JPS6034286A - Method of reducing load torque by arm's own weight - Google Patents

Method of reducing load torque by arm's own weight

Info

Publication number
JPS6034286A
JPS6034286A JP13943483A JP13943483A JPS6034286A JP S6034286 A JPS6034286 A JP S6034286A JP 13943483 A JP13943483 A JP 13943483A JP 13943483 A JP13943483 A JP 13943483A JP S6034286 A JPS6034286 A JP S6034286A
Authority
JP
Japan
Prior art keywords
arm
spring
weight
torque
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13943483A
Other languages
Japanese (ja)
Other versions
JPH0471672B2 (en
Inventor
新家 達弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13943483A priority Critical patent/JPS6034286A/en
Publication of JPS6034286A publication Critical patent/JPS6034286A/en
Publication of JPH0471672B2 publication Critical patent/JPH0471672B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、関節形ロボットのアームに関して、該アーム
の自重による回転力を相殺してアーム駆動用アクチュエ
ータの負荷トルクを軽減する方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an arm of an articulated robot, and relates to a method of reducing the load torque of an actuator for driving the arm by offsetting the rotational force due to the arm's own weight. .

〔発明の背景〕[Background of the invention]

生産工程の自動化は年々進み、特に組立工程にロボット
を導入し、フレキシブルな自動化を行う試みが盛んに行
われている。これに用いられるロボットは設置スペース
に比較し大きな作業範囲のとれる関節形ロボットが多い
Automation of production processes is progressing year by year, and in particular, there are many attempts to introduce robots into assembly processes and achieve flexible automation. The robots used for this purpose are often articulated robots that have a large working range compared to the installation space.

第1図は上記関節形ロボットの概要的な機構説明図であ
る。この関節形ロボット1は、通常、旋回ペース2の上
に上腕3を回動自在に軸支し、この上腕3の先端部に前
腕4を、更にその先端部に手首部5をそれぞれ回動自在
に軸支した構造である。このため、上腕3の駆動用アク
チュエータ6および前腕4の駆動用アクチュエータ7は
、手首部5がワークを把持していない場合でも、上腕ろ
、前腕4の姿勢に応じて、姿勢保持のための所要出力が
変化する。
FIG. 1 is a schematic explanatory diagram of the mechanism of the articulated robot. This articulated robot 1 normally has an upper arm 3 rotatably supported on a rotating pace 2, a forearm 4 at the tip of the upper arm 3, and a wrist 5 at the tip thereof. The structure is pivoted on the Therefore, the actuator 6 for driving the upper arm 3 and the actuator 7 for driving the forearm 4 are operated according to the postures of the upper arm and forearm 4 even when the wrist portion 5 is not gripping the workpiece. Output changes.

第2図(イ)は、腕の自重によるトルクを示すための楔
形図、第2図[F])は姿勢保持のための所要トルクと
腕の姿勢との関係を示す図表である。
FIG. 2(a) is a wedge-shaped diagram showing the torque due to the arm's own weight, and FIG. 2(F) is a chart showing the relationship between the required torque for posture maintenance and the arm posture.

腕10の姿勢保持のためのトルクをTとし、腕10の自
重をWl 回転軸11から腕10の重心12までの距離をL、腕1
0の、垂直姿勢からの回転角をθ、とすると、T−”W
Ls石θの関係が成立する。
The torque for maintaining the posture of the arm 10 is T, the weight of the arm 10 is Wl, the distance from the rotation axis 11 to the center of gravity 12 of the arm 10 is L, and the arm 1
If the rotation angle from the vertical position of 0 is θ, then T-”W
The relationship Ls stone θ is established.

θ−0°のとき、すなわち、腕が垂直のときの位置保持
トルクは零であるが、θ−90°即ち腕が水平のときは
a&なる。このように関節形ロボットでは腕の位置保持
のため、駆動用アクチュエータの選択にあたり、負荷の
保持・搬送(加速)トルクに加えて上記の様な腕の位置
保持トルクを加味−する必要がある。このためロボット
の部品把持能力に比較して大きな容量のアクチュエータ
を選定する必要があり、またこれによりロボットの自重
を増加させてしまうという問題があった。さらに第2図
CB)からも明らかなようにある角度で保持されている
腕を時計方向又は反時計方向に加速して動かす場合、重
力の方向に沿うか逆5かにより、その時アクチュエータ
が必要とする出力トルクが大きく変化し、その加速特性
が異なるという問題があった。このためアクチーエータ
のゲイン定数を時計方向加速の場合と反時計方向加速の
場合とで違える等の処置を行っているが、負荷変動が大
きい時はこれで充分な対策できず問題を残している。
At θ-0°, that is, when the arm is vertical, the position holding torque is zero, but when θ-90°, that is, when the arm is horizontal, the position holding torque becomes a&. In this manner, in order to maintain the position of the arm in an articulated robot, when selecting a drive actuator, it is necessary to take into account the above-mentioned arm position holding torque in addition to the load holding/transfer (acceleration) torque. For this reason, it is necessary to select an actuator with a large capacity compared to the robot's part gripping ability, which also poses a problem of increasing the robot's own weight. Furthermore, as is clear from Figure 2 CB), when accelerating and moving an arm held at a certain angle clockwise or counterclockwise, an actuator is required depending on whether it is along the direction of gravity or in the opposite direction. There was a problem in that the output torque changed greatly and the acceleration characteristics were different. For this reason, countermeasures have been taken, such as changing the gain constant of the actuator for clockwise acceleration and counterclockwise acceleration, but this is not a sufficient countermeasure when load fluctuations are large, and the problem remains.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて従来技術の欠点を解消すべ
く創作されたもので、その目的とする所はロボットアー
ムの自重を支承するためのアクチュエータの出力トルク
を軽減し得る方法を提供し、アクチュエータの小型化、
省エネルギー化に貢献しようとするものである。
The present invention was created in view of the above-mentioned circumstances in order to eliminate the drawbacks of the prior art, and its purpose is to provide a method that can reduce the output torque of an actuator for supporting the weight of a robot arm. , miniaturization of actuators,
The aim is to contribute to energy conservation.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明はアームの垂直の姿
勢を基準姿勢としてこの基準姿勢からの回動角に比例し
て撓むバネ機構を設け、このバネがアームに与える反力
のトルクと、該アームの自重によって生じるトルクとを
拮抗させてアーム駆動用アクチュエータの出力トルクを
軽減せしめることを特徴とする。
In order to achieve the above object, the present invention sets the vertical posture of the arm as a reference posture, and provides a spring mechanism that deflects in proportion to the rotation angle from this reference posture, and the torque of the reaction force exerted by this spring on the arm. , the output torque of the arm driving actuator is reduced by counteracting the torque generated by the arm's own weight.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例を第3図乃至第5図について説
明する。
Next, an embodiment of the present invention will be described with reference to FIGS. 3 to 5.

6 ・ 第3図は本発明方法を実施するために構成したロボット
の一例における部分断面側面図、第4図は同部分断面正
面図である。
6. FIG. 3 is a partially sectional side view of an example of a robot configured to carry out the method of the present invention, and FIG. 4 is a partially sectional front view of the robot.

本例のロボットは第6図に示すように、ロボットの腕1
0、回転軸11、回転軸を支持するペース部15、腕の
駆動用アクチュエータ16およびばね機構部17よりな
る。
The robot of this example has the arm 1 of the robot as shown in FIG.
0, a rotating shaft 11, a pace section 15 that supports the rotating shaft, an actuator 16 for driving the arm, and a spring mechanism section 17.

ばね機#1117は第3図、第4図に示すようにペース
部15に回転軸11と同軸に取り付けられており、回転
軸11σ月O]転に対し、反力を発生する圧縮コイルば
ね18.19、中間回転板20、および固定板21より
構成されている。なお、中間回転板20は回転軸11、
固定板21に対して摺動自在となっている。ばね18は
、図示するように腕10と一体で回転する回転軸11の
円周部より突出させたばね受け22と中間回転板20内
のばね受け23間に配設し、ばね19は中間回転板20
のばね受け24と固定板21のばね受け25間に配設し
である。
As shown in FIGS. 3 and 4, the spring machine #1117 is attached to the pace part 15 coaxially with the rotating shaft 11, and includes a compression coil spring 18 that generates a reaction force against the rotation of the rotating shaft 11. .19, an intermediate rotating plate 20, and a fixed plate 21. Note that the intermediate rotating plate 20 has the rotating shaft 11,
It is slidable with respect to the fixed plate 21. As shown in the figure, the spring 18 is disposed between a spring receiver 22 protruding from the circumference of the rotating shaft 11 that rotates together with the arm 10 and a spring receiver 23 in the intermediate rotating plate 20, and the spring 19 is disposed between the spring receiver 23 inside the intermediate rotating plate 20. 20
It is arranged between the spring receiver 24 of the fixed plate 21 and the spring receiver 25 of the fixed plate 21.

以下、本構成における作用について説明する。The effects of this configuration will be explained below.

ロボットの腕10が矢印入方向(ばね機構からみて時計
方向)に回転すると、回転軸11も同じたけ回転する。
When the arm 10 of the robot rotates in the direction of the arrow (clockwise as seen from the spring mechanism), the rotating shaft 11 also rotates by the same amount.

すると回転軸11上のばね受け22によりばね18が撓
み、回転軸11を元に戻す反力が発生する。この時はね
19は中間回転板20が動かないため、回転軸11に対
して反力は発生しない。
Then, the spring 18 is bent by the spring receiver 22 on the rotating shaft 11, and a reaction force is generated that returns the rotating shaft 11 to its original state. At this time, since the intermediate rotating plate 20 does not move in the spring 19, no reaction force is generated against the rotating shaft 11.

ばね18の反力による反時計方向のモーメントとハンド
等を含めた腕10の重量による時計方向のモーメントが
等しくなる様にすれば、腕10は無重力状態と等価とな
り、わずかの力で時計方向、又は反時計方向へ動かすこ
とができる。
If the counterclockwise moment due to the reaction force of the spring 18 and the clockwise moment due to the weight of the arm 10 including the hand etc. are made equal, the arm 10 will be in a weightless state, and it can be moved clockwise with a small force. Or you can move it counterclockwise.

第5図(A)は前掲の第2図(3)の図表上に上記のば
ねによる反力トルクを追記した図表である。
FIG. 5(A) is a chart in which the reaction torque due to the above spring is added to the chart of FIG. 2(3) mentioned above.

腕100重量による時計方向の回転モーメントは山θの
関数となるため、はね18による反力のモーメントを、
腕10の回転角全域にわたって等価とすることは困難で
ある。第5図[F])は上記双方のモーメントの差を表
わした図表である。ばね18による反力がθに比例する
としても、これと腕10の重量によるモーメントの差Δ
Tは小さい為、腕10の位置保持に要するアクチェエー
タの出力トルクは小さくて済む。同様にして腕10が垂
直状態から反時計方向Bへ回転した場合は、回転軸11
は中間回転板20と一体に回転するため、ばね19を撓
ませる。このばね19の反力によるモーメントの大きさ
を前述のばね18による場合と同様に選定すれば腕10
は垂直状態から時計方向。
Since the clockwise rotational moment due to the weight of the arm 100 is a function of the peak θ, the moment of the reaction force due to the spring 18 is expressed as
It is difficult to maintain equality over the entire rotational angle of the arm 10. FIG. 5 [F]) is a chart showing the difference between the two moments mentioned above. Even if the reaction force by the spring 18 is proportional to θ, the difference Δ between this and the moment due to the weight of the arm 10 is
Since T is small, the output torque of the actuator required to maintain the position of the arm 10 is small. Similarly, when the arm 10 rotates from the vertical position in the counterclockwise direction B, the rotation axis 11
rotates together with the intermediate rotary plate 20, thereby bending the spring 19. If the magnitude of the moment due to the reaction force of the spring 19 is selected in the same manner as in the case of the spring 18 described above, the arm 10
is clockwise from the vertical position.

反時計方向のいずれに回転しても、無重力に近い状態に
出来、位置保持トルクが小さくて所むことになる。なお
図よりも明らかな様にばね19が作用する時は、回転軸
11と中間回転板20は一体となって回転するため、は
ね18は回転軸11に対して反力を及ぼさない。
No matter which direction it is rotated in the counterclockwise direction, it will be in a state close to zero gravity, and the position holding torque will be small. As is clear from the figure, when the spring 19 acts, the rotating shaft 11 and the intermediate rotary plate 20 rotate together, so the spring 18 does not exert a reaction force on the rotating shaft 11.

第6図(A)は、本発明方法を実施するために構成した
ロボットで、前記と異なる一例の正面図、第6図CB)
は同じく側面図である。図示の構成部分はベース部に設
けてあり、11は腕10に固着した回転軸である。ねじ
りコイルバネ60は回転軸11に外嵌してあり、その一
端32は回転軸11のフランジ面に配設したビン34を
迂回して固定板35に取付けたビン66に引掛けられて
いる。又他のコイル端63はビン34 、36に対して
コイル端62と対称に配置するようにし、ビン66に引
掛けられている。
Fig. 6(A) is a front view of an example of a robot configured to carry out the method of the present invention, which is different from the above, Fig. 6(CB)
is also a side view. The illustrated components are provided on the base, and reference numeral 11 is a rotating shaft fixed to the arm 10. The torsion coil spring 60 is fitted onto the rotating shaft 11, and one end 32 of the spring 60 is hooked onto a pin 66 attached to a fixed plate 35, bypassing a pin 34 provided on the flange surface of the rotating shaft 11. The other coil end 63 is disposed symmetrically with the coil end 62 with respect to the bins 34 and 36, and is hooked onto the bin 66.

回転軸11が時計方向(図中のAの方向)に回転すると
ビン34も回転する。ねじりコイルばね60は一端32
をビン56に固定され、他端63がビンMと一体で回転
するため該ばねのねじりによる反力がビン64に作用す
る。これによるモーメントにより前記の実施例と同様の
効果を発生させることができる。
When the rotating shaft 11 rotates clockwise (direction A in the figure), the bin 34 also rotates. The torsion coil spring 60 has one end 32
is fixed to the bottle 56, and since the other end 63 rotates together with the bottle M, a reaction force due to the torsion of the spring acts on the bottle 64. The resulting moment can produce the same effect as in the previous embodiment.

以上の二側のごとく構成したロボットを用いて本発明方
法を実施すると、その効果は腕を垂直に直立させた基準
の姿勢からプラスマイナス90°の範囲に限られるが、
通常の関節形ロボットの上腕、前腕の可動範囲は上記の
角度内であるため、実用上支障となることはない。
When the method of the present invention is carried out using a robot configured as shown in the two above, the effect is limited to a range of plus or minus 90 degrees from the standard posture with the arms upright.
Since the movable range of the upper arm and forearm of a normal articulated robot is within the above-mentioned angle, there is no problem in practical use.

またばねを設置するに際し適度なプリロードをかけた方
が良い場合もあるが、これは、はね又は取付場所の工夫
により任意に設定できることはいうまでもない。
Furthermore, when installing the spring, it may be better to apply an appropriate preload, but it goes without saying that this can be set arbitrarily by devising the spring or the mounting location.

7 ・ また、本発明の方法を実施する場合、腕の回転運動に対
してダンパ効果を持たせたいとぎは第7図に示すように
、回転軸11の周囲に密閉したオイル室40を設け、回
転軸11にスィーパ41を固着するとともに絞り板42
を適宜に配設すれば良い。
7. In addition, when carrying out the method of the present invention, a sealed oil chamber 40 is provided around the rotating shaft 11, as shown in FIG. The sweeper 41 is fixed to the rotating shaft 11, and the aperture plate 42
may be placed appropriately.

〔発明の効果〕〔Effect of the invention〕

以上詳述し7たように、本発明のアームの自重による負
荷トルク軽減方法を適用すると、ロボットアームの自重
を支承するためのアクチュエータの出力トルクを軽減す
ることができるので、アクチュエータの小型化、省エネ
ルギー化に夏献するところ多大である。
As described in detail above, when the method of reducing the load torque due to the arm's own weight of the present invention is applied, the output torque of the actuator for supporting the robot arm's own weight can be reduced, so the actuator can be made smaller and Much has been made of the summer's dedication to energy conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は関節形ロボットの概要的な機構説明図、第2図
(A>は同じく模型図、第2図(B)は同じく保持トル
クを示す図表である。第3図は本発明方法を実施するた
めに構成したロボットの一例における部分断面側面図、
第4図は同部分断面正面図である。第5図(イ)、(B
)は本発明の詳細な 説明するための図表である。第6図は本発明を実施する
ために構成した、上記と異なるロボットの一例の一部分
を示し、同図(5)は正面図、同図(B)は側面図であ
る。第7図は本発明の実施に際して併用するダンパの一
例を示す断面図である。 10・・・ロボットの腕、11・・・腕の回転軸、18
.19・・・圧縮コイルばね、20・・・中間回転板、
21・・・固定板、 30・・・ねじりコイルばね。 第 7図 (A) (β) 第3厘 第4図 第 乙 mコ (’、4) (B) // HA 第 7 図 1/
Fig. 1 is a schematic explanatory diagram of the mechanism of an articulated robot, Fig. 2 (A> is also a model diagram, and Fig. 2 (B) is a chart showing the holding torque. Fig. 3 is a diagram showing the method of the present invention. A partial cross-sectional side view of an example of a robot configured for implementation,
FIG. 4 is a partially sectional front view of the same. Figure 5 (A), (B)
) is a diagram for explaining the present invention in detail. FIG. 6 shows a portion of an example of a robot configured to carry out the present invention, which is different from the one described above, with FIG. 6 (5) being a front view and FIG. 6 (B) being a side view. FIG. 7 is a sectional view showing an example of a damper used in conjunction with the implementation of the present invention. 10... Robot arm, 11... Arm rotation axis, 18
.. 19... Compression coil spring, 20... Intermediate rotating plate,
21... Fixed plate, 30... Torsion coil spring. Figure 7 (A) (β) Figure 3 Figure 4 Otsu mko (', 4) (B) // HA Figure 7 Figure 1/

Claims (1)

【特許請求の範囲】[Claims] 関節形ロボットのアームにおいて、該アームの垂直の姿
勢を基準姿勢としてこの基準姿勢からの回動角に比例し
て撓むバネ機構を設け、このバネがアームに与える反力
のトルクと、該アームの自重によって生じるトルクとを
拮抗させて、アーム駆動用アクチュエータの所要トルク
を軽減させることを%徴とする、ロボットアームの自重
による負荷トルクの軽減方法。
The arm of an articulated robot is provided with a spring mechanism that bends in proportion to the rotation angle from the vertical posture of the arm as a reference posture, and the torque of the reaction force exerted on the arm by this spring and the arm A method for reducing the load torque due to the robot arm's own weight, which is characterized by reducing the required torque of the arm drive actuator by counteracting the torque generated by the robot arm's own weight.
JP13943483A 1983-08-01 1983-08-01 Method of reducing load torque by arm's own weight Granted JPS6034286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13943483A JPS6034286A (en) 1983-08-01 1983-08-01 Method of reducing load torque by arm's own weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13943483A JPS6034286A (en) 1983-08-01 1983-08-01 Method of reducing load torque by arm's own weight

Publications (2)

Publication Number Publication Date
JPS6034286A true JPS6034286A (en) 1985-02-21
JPH0471672B2 JPH0471672B2 (en) 1992-11-16

Family

ID=15245101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13943483A Granted JPS6034286A (en) 1983-08-01 1983-08-01 Method of reducing load torque by arm's own weight

Country Status (1)

Country Link
JP (1) JPS6034286A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100183U (en) * 1986-12-19 1988-06-29
JP2008200790A (en) * 2007-02-19 2008-09-04 Kobe Steel Ltd Joint mechanism
WO2019054464A1 (en) * 2017-09-15 2019-03-21 Groove X株式会社 Comically moving robot and structure thereof
CN110834324A (en) * 2018-08-15 2020-02-25 纳博特斯克有限公司 Rotation holding device and robot
JP2020028969A (en) * 2018-08-15 2020-02-27 ナブテスコ株式会社 Rotation holding device, and robot
US20200189125A1 (en) * 2017-06-29 2020-06-18 Sony Interactive Entertainment Inc. Robot joint structure
US20220226984A1 (en) * 2021-01-15 2022-07-21 Beijing Xiaomi Mobile Software Co., Ltd. Legged robot and leg assembly thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100183U (en) * 1986-12-19 1988-06-29
JP2008200790A (en) * 2007-02-19 2008-09-04 Kobe Steel Ltd Joint mechanism
US20200189125A1 (en) * 2017-06-29 2020-06-18 Sony Interactive Entertainment Inc. Robot joint structure
US11787068B2 (en) * 2017-06-29 2023-10-17 Sony Interactive Entertainment Inc. Robot joint structure
WO2019054464A1 (en) * 2017-09-15 2019-03-21 Groove X株式会社 Comically moving robot and structure thereof
GB2580832A (en) * 2017-09-15 2020-07-29 Groove X Inc Comically moving robot and structure thereof
GB2580832B (en) * 2017-09-15 2022-04-06 Groove X Inc Robot that acts comically, and structure thereof
US11712796B2 (en) 2017-09-15 2023-08-01 Groove X, Inc. Robot that acts comically, and structure thereof
CN110834324A (en) * 2018-08-15 2020-02-25 纳博特斯克有限公司 Rotation holding device and robot
JP2020028969A (en) * 2018-08-15 2020-02-27 ナブテスコ株式会社 Rotation holding device, and robot
US20220226984A1 (en) * 2021-01-15 2022-07-21 Beijing Xiaomi Mobile Software Co., Ltd. Legged robot and leg assembly thereof
US11890756B2 (en) * 2021-01-15 2024-02-06 Beijing Xiaomi Robot Technology Co., Ltd. Legged robot and leg assembly thereof

Also Published As

Publication number Publication date
JPH0471672B2 (en) 1992-11-16

Similar Documents

Publication Publication Date Title
Kazerooni Design and analysis of the statically balanced direct-drive robot manipulator
CN110104216A (en) A kind of collaboration paths planning method for kinematic redundancy dual-arm space robot
Wang et al. Experiments on the position control of a one-link flexible robot arm
US20100161127A1 (en) Multiple priority operational space impedance control
JPS6034286A (en) Method of reducing load torque by arm's own weight
JPH07295650A (en) Method for controlling articulated robot
Gopalswamy et al. A new parallelogram linkage configuration for gravity compensation using torsional springs
GB2363669A (en) Inertial latch for mobile disc drive
CN109015658A (en) It is a kind of for capturing the Dual-arm space robot control method of Tum bling Target
Morita et al. Development of 4-DOF manipulator using mechanical impedance adjuster
JPH07227791A (en) Robot device
JPS6251880B2 (en)
Peer et al. Haptic telemanipulation with dissimilar kinematics
CN114030006B (en) Intelligent telescopic structure of mechanical arm
Youcef-Toumi Analysis, design and control of direct-drive manipulators
JPS60207787A (en) Multi-joint robot
JPS58137578A (en) Multiple articulated manipulator
Stoten et al. The application of the minimal control synthesis algorithm to the hybrid control of a class 1 manipulator
JPS59214590A (en) Branch plural arm type multipler freedom-degree manipulator robot
JP2543539B2 (en) Balance method and balancer mechanism for vertical articulated robot
JPS61236487A (en) Controller for industrial robot
JPS61192486A (en) Multi-joint type arm device
JPH10118967A (en) Articulated robot
JP2627333B2 (en) Equipment for rotating and moving heavy objects
JPS6260010A (en) Gravitational force compensating method for control system performing power control