度を140000まであげ10分間保
持したのち降温、降圧し試料をとり出した。得られたダ
イヤモンド暁結体の比重は3.82であった。比重より
計算すると、これは暁結体中に6.0容量%の金属Ni
を含むものである。また被面を研摩し顕微鏡で観察した
ところ金属ループは殆んど認められなかった。実施例
3 粒度100/200メッシュのダイヤモンド粉末を鰍銅
製の容器に充填し、この上を鉄粉の型押体で栓をし、こ
のキ全の上に銅の小片をおいた。
First, increase the pressure to 40kb and then increase the temperature to 125,000.
It was heated and held for 10 minutes. Thereafter, the pressure was slowly increased to 5 bulbs b, and the temperature was further increased to 140,000 and held for 10 minutes, then the temperature and pressure were lowered, and a sample was taken out. The specific gravity of the obtained Diamond Akatsuki compact was 3.82. Calculating from the specific gravity, this means that 6.0% by volume of metallic Ni is present in the Akatsuki compact.
This includes: Furthermore, when the surface was polished and observed under a microscope, almost no metal loops were observed. Example
3. Diamond powder with a grain size of 100/200 mesh was filled into a bronze container, the top of which was sealed with an embossed iron powder, and a small piece of copper was placed on top of the container.

この全体を10‐4側Hgの真空下で110000まで
昇温し脱ガスすると同時に密栓した。この容器を実施例
1と同じ超高圧高温装置を用いてホットプレスした。ま
ず40kbまで昇圧後135000まで加熱した。この
時銅と鉄の成分からなる溶融金属がダイヤモンド粉末間
に侵入する。ついで、これを55kbまで昇圧し10分
間保持した。降温、降圧下試料をとり出したところ比重
3.75の金属含有量の少ない繊密な凝結体を得た。実
施例 4 粒度20−30〃のダイヤモンド粒子と粒度1一10山
のダイヤモンド粒子を2:1に混合した。
The whole was heated to 110,000 ℃ under a vacuum of Hg on the 10-4 side, degassed, and at the same time sealed tightly. This container was hot pressed using the same ultra-high pressure and high temperature apparatus as in Example 1. First, the pressure was increased to 40 kb and then heated to 135,000. At this time, molten metal consisting of copper and iron penetrates between the diamond powders. This was then boosted to 55 kb and held for 10 minutes. When the sample was taken out at a lower temperature and pressure, a dense aggregate with a specific gravity of 3.75 and a low metal content was obtained. Example 4 Diamond particles with a particle size of 20-30 and diamond particles with a particle size of 1-10 were mixed at a ratio of 2:1.

この混合粉末を150000で1時間10‐4肋Hgの
真空下で加熱しダイヤモンド粒子の表面に黒鉛化した後
、WC−15%Coよりなる容器に、充てんWC−15
%Coの栓をした。この容器を超高圧高温装置に入れ、
55kb140000で10分間保持した後、降溢、降
圧し試料をとり出した。得られたダイヤモンド凝結体は
金属のたまりはなく、ダイヤモンド粒子同志が互いに強
固に結合しており、6.1容量%のWC−Co共晶組成
の合金を結合相として含有するものであった。この焼結
体を加工して切削加工用のバイトを作成し、アルミナセ
ラミックを切削速度50m/分、切込み1肋、送り0.
1脚/回転湿式で2粉ご間切削した。比較のため、市販
の焼結ダィャモンドのバイトも作成しアルミナセラミッ
クを切削した。その結果、本発明方法により、製造した
糠結ダイヤモンドは逃げ面摩耗中が0.1肌であったの
に対し比較品のそれは0.31側であった。実施例 5
粒度2〜8仏のダイヤモンド粒子を160000で1時
間10‐4肌Hgの真空下で黒鉛化処理した後(Mow
)C−Co−Niよりなる容器に充てんし実施例4と同
様の条件で超高圧競結した。
This mixed powder was heated at 150,000 for 1 hour under a vacuum of 10-4 Hg to graphitize the surface of the diamond particles, and then filled into a container made of WC-15% Co.
It was capped with %Co. This container is placed in an ultra-high pressure and high temperature device,
After holding at 55kb140000 for 10 minutes, the pressure was lowered and the sample was taken out. The obtained diamond aggregate had no metal accumulation, diamond particles were strongly bonded to each other, and contained 6.1% by volume of an alloy having a WC-Co eutectic composition as a bonding phase. This sintered body was processed to create a cutting tool for cutting the alumina ceramic at a cutting speed of 50 m/min, depth of cut of 1, and feed of 0.
1 leg/rotating wet machine to cut 2 pieces. For comparison, a commercially available sintered diamond cutting tool was also created to cut alumina ceramic. As a result, the brazed diamond produced by the method of the present invention had flank wear of 0.1 skin, while that of the comparative product was on the 0.31 side. Example 5
After graphitizing diamond particles with a particle size of 2 to 8 French at 160,000 for 1 hour under a vacuum of 10-4 skin Hg (Mow
) The mixture was filled into a container made of C-Co-Ni and subjected to ultra-high pressure competition under the same conditions as in Example 4.

試料を取り出して組織を観察したところ、金属プールは
認められず全面にわたってダイヤモンドが均一に結合し
ていた。また焼結体中には65%の(Mow)C−Co
−Ni共晶組成の合金を含有してこの糠結体を加工して
線引用ダイスを作成し銅線を伸線したところ、市販の焼
給ダイヤモンドダイスの3倍の寿命であった。実施例
6 粒度10仏肌以下のダイヤモンド粒子を実施例4と同条
件で黒鉛化処理した後、TIC−Mよりなる容器に黒鉛
化したダイヤモンド粉末を充てんし53kb14000
0で10分間超高圧高温装置で焼結した。
When the sample was taken out and its structure was observed, no metal pools were observed, and diamonds were bonded uniformly over the entire surface. In addition, 65% (Mow)C-Co is contained in the sintered body.
When this bran containing an alloy with a -Ni eutectic composition was processed to create a wire drawing die and a copper wire was drawn, the life was three times longer than that of a commercially available fired diamond die. Example
6 After graphitizing diamond particles with a particle size of 10 diamonds or less under the same conditions as in Example 4, a container made of TIC-M was filled with the graphitized diamond powder and 53kb14000
Sintering was carried out in an ultra-high pressure and high temperature apparatus at 0 for 10 minutes.

得られた焼結ダイヤモンドは、7.1容量%のTIC−
Ni共晶組成の合金を含むもので、ダイヤモンド粒子は
互いに結合したものであった。この競結ダイヤモンドを
切削用のバイトに加工して、Aそ−25%Siを、切削
速度300m/分、切込み0.2肌、送り0.025肋
/回転で1時間切削した。比較のため、市販の焼結ダイ
ヤモンドのバイトも作成しテストした。その結果本発明
品の逃げ面摩耗中は、0.03仇ゆであったのに対し、
比較材のそれは0.08仇吻であった。実施例 7 粒度100山一120仏のダイヤモンド粒子、粒度40
−60仏のダイヤモンド粒子、粒度10一20山のダイ
ヤモンド粒子、粒度2一6一のダイヤモンド粒子を60
:25:10:5の割合し、で混合した後、1500o
oで3び分間10‐4肋Hgの真空下で黒鉛化させた。
The obtained sintered diamond contained 7.1% by volume of TIC-
It contained an alloy with a Ni eutectic composition, and the diamond particles were bonded to each other. This competitive diamond was processed into a cutting tool, and A-25% Si was cut for 1 hour at a cutting speed of 300 m/min, a depth of cut of 0.2 skin, and a feed rate of 0.025 ribs/rotation. For comparison, a commercially available sintered diamond cutting tool was also created and tested. As a result, while the flank wear of the product of the present invention was 0.03 mm,
That of the comparative material was 0.08 m. Example 7 Diamond particles with particle size of 100 and 120 Buddha, particle size of 40
-60 French diamond particles, particle size 10-20 mountain diamond particles, particle size 2-61 diamond particles 60
:25:10:5 ratio, mixed at 1500o
Graphitization was carried out under a vacuum of 10-4 Hg for 3 minutes at 10°C.

WC−Coの容器にこの粉末を充てんし、この上にCo
板を置いて、超高圧高温装置で56kb,1450qC
で15分間焼結した。試料を取り出して焼結ダイヤモン
ドを観察したところダイヤモンド粒子が互いに結合した
繊密な組織を有していた。この焼結体を用いて花嵐岩を
切削速度200の/分切込み1柳、送り0.2側/回湿
式で切削した。比較のため、市販のビット用のダイヤモ
ンド暁結体のテストも行った。その結果、本発明の焼結
体は5分切削して逃げ面摩耗中が0.15側であったの
に対し、比較材のそれは0.6側であった。実施例 8 粒度5仏側以下のダイヤモンド粒子を155000で1
時間10‐4肋Hgの真空中で黒鉛化処理した。
Fill a WC-Co container with this powder and place Co on top of it.
Place the plate and heat it to 56kb, 1450qC using an ultra-high pressure and high temperature equipment.
It was sintered for 15 minutes. When the sample was taken out and the sintered diamond was observed, it was found that it had a dense structure in which diamond particles were bonded to each other. This sintered body was used to cut karanite at a cutting speed of 200/min, a cutting depth of 1 willow, and a feed rate of 0.2 side/times in a wet manner. For comparison, we also tested a commercially available diamond compact for bits. As a result, the flank wear of the sintered body of the present invention after 5 minutes of cutting was on the 0.15 side, while that of the comparative material was on the 0.6 side. Example 8 Diamond particles with a particle size of 5 or less are 155,000
Graphitization was carried out in a vacuum of 10-4 hours Hg.

このダイヤモンド粒子と粒度15仏の以下のダイヤモン
ド粒子を容量で1:1に混合した後、この粉末をMo製
の筒にWC−Coの容器に充てんし、超高圧高温装置に
入れ、5球b、145000で15分間焼結した。焼結
体を取り出して組織を観察したところ非常に繊密であっ
た。この競結体を加工して、切削加工用のバイトを作成
し、硬質粒子を含有した樹脂を切削速度200肌/分、
切込み0.5肌、送り0.1肌/回転で2び分間加工し
た。比較のため同程度の粒度の市販のダイヤモンド暁緒
体のバイトを作成しテストした。その結果本発明品の逃
げ面摩耗中は0.2帆であったのに対し比較品のそれは
0.35側であった。
After mixing these diamond particles and diamond particles with a particle size of 15 French or less in a volume ratio of 1:1, this powder was filled into a Mo cylinder and a WC-Co container, and placed in an ultra-high pressure and high temperature equipment. , 145,000 for 15 minutes. When the sintered body was taken out and its structure was observed, it was found to be very delicate. This compact was processed to create a cutting tool, and a resin containing hard particles was applied at a cutting speed of 20 skin/min.
Machining was performed for 2 minutes with a cut depth of 0.5 skin and a feed rate of 0.1 skin/rotation. For comparison, a commercially available diamond cutting tool with a similar particle size was prepared and tested. As a result, the flank wear of the product of the present invention was 0.2 sail, while that of the comparative product was 0.35.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はダイヤモンド安定、不安定領域及びホットプレ
ス条件を示す図である。 縦軸は圧力(kb)機軸は温度(℃)を示す。オー図
FIG. 1 is a diagram showing diamond stability, unstable regions, and hot pressing conditions. The vertical axis shows pressure (kb) and the mechanical axis shows temperature (°C). O diagram

Claims (1)

【特許請求の範囲】 1 ダアヤモンド粉末の表面をダイヤモンド不安定圧力
、温度範囲において黒鉛化させた後、該ダイヤモンド粉
末と結合金属を接触させ、ダイヤモンド安定圧力、温度
範囲内でダイヤモンド粉末と結合金属を焼結することを
特徴とするダイヤモンド焼結体の製造法。 2 ダイヤモンド粉末をダイヤモンド不安定圧力、温度
範囲における高圧下で溶融した結合金属と接触させて黒
鉛化させたダイヤモンド安定圧力温度範囲内でダイヤモ
ンド粉末と結合金属を焼結することを特徴とするダイヤ
モンド焼結体の製造法。
[Claims] 1. After graphitizing the surface of the diamond powder at a diamond unstable pressure and temperature range, the diamond powder and the bonding metal are brought into contact with each other, and the diamond powder and the bonding metal are brought into contact with each other within the diamond stable pressure and temperature range. A method for producing a diamond sintered body characterized by sintering. 2 Diamond sintering, characterized by sintering the diamond powder and the bonding metal within the stable diamond pressure and temperature range, in which diamond powder is graphitized by contacting it with a bonding metal melted under high pressure in a diamond unstable pressure and temperature range. Method of manufacturing solids.
JP53040050A 1978-04-04 1978-04-04 Manufacturing method of diamond sintered body Expired JPS6034514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53040050A JPS6034514B2 (en) 1978-04-04 1978-04-04 Manufacturing method of diamond sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53040050A JPS6034514B2 (en) 1978-04-04 1978-04-04 Manufacturing method of diamond sintered body

Publications (2)

Publication Number Publication Date
JPS54131611A JPS54131611A (en) 1979-10-12
JPS6034514B2 true JPS6034514B2 (en) 1985-08-09

Family

ID=12570074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53040050A Expired JPS6034514B2 (en) 1978-04-04 1978-04-04 Manufacturing method of diamond sintered body

Country Status (1)

Country Link
JP (1) JPS6034514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126216A (en) * 1985-11-26 1987-06-08 Honda Motor Co Ltd Side branch type muffler
JPH0313760A (en) * 1989-06-12 1991-01-22 Matsushita Electric Ind Co Ltd Combustion device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59563B2 (en) * 1981-10-26 1984-01-07 科学技術庁無機材質研究所長 Manufacturing method of diamond sintered body
ZA826297B (en) * 1981-10-30 1983-11-30 Gen Electric Sintering diamond
JPS59152267A (en) * 1983-02-18 1984-08-30 東芝タンガロイ株式会社 Manufacture of diamond sintered body
JPS59159902A (en) * 1983-03-03 1984-09-10 Toshiba Tungaloy Co Ltd Production of composite sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126216A (en) * 1985-11-26 1987-06-08 Honda Motor Co Ltd Side branch type muffler
JPH0313760A (en) * 1989-06-12 1991-01-22 Matsushita Electric Ind Co Ltd Combustion device

Also Published As

Publication number Publication date
JPS54131611A (en) 1979-10-12

Similar Documents

Publication Publication Date Title
EP1341865B1 (en) Method for the production of polycrystalline abrasive grit
KR100853060B1 (en) Method of producing an abrasive product containing diamond
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JPS5940579B2 (en) Cubic boron nitride/sintered carbide abrasive
JPS6357384B2 (en)
JPS6213306B2 (en)
JPS5819428B2 (en) Polishing object and manufacturing method thereof
JPH02167668A (en) Making of abrasive products
JPS6229387B2 (en)
JPS6213307B2 (en)
JPS6034514B2 (en) Manufacturing method of diamond sintered body
JPS627149B2 (en)
JPS6140722B2 (en)
JPH07300375A (en) Cemented carbide abrasion-resistant material and method for producing the same
JPH0348252B2 (en)
JPS62105911A (en) Hard diamond mass and production thereof
JPS61270074A (en) Body for polishing
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPS6137221B2 (en)
JPS59563B2 (en) Manufacturing method of diamond sintered body
RU2625693C2 (en) Method of producing polycrystalline diamond materials
RU2296041C2 (en) Metallic bond for manufacture of the segments on the basis of the superhard materials for production of the cutting tools and the method of the cutting tools manufacture
JPS60263601A (en) Composite sintered tool
JPS6121972A (en) Hard polycrystal diamond and manufacture
JPS6012161B2 (en) Sintered diamond tool material and its manufacturing method