JPS6033296B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor

Info

Publication number
JPS6033296B2
JPS6033296B2 JP54050647A JP5064779A JPS6033296B2 JP S6033296 B2 JPS6033296 B2 JP S6033296B2 JP 54050647 A JP54050647 A JP 54050647A JP 5064779 A JP5064779 A JP 5064779A JP S6033296 B2 JPS6033296 B2 JP S6033296B2
Authority
JP
Japan
Prior art keywords
anode
anode body
anode lead
lead
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54050647A
Other languages
Japanese (ja)
Other versions
JPS55141724A (en
Inventor
正晴 大野
富太郎 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Original Assignee
NEC Home Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd filed Critical NEC Home Electronics Ltd
Priority to JP54050647A priority Critical patent/JPS6033296B2/en
Publication of JPS55141724A publication Critical patent/JPS55141724A/en
Publication of JPS6033296B2 publication Critical patent/JPS6033296B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor.

一般に、この種のコンデンサは例えば第1図に示すよう
にタンタル、ニオブ、アルミニウムなどのように弁作用
を有する金属粉末を円柱状に加圧成形し焼結してなる陽
極体1に予め弁作用を有する金属線を陽極リード2とし
て楢立し、この陽極リード2の突出部分にL形に屈曲さ
れた第1の外部リード線3を溶接すると共に、第2の外
部リード線4を陽極体1の周面に酸化層、半導体層を介
して形成された陰極層に半田付けし、陽極リード2の突
出部を含む陽極体1の周面を樹脂材5にて被覆して構成
されている。
Generally, as shown in FIG. 1, this type of capacitor is made by press-molding metal powder such as tantalum, niobium, or aluminum into a cylindrical shape and sintering the anode body 1. As shown in FIG. A metal wire having the following properties is erected as the anode lead 2, a first external lead wire 3 bent in an L shape is welded to the protruding portion of the anode lead 2, and a second external lead wire 4 is connected to the anode body 1. is soldered to a cathode layer formed on the circumferential surface of the anode body 1 via an oxide layer and a semiconductor layer, and the circumferential surface of the anode body 1 including the protruding portion of the anode lead 2 is covered with a resin material 5.

ところで、陽極体1は陽極リード2の突出部分に第1の
外部リード線3を溶接するに先立って、陽極リード2と
共に電解酸化され、さらに陽極体1のみを硝酸マンガン
溶液などの半導体母液に一定時間浸潰し陽極体1内に含
浸させ、次いで200℃以上の高温雰囲気中において熱
分解反応を起こさせ、陽極体1の酸化層上に二酸化マン
ガンなどの半導体層が形成されている。
Incidentally, prior to welding the first external lead wire 3 to the protruding portion of the anode lead 2, the anode body 1 is electrolytically oxidized together with the anode lead 2, and further, only the anode body 1 is immersed in a semiconductor mother solution such as manganese nitrate solution. A semiconductor layer such as manganese dioxide is formed on the oxidized layer of the anode body 1 by impregnating it into the anode body 1 for a time and then causing a thermal decomposition reaction in a high temperature atmosphere of 200° C. or higher.

しかし乍ら、この熱分解工程において、高温雰囲気中に
挿入された陽極体1はそれ自身の温度が急激に上昇し、
内部に含浸された半導体母液が熱分解反応を起し内部よ
り水蒸気・窒素酸化物などの分解ガスが表面層に吹き出
してくるために、表面層における熱分解途中の半導体母
液層に気泡が生じ、これが陽極リード′2の突出部分に
付着していわゆる半導体層形成部村の這い上がりを生ず
る。
However, in this thermal decomposition process, the temperature of the anode body 1 inserted into the high-temperature atmosphere rises rapidly.
The semiconductor mother liquor impregnated inside causes a thermal decomposition reaction and decomposed gases such as water vapor and nitrogen oxides blow out from the inside to the surface layer, so bubbles are generated in the semiconductor mother liquor layer in the middle of thermal decomposition in the surface layer. This adheres to the protruding portion of the anode lead '2, causing what is called a creeping up of the semiconductor layer formation area.

通常、半導体母液の含浸−熱分解工程は、陽極体1が多
孔質であることに鑑み、数回以上繰り返えされるが、熱
分解回数の増加によって半導体層形成部分の這い上りも
さらに進行する傾向にある。従って、陽極リード2の突
出部分に第1の外部リード線3を溶接する際、第1の外
部リード線3と這い上った半導体層とが接触して陰極と
が短絡されてしまい、コンデンサとしての機能を奏しえ
なくなるという問題がある。
Normally, the impregnation-pyrolysis process of the semiconductor mother liquor is repeated several times or more in view of the porous nature of the anode body 1, but as the number of times of pyrolysis increases, the creeping up of the semiconductor layer forming portion progresses further. There is a tendency. Therefore, when welding the first external lead wire 3 to the protruding portion of the anode lead 2, the first external lead wire 3 and the semiconductor layer that has climbed up come into contact and short-circuit with the cathode, resulting in the capacitor not functioning as a capacitor. There is a problem that the function of the device cannot be performed.

それ故、従来にあっては第2図及び第3図に示すように
陽極体1の頂面部に弗素系樹脂製のワッシャ6を、その
中心孔7に陽極リード2を挿適するようにして装着した
構成が採用されている。しかしながら、この方法によれ
ば、陽極リード2の突出部分における半導体層の這い上
り現象は効果的に抑制することができる反面、弗素系樹
脂ワッシャ6を一個一個作業者が手作業で陽極リード2
に挿入せしめる必要があるため、作業性が悪く、しかも
、きわめて多大の作業工数を要するために量産性に乏し
いという欠点がある。本発明は、上記の欠点に鑑み、自
動化が可能で、作業性の向上を図り得る固体電解コンデ
ンサの製造方法を提供せんとするものである。
Therefore, conventionally, as shown in FIGS. 2 and 3, a washer 6 made of fluorine resin is attached to the top surface of the anode body 1, and an anode lead 2 is inserted into the center hole 7 of the washer 6. A configuration has been adopted. However, according to this method, although the creeping-up phenomenon of the semiconductor layer at the protruding portion of the anode lead 2 can be effectively suppressed, an operator manually attaches each fluorine-based resin washer 6 to the anode lead 2.
This has the drawback of poor workability and poor mass productivity since it requires an extremely large number of man-hours. In view of the above-mentioned drawbacks, the present invention aims to provide a method for manufacturing a solid electrolytic capacitor that can be automated and improve workability.

即ち、本発明は、陽極体に半導体母液を被着させるに先
立って、陽極体が上方に、陽極リードが下方に位置する
ように配置した上で、陽極体より導出された陽極リード
に、陽極体の端面から所定の間隔を隔てて耐熱性を髪水
性を有する所定の微粉末を分散させた分散液を被着し、
これを加熱処理して上記陽極リード‘こ被膜を形成し、
この被膜によりいわゆる半導体層形成部材の這い上りを
防止する様にしたものである。
That is, in the present invention, prior to depositing the semiconductor mother liquor on the anode body, the anode body is arranged so that the anode body is located above and the anode lead is positioned below, and then the anode is placed on the anode lead led out from the anode body. A dispersion of heat-resistant and water-soluble fine powder is applied at a predetermined distance from the end surface of the body,
This is heat-treated to form the above-mentioned anode lead coating.
This coating prevents the so-called semiconductor layer forming member from creeping up.

第4図は上記被膜を形成する装置の一具体例を示したも
ので、同図において、11は陽極リード12を楢立させ
た陽極体で、これには、硝酸マンガン溶液などの半導体
母液は含浸されていない。
FIG. 4 shows a specific example of the apparatus for forming the above-mentioned film. In the figure, 11 is an anode body with an anode lead 12 erected, and a semiconductor mother solution such as a manganese nitrate solution is used in this anode body. Not impregnated.

13は陽極体11は多数起立固定した金属板よりなるホ
ルダーで、これは、適当な手段で作業工程を移送せしめ
られる。
Reference numeral 13 denotes a holder consisting of a metal plate on which a large number of anode bodies 11 are fixed in an upright manner, and the work process is transferred to this holder by an appropriate means.

14,14はホルダー13の移送途上において適当な手
段で吊り下げ状に且つホルダー13の移送方向との直交
方向に所定の間隔を隔てて支持した一対のモータ、15
,15はモータ14,14より下方に垂下させた回転軸
、16,16は、第5図にも示す如く陽極体11に楯立
した陽極リード12が通過しうる間隔が形成される様に
、上記回転軸15,15に夫々軸支させた所定肉厚の回
転体で、これは、吸水性のあるスポンジ等をその素材と
して使用し、上下方向及び幅方向に位置調整可能に構成
する。
Reference numerals 14 and 14 indicate a pair of motors 15 supported in a suspended manner and at a predetermined interval in a direction orthogonal to the direction in which the holder 13 is being transported by appropriate means;
, 15 are rotary shafts hanging below the motors 14, 14, and 16, 16 are rotary shafts so as to form an interval through which the anode lead 12 standing on the anode body 11 can pass, as shown in FIG. This is a rotating body of a predetermined thickness that is supported by the rotating shafts 15, 15, respectively, and is made of water-absorbing sponge or the like as its material, and is configured so that its position can be adjusted in the vertical direction and the width direction.

そして、この回転体16,16に、例えば0.3ミクロ
ン程度の綾水性を有し且つ耐熱性、溌水性を有する弗素
系樹脂の微粒子を水中に約6肌t%分散し且つ表面活性
剤で安定させた分散液を適当な手段で連続的に含浸させ
る。尚、弗素系樹脂の微粒子は0.2〜40山m程度の
範囲が好適する。そうして、陽極体11に半導体母液を
被着させるに先だって、次の要領で第6図の如く陽極リ
ード12の突出部分に被膜17に形成する。即ち、上記
回転体16,16を、陽極体11の端面11′から所定
の間隔(0.2〜2.0肌程度)を隔てた位置に保持さ
れる様に予め位置調整した後、上記モータ14,14を
適当な手段で回転させ、回転体16,16を図示矢印方
向に回転させると同時に、陽極体11を多数起立固定し
たホルダー13を図示矢印方向に移送させ、この移送途
上で上記陽極リード線12を回転体16,16間に通過
せしめる。すると、その通過時、陽極リード12は回転
せる一対の回転体16,16に接触し、これにより、当
該回転体16,16に含浸された分散液が、陽極体11
の端面11′から所定の間隔を隔てた位置において陽極
リード12に塗布される。しかる後、この塗布された分
散液を加熱処理して、第6図の如く陽極リード12に被
膜17を形成する。こうして陽極リード12に被膜17
を形成した後、電解液中にて化成して酸化層を形成し半
導体母液に浸債後熱分解反応を起こさせ、陽極体11の
酸化層上に二酸化マンガンなどの半導体層を形成する。
この熱分解工程において、前述した様に、陽極体11の
表面に半導体母液層の気泡が生じ、これが陽極リード1
2の突出部分に付着していわゆる半導体層形成部材の這
い上りを生じるところ、上記の如く陽極リード12には
被膜17が形成してあるので、半導体層形成部材の這い
上りはこの被膜17によって防止される。そして、この
被膜17は、陽極リード12の突出部分に外部リード線
を溶接するとき、陽極リード12より取り去る。尚、被
膜17は除去しなくてもよい。このようにして陽極リー
ド12に被膜17を形成して処理した陽極体11を用い
、通常の方法によって団体電解コンデンサを200個製
作したところ、次の様な結果を得た。その結果を被膜1
7を形成しなかった禾処理の陽極体を用いて200個製
作したものと対比して示す。尚、表中の不良率は壷男馨
X1皿で算出した。尚、この実施例において、被膜17
は陽極体11が上方に、陽極リード12が下方に位置す
るように配置した上で、陽極体より離隔した陽極リード
部分に形成されているが、これは分散液を陽極リード1
2に被着した際に陽極体11の端面にも被着されると、
半導体母液の含浸性が阻害され所望の特性が得られなく
なるためである。
Then, in the rotating bodies 16, 16, about 6 t% of fine particles of a fluorine-based resin having a water resistance of about 0.3 microns, heat resistance, and water repellency are dispersed in water, and a surface active agent is applied. The stabilized dispersion is continuously impregnated by suitable means. The fine particles of the fluorine-based resin preferably have a diameter of about 0.2 to 40 m. Before applying the semiconductor mother liquid to the anode body 11, a coating 17 is formed on the protruding portion of the anode lead 12 as shown in FIG. 6 in the following manner. That is, after adjusting the positions of the rotating bodies 16, 16 in advance so that they are held at a predetermined distance (approximately 0.2 to 2.0 inches) from the end surface 11' of the anode body 11, the motor 14, 14 by an appropriate means, and the rotating bodies 16, 16 are rotated in the direction of the arrow shown in the figure.At the same time, the holder 13, on which a large number of anode bodies 11 are erected and fixed, is transferred in the direction of the arrow shown in the figure. The lead wire 12 is passed between the rotating bodies 16, 16. Then, during the passage, the anode lead 12 comes into contact with a pair of rotating bodies 16, 16, which allows the dispersion liquid impregnated in the rotating bodies 16, 16 to flow into the anode body 11.
It is applied to the anode lead 12 at a predetermined distance from the end surface 11' of the anode lead 12. Thereafter, the applied dispersion is heat-treated to form a coating 17 on the anode lead 12 as shown in FIG. In this way, the coating 17 is applied to the anode lead 12.
After forming, an oxide layer is formed by chemical conversion in an electrolytic solution, and a thermal decomposition reaction is caused in the semiconductor mother liquor after bonding, thereby forming a semiconductor layer of manganese dioxide or the like on the oxide layer of the anode body 11.
In this thermal decomposition process, as described above, bubbles are generated in the semiconductor mother liquid layer on the surface of the anode body 11, and these bubbles are formed in the anode lead 1.
As described above, since the coating 17 is formed on the anode lead 12, this coating 17 prevents the semiconductor layer forming member from creeping up when it adheres to the protruding portion of the anode lead 12. be done. This coating 17 is removed from the anode lead 12 when an external lead wire is welded to the protruding portion of the anode lead 12. Note that the coating 17 does not need to be removed. Using the anode body 11 treated by forming the film 17 on the anode lead 12 in this manner, 200 group electrolytic capacitors were manufactured by a conventional method, and the following results were obtained. The result is film 1
This is shown in comparison with 200 pieces manufactured using a hardened anode body in which No. 7 was not formed. Incidentally, the defective rate in the table was calculated using 1 dish of Kaoru Tsuboyo. In addition, in this example, the coating 17
is arranged so that the anode body 11 is located above and the anode lead 12 is located below, and is formed on the anode lead part that is spaced apart from the anode body.
When it is deposited on the end face of the anode body 11 when it is deposited on the anode body 11,
This is because the impregnating properties of the semiconductor mother liquor are inhibited and desired characteristics cannot be obtained.

又、分散液に微粉末が分散されているので、仮に上述の
配置状態で誤って陽極体11の端面11′に分散液が付
着しても、微粉末成分の内部への侵入を防止でき所望の
特性を得ることができる。第7図及び第8図は本発明に
使用する装置の他の具体例を示したもので、ホルダー1
3の移送途上の所定位置の両側対称位置にベークライト
板等よりなる板材18を起立させて側方に移動可能に配
置し、こ板材18の上端部に沿って吸水性のあるスポン
ジ等の部材19を貼着する。
In addition, since the fine powder is dispersed in the dispersion liquid, even if the dispersion liquid accidentally adheres to the end surface 11' of the anode body 11 in the above arrangement, it is possible to prevent the fine powder components from entering the inside of the anode body 11 as desired. characteristics can be obtained. Figures 7 and 8 show other specific examples of the device used in the present invention.
A plate material 18 made of a Bakelite plate or the like is placed upright and movable laterally at a predetermined position symmetrical to both sides of a predetermined position during the transfer of the material 3, and a member 19 such as a water absorbent sponge is placed along the upper end of the plate material 18. Paste.

そして、この部材19に前述した分散液を含浸させ、陽
極体11の通過時に、部材19を両側より陽極リード1
2に圧接して分散液を塗布する。被膜17を形成する要
領は上記実施例と同じである。尚、上記の実施例では、
被膜17は分散液を用いて形成したが、本発明はこれに
限定されるわけではなく、ガラスフリツトの他、ェポキ
シ等の各種樹脂粉末の分散液を用いて形成することもで
きる。
Then, this member 19 is impregnated with the above-described dispersion liquid, and when passing through the anode body 11, the member 19 is inserted into the anode lead 1 from both sides.
2 to apply the dispersion liquid. The procedure for forming the coating 17 is the same as in the above embodiment. In addition, in the above example,
Although the coating 17 is formed using a dispersion liquid, the present invention is not limited thereto, and can also be formed using a dispersion liquid of various resin powders such as epoxy or the like in addition to glass frit.

又、陽極リードは陽極体の周面に溶接して導出すること
もできる。以上説明したように、本発明によれば、陽極
リードへの半導体形成部村の這い上り現象を完全に防止
することができる。
Alternatively, the anode lead can be welded to the circumferential surface of the anode body. As described above, according to the present invention, it is possible to completely prevent the phenomenon of the semiconductor forming portion creeping up onto the anode lead.

また、分散液の陽極リードへの被着は陽極体が上方に、
陽極リードが下方に位置するように配置した状態で行わ
れるので、分散液の陽極体への付着を抑制できるし、仮
に付着しても別粉末の分散液であるために、微粉末の陽
極体内部への侵入を防止でき、特性劣化を防止できる。
さらには被膜形成の自動化が可能であり、大幅な作業性
の向上を図ることができる。
In addition, the dispersion should adhere to the anode lead with the anode body facing upward.
Since the process is performed with the anode lead positioned at the bottom, it is possible to suppress the adhesion of the dispersion liquid to the anode body, and even if it does adhere, the dispersion liquid is of a different powder, so it is possible to prevent the dispersion liquid from adhering to the anode body. It can prevent intrusion into the interior and prevent characteristic deterioration.
Furthermore, it is possible to automate film formation, and work efficiency can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来例の夫々異なった実施例を示す
正面断面図、第3図は第2図の要部分解斜視図である。 第4図は本発明に使用する装置の具体例を示した説明図
、第5図はその要部説明図、第6図は被膜を形成した陽
極体の説明図、第7図及び第8図は本発明に使用する装
置の他の具体例を示した説明図である。11・・・・・
・陽極体、12・・・・・・陽極リード、17・・・・
・・被膜。 第1図 第2図 第3図 第5図 第6図 第7図 第8図 第4図
1 and 2 are front sectional views showing different embodiments of the conventional example, and FIG. 3 is an exploded perspective view of the main part of FIG. 2. Fig. 4 is an explanatory diagram showing a specific example of the apparatus used in the present invention, Fig. 5 is an explanatory diagram of the main part thereof, Fig. 6 is an explanatory diagram of the anode body on which a film is formed, Figs. 7 and 8. FIG. 2 is an explanatory diagram showing another specific example of the device used in the present invention. 11...
・Anode body, 12...Anode lead, 17...
...Coating. Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 陽極体に半導体母液を被着させるに先立つて、陽極
体が上方に、陽極リードが下方に位置するように配置し
た上で、陽極体より導出された陽極リードに、陽極体の
端面から所定の間隔を隔てて耐熱性、揆水性を有する所
定の微粉末を分散させた散液を被着し、これを加熱処理
して上記陽極リードに被膜を形成することを特徴とする
固体電解コンデンサの製造方法。
1. Prior to depositing the semiconductor mother liquid on the anode body, the anode body is arranged so that the anode body is located above and the anode lead is positioned below, and then the anode lead led out from the anode body is coated with a predetermined amount from the end face of the anode body. A solid electrolytic capacitor characterized in that a dispersion of a predetermined heat-resistant and water-repellent fine powder dispersed therein is deposited at intervals of Production method.
JP54050647A 1979-04-23 1979-04-23 Manufacturing method of solid electrolytic capacitor Expired JPS6033296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54050647A JPS6033296B2 (en) 1979-04-23 1979-04-23 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54050647A JPS6033296B2 (en) 1979-04-23 1979-04-23 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS55141724A JPS55141724A (en) 1980-11-05
JPS6033296B2 true JPS6033296B2 (en) 1985-08-02

Family

ID=12864725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54050647A Expired JPS6033296B2 (en) 1979-04-23 1979-04-23 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6033296B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135715A (en) * 1983-01-24 1984-08-04 日本電気ホームエレクトロニクス株式会社 Method of producing solid electrolytic condenser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967000A (en) * 1974-06-13 1976-06-29 P. R. Mallory & Co., Inc. Riser protection for anodes
JPS5218741A (en) * 1975-07-31 1977-02-12 Du Pont Fluorocarbon primer composite
DE2722899A1 (en) * 1977-05-20 1978-11-23 Siemens Ag METHOD OF MANUFACTURING A FIXED ELECTROLYTE CONDENSER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967000A (en) * 1974-06-13 1976-06-29 P. R. Mallory & Co., Inc. Riser protection for anodes
JPS5218741A (en) * 1975-07-31 1977-02-12 Du Pont Fluorocarbon primer composite
DE2722899A1 (en) * 1977-05-20 1978-11-23 Siemens Ag METHOD OF MANUFACTURING A FIXED ELECTROLYTE CONDENSER

Also Published As

Publication number Publication date
JPS55141724A (en) 1980-11-05

Similar Documents

Publication Publication Date Title
US3412444A (en) Method for making capacitor having porous electrode of sintered powder on foil
JPS6033296B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6011428B2 (en) Manufacturing method of oxygen concentration battery
US2037848A (en) Electrolytic device and method of making same
JPH09119000A (en) Manufacture of electronic parts and barrel plating device
JPS5926590Y2 (en) solid electrolytic capacitor
JPS587634Y2 (en) Anode body for solid electrolytic capacitors
JPS60948B2 (en) Manufacturing method of solid electrolytic capacitor
JPS5871613A (en) Method of producing solid electrolytic condenser
JPS593572Y2 (en) solid electrolytic capacitor
JPH0410205B2 (en)
JPS5934124Y2 (en) solid electrolytic capacitor
JPH04177813A (en) Method of forming electrolytic layer of solid electrolytic capacitor
JPS5840604Y2 (en) Anode body for solid electrolytic capacitors
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
JPS5923463B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0199211A (en) Manufacture of solid electrolytic capacitor
JPS5976416A (en) Method of producing solid electrolytic condenser
JPH05114405A (en) Electrode material film formation method and electrode material film formation device
JPS63285918A (en) Method of mounting lead wire of ceramic capacitor
JPH02248027A (en) Formation of electrolyte layer of electrolytic capacitor
JPH0346313A (en) Formation of electrolyte layer for solid electrolytic capacitor
JPS6118854B2 (en)