JPS6033974B2 - How to prevent bad odor from automotive catalysts - Google Patents

How to prevent bad odor from automotive catalysts

Info

Publication number
JPS6033974B2
JPS6033974B2 JP55051957A JP5195780A JPS6033974B2 JP S6033974 B2 JPS6033974 B2 JP S6033974B2 JP 55051957 A JP55051957 A JP 55051957A JP 5195780 A JP5195780 A JP 5195780A JP S6033974 B2 JPS6033974 B2 JP S6033974B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
sulfur
air
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55051957A
Other languages
Japanese (ja)
Other versions
JPS56148608A (en
Inventor
興史 陰山
信明 木根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP55051957A priority Critical patent/JPS6033974B2/en
Publication of JPS56148608A publication Critical patent/JPS56148608A/en
Publication of JPS6033974B2 publication Critical patent/JPS6033974B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】 この発明は自動車用触媒の悪臭防止方法、特に車戦の状
態で簡単に触媒の悪臭の発生を防止できるようにした方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing bad odor from a catalyst for an automobile, and particularly to a method for easily preventing the occurrence of a bad odor from a catalyst during a car battle.

近年、エンジンから放出される排ガス中の有害成分の規
制が厳しくなり、有害成分の除去のために排ガスを触媒
中を通して浄化することが広く行なわれている。
In recent years, regulations on harmful components in exhaust gas emitted from engines have become stricter, and purifying the exhaust gas by passing it through a catalyst has become common practice in order to remove harmful components.

ところが、触媒を装着した車では運転中、特に交差点な
どで信号待ちしている時に排ガスの悪臭が発生するとい
う問題がある。この悪臭は卵の腐ったような臭いであり
、これは硫化水素(日2S)および硫化カルボニル(C
OS)が原因成分である。従来はこの悪臭が発生すると
、触媒を新品に取換えることで対処しており、このため
触媒の寿命が短かかつた。一方、触媒の下流にサルフェ
ートトラップを設遣して硫黄化合物を補集することが特
開昭53一38815号公報に開示されているが、これ
では装置が大形化および複雑化し、触媒の耐久性向上に
関して何等考慮されていない。
However, cars equipped with catalysts have the problem of emitting a foul odor from exhaust gas while driving, especially when waiting at traffic lights at intersections. This odor is similar to rotten eggs, and is caused by hydrogen sulfide (2S) and carbonyl sulfide (C).
OS) is the causative component. Conventionally, when this odor occurred, the catalyst was replaced with a new one, which shortened the life of the catalyst. On the other hand, Japanese Patent Application Laid-open No. 53-38815 discloses installing a sulfate trap downstream of the catalyst to collect sulfur compounds, but this requires a larger and more complicated device and increases the durability of the catalyst. No consideration was given to sexual improvement.

この発明はこのような従来の欠点の解決のためになされ
たものであり、簡単な操作によって車敦の状態で触媒の
悪臭を除去し、これによって触媒の寿命を向上させるこ
とができるようにしたものである。
This invention was made to solve these conventional drawbacks, and it is possible to remove the bad odor of the catalyst while it is in the car with a simple operation, thereby improving the life of the catalyst. It is something.

すなわちこの発明は、排ガスを触媒と接触させて浄化す
る方法において、エンジンの腰機運転により触媒ベッド
温度を50000以上にし、上記暖機運転直後、直ちに
アィドリング状態にし、触媒二次エアーの供給量を制限
して触媒入口附近の排ガスの空燃比を15以下にし、上
記アィドリング状態を2粉ご間以上維持することにより
触媒担体に付着した硫黄化合物を除去するようにしたも
のである。ここにいう排ガスの空燃比とは、排ガス成分
より下記の式で換算した吸入混合気の空燃比をいい、こ
れによって排ガスの性状を表示している。
That is, this invention provides a method for purifying exhaust gas by bringing it into contact with a catalyst, in which the temperature of the catalyst bed is raised to 50,000 or higher by operating the engine at a lower speed, and immediately after the above-mentioned warm-up operation, the engine is placed in an idling state, and the supply amount of catalyst secondary air is reduced. Sulfur compounds attached to the catalyst carrier are removed by limiting the air-fuel ratio of the exhaust gas near the catalyst inlet to 15 or less and maintaining the above-mentioned idling state for at least two minutes. The exhaust gas air-fuel ratio referred to herein refers to the air-fuel ratio of the intake air-fuel mixture calculated from the exhaust gas components using the following formula, and indicates the properties of the exhaust gas.

なお、排ガス中に二次空気あるいは燃料が付加される‘
まあし、には、下記の式で換算される吸入混合気の空燃
比は、真の吸入混合器と付加空気あるいは燃料を総合し
たみかけ上の吸入混合気の空燃比として表わされる。但
、F:排ガスの空燃比 R:雛奈美幸舞旨勢麓塵髪%勢) 排ガス中の02濃度 Q=排ガス中のC02濃度(%) 排ガス中のCO濃度(%)十排ガス中のC02濃度(%
)Fb=排ガス中のC。
Note that secondary air or fuel is added to the exhaust gas.
Well, the air-fuel ratio of the intake air-fuel mixture converted by the following formula is expressed as the air-fuel ratio of the apparent intake air-fuel mixture that combines the true intake mixer and additional air or fuel. However, F: Air-fuel ratio of exhaust gas R: 02 concentration in exhaust gas Q = CO2 concentration in exhaust gas (%) CO concentration in exhaust gas (%) concentration(%
)Fb=C in exhaust gas.

濃度(%)十排ガス中のC02濃度(%)十排ガス中の
HC濃度Fc:燃料中のC濃度(%)F:排ガスの空燃
比 この発明の方法による悪臭防止効果を確認するために第
1図イ,口,ハに示すような実験を行なった。
Concentration (%) 10 C02 concentration in exhaust gas (%) 10 HC concentration in exhaust gas Fc: C concentration in fuel (%) F: Air-fuel ratio of exhaust gas First step to confirm the odor prevention effect of the method of this invention We conducted experiments as shown in Figures A, C, and C.

第1図イ,口はこの発明の方法によるもので、第1図ハ
は比較のための実験である。第1図イにおいては、自動
車の運転条件としてエンジン回転数200仇.p.m.
スロットル全開で排ガスの空熱比を17.3として10
分間腰機運転をした後にアィドリングしたぱあいの触媒
の前、後における排ガス中のトータル硫黄量を示してい
る。アィドリングの条件は75仇.p.m.、排ガスの
空燃比13.1、アィドリング開始時温度700qoに
設定した。線1 1および21はそれぞれ触媒前方およ
び後方の排ガス中のトータル硫黄量の移り変りの状態を
示しており、触媒前方ではアィドリングに切換えること
によって硫黄量は急激に減少するが、触媒後方では逆に
急激に増加し、その後徐々に減少しアィドリング開始か
ら20分後には触媒前方の排ガスとほぼ同じ硫黄量にな
っている。この触媒後方での硫黄量の急激な増加は触媒
に蓄積した硫黄化合物が上記運転により硫化水素(日2
S)および硫化カルボニル(COS)として放出されも
のである。したがって、上記運転を行なえば、長い間に
触媒に蓄積し放出し易くなった硫黄分を、極めて短かし
、時間で触媒から放出させることができる。第1図口は
アィドリング時の排ガスの空燃比を14.6に設定し、
上記イと同じ条件で実験を行ったものである。この‘ま
あし、も触媒前方の硫黄量(線12)および触媒後方の
硫黄量(線22)は上記イとほぼ同じ傾向を示している
が、触媒後方の硫黄量のピーク値が小さくなっている点
が異なっている。また第1図ハはァィドリング時の排ガ
スの空燃比を16.2に設定し上言己と同じ条件で実験
したものであり、この‘まあし、は触媒前方の硫黄量(
線13)は前記と同様であるが触媒後方の硫黄量23は
、触媒前方の硫黄量より少なくなっている。これは、こ
のハの運転条件では触媒からの硫黄分の放出が行なわれ
ていないことを示している。これらのことから、アィド
リング時の排ガスの空燃比をある値以下に設定すると触
媒から硫黄化合物が離脱することがわかり、またアイド
リング開始から20分後に離脱がほぼ了することがわか
る。第2図は硫黄化合物の触媒への吸脱看と排ガスの空
燃比との関係を調べるために行なった実験結果を示す。
Fig. 1A and Fig. 1C show results obtained by the method of this invention, and Fig. 1C shows an experiment for comparison. In Figure 1A, the operating conditions for the car are engine speed of 200 m.p.m. p. m.
10 with the exhaust gas air heat ratio at 17.3 with the throttle fully open.
It shows the total amount of sulfur in the exhaust gas before and after the catalyst when the engine is idling after a minute of low-speed engine operation. The idling condition is 75. p. m. The exhaust gas air-fuel ratio was set to 13.1, and the temperature at the start of idling was set to 700 qo. Lines 1 and 21 show changes in the total amount of sulfur in the exhaust gas in front of and behind the catalyst, respectively.In front of the catalyst, the amount of sulfur decreases rapidly by switching to idling, but in the rear of the catalyst, the amount of sulfur decreases rapidly. The amount of sulfur increases, and then gradually decreases, and 20 minutes after the start of idling, the amount of sulfur is almost the same as that of the exhaust gas in front of the catalyst. This rapid increase in the amount of sulfur behind the catalyst is due to the fact that the sulfur compounds accumulated in the catalyst are hydrogen sulfide (22 times a day) due to the above operation.
S) and carbonyl sulfide (COS). Therefore, by carrying out the above operation, the sulfur content that has accumulated in the catalyst over a long period of time and has become easy to release can be extremely reduced and released from the catalyst in a short period of time. The port in Figure 1 sets the air-fuel ratio of exhaust gas at idling to 14.6,
The experiment was conducted under the same conditions as in A above. Well, the amount of sulfur in front of the catalyst (line 12) and the amount of sulfur behind the catalyst (line 22) show almost the same trends as in A above, but the peak value of the amount of sulfur behind the catalyst is smaller. The difference is that there are In addition, Figure 1 (c) shows an experiment conducted under the same conditions as above, with the air-fuel ratio of the exhaust gas during idling set to 16.2.
Line 13) is the same as above, but the amount of sulfur 23 behind the catalyst is smaller than the amount of sulfur in front of the catalyst. This indicates that no sulfur content was released from the catalyst under the operating conditions (c). These results show that sulfur compounds are removed from the catalyst when the air-fuel ratio of exhaust gas during idling is set below a certain value, and that the removal is almost complete 20 minutes after the start of idling. FIG. 2 shows the results of an experiment conducted to investigate the relationship between the absorption and desorption of sulfur compounds into the catalyst and the air-fuel ratio of exhaust gas.

これは一定条件で一定量の硫黄化合物を触媒に蓄積させ
た後、エンジン回転数200仇.p.m.スロツトル全
開で触媒ベッドの温度を500q0に保って行なった。
線14は触媒前方の排ガス中のトータル硫黄量を示し、
線24は触媒後方の排ガス中のトータル硫黄量を示す。
この図から、排ガスの空燃比(Bxh A/F)が15
以下では硫黄量は触媒後方の方が多く、空燃比が15を
越えると硫黄量は触媒後の方が少なくなっている。従っ
て空燃比15以下は硫黄化合物が触媒から離脱する領域
、15以上は吸着する領域であることがわかる。第3図
は硫黄分の離脱量と触媒ベッドの温度との関係を示して
いる。実験条件は、エンジン回転数200仇.p.m.
、排ガスの空燃比を12.7に設定した。触媒ベッドの
温度が7060では離脱量が非常に多く、60000で
は大幅に減少し、さらに500ooではかなり小さな値
になっており、このことから50000以下では充分な
離脱が行なわれないことがわかる。以上の結果から、触
媒に蓄積された硫黄化合物を除去するには、まず第1に
排ガス空燃比を15以下、すなわち還元雰囲気にする必
要がある。
This is done after a certain amount of sulfur compounds are accumulated in the catalyst under certain conditions, and the engine speed is 200 m.p.m. p. m. The experiment was carried out with the throttle fully open and the temperature of the catalyst bed maintained at 500q0.
Line 14 indicates the total amount of sulfur in the exhaust gas in front of the catalyst,
Line 24 shows the total amount of sulfur in the exhaust gas after the catalyst.
From this figure, the air-fuel ratio of exhaust gas (Bxh A/F) is 15
Below, the amount of sulfur is greater behind the catalyst, and when the air-fuel ratio exceeds 15, the amount of sulfur is less after the catalyst. Therefore, it can be seen that an air-fuel ratio of 15 or less is a region in which sulfur compounds are separated from the catalyst, and an air-fuel ratio of 15 or more is a region in which sulfur compounds are adsorbed. FIG. 3 shows the relationship between the amount of sulfur removed and the temperature of the catalyst bed. The experimental conditions were an engine speed of 200. p. m.
, the air-fuel ratio of exhaust gas was set to 12.7. When the temperature of the catalyst bed is 7,060 degrees, the amount of desorption is very large, when it is 60,000, it decreases significantly, and when it is 500,000, it is a very small value, which shows that sufficient desorption is not carried out at temperatures below 50,000. From the above results, in order to remove the sulfur compounds accumulated in the catalyst, it is first necessary to set the exhaust gas air-fuel ratio to 15 or less, that is, to make it a reducing atmosphere.

そして還元雰囲気にするには排ガス中に付加する二次空
気を制限し、併せてアイドル燃料の流量調整を行なって
もよい。また腰機運転を行なった後にアィドリング状態
にすると触媒から放出される硫黄量が増加するので効果
的な離脱が行なわれる。エンジンの高速回転中は排ガス
の流速が速く、触媒内での反応が充分行なわれないが、
アィドリング状態にすると反応が充分行なわれ還元雰囲
気では急速に離脱が行なわれる。そして離脱はアィドリ
ング開始から20分間でほとんど完了する。また触媒ベ
ッドの温度も離脱に関係し、暖機運転によりアィドリン
グ初期温度を500ごC以上にすることが必要である。
従って、エンジンの腰機運転により触媒ベッド温度を5
0000以上にし、暖機運転直後、直ちにアィドリング
状態にし、触媒二次エアーの供給量を制限して触媒入口
附近の排ガスの空燃比を15以下にし、上記アィドリン
グ状態を2び分間以上維持することにより触媒担体に付
着した硫黄化合物を除去することができる。
In order to create a reducing atmosphere, the amount of secondary air added to the exhaust gas may be restricted and the flow rate of idle fuel may also be adjusted. Furthermore, if the engine is placed in an idling state after being operated at a low speed, the amount of sulfur released from the catalyst increases, so that effective desorption is achieved. When the engine is rotating at high speed, the flow rate of exhaust gas is high and the reaction within the catalyst does not take place sufficiently.
When kept in an idling state, the reaction takes place sufficiently, and in a reducing atmosphere, desorption occurs rapidly. The separation is almost completed within 20 minutes from the start of idling. The temperature of the catalyst bed is also related to desorption, and it is necessary to raise the initial idling temperature to 500 C or higher through warm-up operation.
Therefore, by operating the engine at a lower speed, the catalyst bed temperature can be increased by 50%.
0000 or more, immediately after warm-up, put into idling state, limit the supply of catalyst secondary air to make the air-fuel ratio of exhaust gas near the catalyst inlet 15 or less, and maintain the above idling state for more than 2 minutes. Sulfur compounds attached to the catalyst carrier can be removed.

そして、この操作は自動車整備工場などで車教状態で簡
単に、しかも短時間で行なうことができ、これによって
実用走行中の悪臭の発生を防止するとともに、触媒の寿
命の延長を図ることができる。
This operation can be performed easily and in a short time under driving training conditions at an automobile repair shop, etc., thereby preventing the occurrence of bad odors during actual driving and extending the life of the catalyst. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は運転条件の変化による排ガス中の硫黄量の変動
を示すグラフであり、イ,口,ハはそれぞれ排ガスの空
燃比を13.1、14.6、16.2に設定した状態を
示もの、第2図は触媒への硫黄の吸脱着と排ガスの空燃
比との関係を示すグラフ、第3図は触媒ベッドの温度と
硫黄の離脱量との関係を示すグラフである。 1,12,13,14・・・・・・触媒前方の排ガス中
の硫黄量、21,22,23,24・・・・・・触媒後
方の排ガス中の硫黄量。 第1図 第2図 第3図
Figure 1 is a graph showing changes in the amount of sulfur in exhaust gas due to changes in operating conditions. FIG. 2 is a graph showing the relationship between the adsorption and desorption of sulfur onto the catalyst and the air-fuel ratio of exhaust gas, and FIG. 3 is a graph showing the relationship between the temperature of the catalyst bed and the amount of sulfur released. 1, 12, 13, 14... The amount of sulfur in the exhaust gas before the catalyst, 21, 22, 23, 24... The amount of sulfur in the exhaust gas after the catalyst. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 排ガスを触媒と接触させて浄化する方法において、
エンジンの暖機運転により触媒ベツド温度を500℃以
上にし、上記暖機運転直後、直ちにアイドリング状態に
し、触媒二次エアーの供給量を制限して触媒入口附近の
排ガスの空燃比を15以下にし、上記アイドリング状態
を20分間以上維持することにより触媒担体に付着した
硫黄化合物を除去することを特徴とする自動車用触媒の
悪臭防止方法。
1 In a method of purifying exhaust gas by bringing it into contact with a catalyst,
By warming up the engine, the temperature of the catalyst bed is set at 500° C. or higher, and immediately after the warm-up operation, the catalyst is placed in an idling state, and the amount of secondary air supplied to the catalyst is restricted to reduce the air-fuel ratio of the exhaust gas near the catalyst inlet to 15 or less. A method for preventing bad odor of an automobile catalyst, characterized in that sulfur compounds adhering to a catalyst carrier are removed by maintaining the above-mentioned idling state for 20 minutes or more.
JP55051957A 1980-04-18 1980-04-18 How to prevent bad odor from automotive catalysts Expired JPS6033974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55051957A JPS6033974B2 (en) 1980-04-18 1980-04-18 How to prevent bad odor from automotive catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55051957A JPS6033974B2 (en) 1980-04-18 1980-04-18 How to prevent bad odor from automotive catalysts

Publications (2)

Publication Number Publication Date
JPS56148608A JPS56148608A (en) 1981-11-18
JPS6033974B2 true JPS6033974B2 (en) 1985-08-06

Family

ID=12901343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55051957A Expired JPS6033974B2 (en) 1980-04-18 1980-04-18 How to prevent bad odor from automotive catalysts

Country Status (1)

Country Link
JP (1) JPS6033974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041336A1 (en) * 1996-04-26 1997-11-06 Komatsu Ltd. Apparatus and method for regenerating nox catalyst for diesel engines

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103941A (en) * 1982-12-06 1984-06-15 Toyota Motor Corp Air-fuel control method of internal-combustion engine
GB9718059D0 (en) * 1997-08-28 1997-10-29 Johnson Matthey Plc Improvements relating to catalysts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041336A1 (en) * 1996-04-26 1997-11-06 Komatsu Ltd. Apparatus and method for regenerating nox catalyst for diesel engines
GB2328626A (en) * 1996-04-26 1999-03-03 Komatsu Mfg Co Ltd Apparatus and method for regenerating NOx catalyst for diesel engines
GB2328626B (en) * 1996-04-26 1999-08-11 Komatsu Mfg Co Ltd Apparatus and method for regenerating NOx catalyst for diesel engine

Also Published As

Publication number Publication date
JPS56148608A (en) 1981-11-18

Similar Documents

Publication Publication Date Title
US3699683A (en) Engine exhaust emission control system
CN201513221U (en) Post-processing system used in LEB
JP6121402B2 (en) Method for regenerating NOx storage catalytic converter of diesel engine with low pressure EGR
JPH0724575Y2 (en) Exhaust gas purification device for internal combustion engine
US7199078B2 (en) Vehicle sulfur oxide trap and related method
BRPI0720932B8 (en) apparatus, vehicle, and, desulfation method of a nox adsorbent catalyst in an exhaust system of a clean-burning internal combustion engine
EP0846491A3 (en) Method and system for exhaust gas purification
RU2560857C1 (en) Apparatus for cleaning internal combustion engine exhaust gases
US10914217B2 (en) Ammonia production catalyst and after treatment system
JPH1054268A (en) Exhaust emission control device for diesel engine
JPS6033974B2 (en) How to prevent bad odor from automotive catalysts
JP2003509614A (en) Regeneration of sulfur-poisoned diesel catalysts
JP2019196735A (en) Oxidation catalyst regeneration method and oxidation catalyst control device
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP2019082121A (en) Exhaust-temperature rise mode egr device
JP2018048603A (en) Regeneration method of selective reduction-type catalyst
JPH09100716A (en) Engine exhaust emission control system
JPH10159541A (en) Contaminant eliminating system of exhaust gas and method therefor
JP2006017083A (en) Method of controlling exhaust emission control device
JP2008133760A (en) Exhaust emission control device
KR100309839B1 (en) After-treatment apparauts of exhaust gas for automobile
JP2006097469A (en) Pm continuous regenerating method under low load on diesel engine
JPH07103021A (en) Exhaust emission control device for vehicle
JPH0143456Y2 (en)
JP2874078B2 (en) Exhaust gas purification device