JPS6033293A - Pulling device for single crystal semiconductor - Google Patents

Pulling device for single crystal semiconductor

Info

Publication number
JPS6033293A
JPS6033293A JP13925483A JP13925483A JPS6033293A JP S6033293 A JPS6033293 A JP S6033293A JP 13925483 A JP13925483 A JP 13925483A JP 13925483 A JP13925483 A JP 13925483A JP S6033293 A JPS6033293 A JP S6033293A
Authority
JP
Japan
Prior art keywords
convection
single crystal
magnetic field
distribution
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13925483A
Other languages
Japanese (ja)
Other versions
JPH0157079B2 (en
Inventor
Hidekazu Taji
田路 英一
Mitsuhiro Yamato
充博 大和
Osamu Suzuki
修 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP13925483A priority Critical patent/JPS6033293A/en
Publication of JPS6033293A publication Critical patent/JPS6033293A/en
Publication of JPH0157079B2 publication Critical patent/JPH0157079B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make uniform characteristics of single crystal such as specific resistance, oxygen concn. etc. and to control these values optionally by impressing magnetic field to a molten semiconductor in a crucible supported freely rotatably in a direction inclining a specified angle to the perpendicular direction. CONSTITUTION:A superconductive magnet 15 is provided to the outside of a chamber 1 with an inclination of a specified angle (e.g. 45 deg.) to the perpendicular direction, and magnetic field B can be impressed to the molten silicon to a direction inclining a specified angle to the perpendicular direction. By using the pulling device, horizontal component of heat convection (i.e. convection c) is retarded by the component Bx of the magnetic field in the direction of X axis, and forced convection (convection a) and perpendicular component of heat convection (i.e. convection b) are retarded by the component Bz of the magnetic field in the Z axis direction. Accordingly, the distribution of temp., concn. of impurity, and concn. of oxygen of molten silicon in the neighbourhood of boundary face of crystal growth during pulling are made uniform. Therefore, distribution of specific resistance and distribution of oxygen concn. in either growth direction of single crystal silicon and radial direction can be made uniform.

Description

【発明の詳細な説明】 本頼明は単結晶半導体引上装置の改良に関する。[Detailed description of the invention] This paper relates to improvements in single-crystal semiconductor pulling equipment.

半導体装置の製造に用いられる半導体単結晶は主にチョ
クラルスキー法(cz法)によって製造されている。こ
の方法は単結晶シリコンを製造する場合を例にとれば、
ルッが内でシリコン原料を溶融し、この溶融シリコンに
種結晶を浸して回転しながら引上げることにより単結晶
シリコンを製造するものである。
Semiconductor single crystals used for manufacturing semiconductor devices are mainly manufactured by the Czochralski method (cz method). For example, this method is used to manufacture single crystal silicon.
Single-crystal silicon is produced by melting a silicon raw material in a vacuum chamber, dipping a seed crystal into the molten silicon, and pulling it up while rotating.

以下、従来の単結晶半導体引上装置t−第1図を参照し
て説明する。
Hereinafter, a conventional single crystal semiconductor pulling apparatus will be described with reference to FIG.

図中1は上部と下部が開口したチャンバーである。この
チャンバー1の下部開口からは回転自在な支持棒2が挿
入されており、この支持棒2上には黒鉛製保護体3が支
持され、石英ルッデ4を保護している。前記保護体3の
外周には筒状のヒータ5及び保温筒6.7が順次配設さ
れている。また、前記チャンバー1の上部開口からは例
えばチェーン8が吊下されており、種結晶9を保持して
いる。
In the figure, 1 is a chamber with an open top and bottom. A rotatable support rod 2 is inserted into the lower opening of the chamber 1, and a graphite protector 3 is supported on the support rod 2 to protect the quartz ludde 4. A cylindrical heater 5 and a heat retaining tube 6.7 are sequentially arranged on the outer periphery of the protector 3. Further, a chain 8, for example, is suspended from the upper opening of the chamber 1, and holds a seed crystal 9.

上記引上装置を用いたCZ法による単結晶シリコンの引
上げは、ルツ?4内!IC”リコン原料金入れ、ヒーJ
15によりシリコン原料を溶融させ。
Is it possible to pull single crystal silicon by the CZ method using the above-mentioned pulling device? Within 4! IC” recon original charge included, Hee J
15 to melt the silicon raw material.

この溶融シリコン10に種結晶9を浸し、ルツ?4及び
種結晶9を逆方向に回転させながらチェーン8を引上げ
ることにより単結晶シリコン11を引上げるものである
Immerse the seed crystal 9 in this molten silicon 10 and use the Ruth? The single crystal silicon 11 is pulled up by pulling up the chain 8 while rotating the chain 4 and the seed crystal 9 in opposite directions.

ところで、単結晶シリコンの引上中において。By the way, during the pulling of single crystal silicon.

ルツボ4内の溶融シリコンIO中では第2図に示すよう
な対流が起こっている。図中12は主にルツボ4中心部
で起こる、回転に伴うラセン状の強制対流(以下、対流
aと略記する)、13は主にルツば4周辺部で起こる熱
対流の鉛直方向成分(以下、対流すと略記する)、14
は前記熱対流の水平方向成分(以下、対流Cと略記する
)である。
Convection as shown in FIG. 2 occurs in the molten silicon IO in the crucible 4. In the figure, 12 is a helical forced convection (hereinafter abbreviated as convection a) that mainly occurs at the center of the crucible 4, and 13 is a vertical component of thermal convection that mainly occurs around the crucible 4 (hereinafter abbreviated as convection a). , abbreviated as convection), 14
is the horizontal component of the thermal convection (hereinafter abbreviated as convection C).

単結晶シリコンの物性1例えば比抵抗あるいは酸素濃度
は結晶成長界面近傍における溶融シリコンの温度分布、
不純物濃度、酸素濃度によって大きく影響を受ける。従
来のCZ法では上述した対流a ” eのために±5℃
程度の温度変化が生じて温度分布が不均一となり、また
不純物濃度、酸素濃度もばらつくので成長方向、径方向
ともに比抵抗分布、酸素濃度の均一性が悪い。
Physical properties of single crystal silicon 1 For example, specific resistance or oxygen concentration is determined by the temperature distribution of molten silicon near the crystal growth interface,
It is greatly affected by impurity concentration and oxygen concentration. In the conventional CZ method, due to the above-mentioned convection a''e, the temperature is ±5℃.
A slight temperature change occurs and the temperature distribution becomes non-uniform, and the impurity concentration and oxygen concentration also vary, resulting in poor uniformity in resistivity distribution and oxygen concentration in both the growth direction and the radial direction.

このため超LSI用の高品質なウェハを供給することが
困難であった。
For this reason, it has been difficult to supply high quality wafers for VLSI.

そこで、溶融シリコンに磁場を印7+11することによ
り対流を抑制して単結晶シリコンの物性の向上すること
が行なわれている。ここで、磁場を印カロする方法とし
てはルツボの両側方に対応する位置1c2個の電磁石を
互いに極性の異なる極を対向させて配置し、溶融シリコ
ンに水平方向の磁場金印7111するもの(以下、横型
MCZと略記する)と、ルツボの周囲にリング状の電磁
石を配置し、溶融シリコンに鉛直方向の磁場を印7JO
するもの(以下、縦型MCZと略記する)とがある。
Therefore, attempts have been made to improve the physical properties of single crystal silicon by applying a magnetic field to molten silicon to suppress convection. Here, as a method of applying a magnetic field, two electromagnets are placed at positions 1c on both sides of the crucible with their poles of different polarities facing each other, and a horizontal magnetic field is applied to the molten silicon (hereinafter referred to as , abbreviated as horizontal MCZ), and a ring-shaped electromagnet is placed around the crucible to apply a vertical magnetic field to the molten silicon.
(hereinafter abbreviated as vertical MCZ).

上記横型MCZでは前記対流a及びbtl−抑制するこ
とができるので、単結晶シリコンの成長方向における巨
視的な比抵抗分布、酸素濃度分布の均一性は向上する。
In the horizontal MCZ, since the convection a and btl can be suppressed, the uniformity of the macroscopic resistivity distribution and oxygen concentration distribution in the growth direction of single crystal silicon is improved.

しかし、対流Cを抑制する効果は少ないため、結晶成長
界面近傍での温度分布等は依然としてばらつきがかなり
大きい・したがって、単結晶シリコンの成長方向におけ
る微視的な物性の均一性はそれほど向上しないし、径方
向における物性の均一性はほとんど改善されないことが
判明した。
However, since the effect of suppressing convection C is small, the temperature distribution near the crystal growth interface still varies considerably. Therefore, the uniformity of microscopic physical properties in the growth direction of single crystal silicon does not improve much. It was found that the uniformity of physical properties in the radial direction was hardly improved.

一方、縦型MCZでは前記対流ci抑制することができ
るので、結晶成長界面近傍での温度分布等をかなり均一
化することができる。このため、単結晶シリコンの成長
方向、径方向のいずれにおいても微視的な物性の均一性
を向上することができる。しかし、対流a及びbを抑制
する効果は少すく、石英ルツボと溶融シリコンとの反応
によって生成するSiOの溶融シリコン融液面への移動
量にばらつきが生じるので、特に単結晶シリコンの成長
方向の酸素濃度分布は望ましいものとならないことが判
明した。
On the other hand, in the vertical MCZ, since the convection ci can be suppressed, the temperature distribution etc. near the crystal growth interface can be made considerably uniform. Therefore, the uniformity of microscopic physical properties can be improved in both the growth direction and the radial direction of single crystal silicon. However, the effect of suppressing convection a and b is small, and the amount of movement of SiO generated by the reaction between the quartz crucible and molten silicon to the molten silicon melt surface varies, especially in the growth direction of single crystal silicon. It was found that the oxygen concentration distribution was not as desirable.

本発明は上記事情に鑑みてなされたものであり、比抵抗
、酸素濃度等の物性を均一化し、しかもこれらの値を任
意に制御して、高品質の単結晶半導体を製造し得る単結
晶半導体引上装置を提供しようとするものである。
The present invention has been made in view of the above circumstances, and provides a single crystal semiconductor that can uniformize physical properties such as specific resistance and oxygen concentration, and further control these values arbitrarily to produce a high quality single crystal semiconductor. The purpose is to provide a lifting device.

すなわち1本発明の単結晶半導体引上装置は、ルツぎ内
の溶融半導体原料に鉛直方向に対して所定角度傾いた方
向に磁場を印り口する手段を設けたことを特徴とするも
のである。
Namely, the single crystal semiconductor pulling apparatus of the present invention is characterized in that it is provided with means for applying a magnetic field to the molten semiconductor raw material in the screw in a direction inclined at a predetermined angle with respect to the vertical direction. .

このように磁場を印加すれば、鉛直方向、水平方向のい
ずれにおいても対流を抑制することができ、単結晶半導
体の物性を均一化することができる。
By applying a magnetic field in this manner, convection can be suppressed in both the vertical and horizontal directions, and the physical properties of the single crystal semiconductor can be made uniform.

なお、本発明において印加すべき磁場の方向は鉛直方向
に対して10〜80°であることが望ましい。これは1
0°未満であると、水平方向の対流を抑制する効果が少
なく、また、80°以上であると、鉛直方向の対流を抑
制する効果が少ないため、いずれも物性の均一性を向上
する効果が少ないためである。
In addition, in the present invention, the direction of the magnetic field to be applied is preferably 10 to 80 degrees with respect to the vertical direction. This is 1
If it is less than 0°, there will be little effect of suppressing convection in the horizontal direction, and if it is 80° or more, there will be little effect of suppressing convection in the vertical direction. This is because there are few.

以下、本発明の実施例を第3図〜第5図を参照して説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 5.

第3図に示す如く、引上装置本体は従来のものと全く同
一であり、そのチャンバー1の外側にはリング状の超電
導マグネqト15が、その軸を鉛直方向に対して45°
傾けて配置されている。この超電導マグネヅト15には
図示しない液体ヘリウム冷凍機が付属されており、半永
久的に励磁を続けることができる。
As shown in FIG. 3, the main body of the lifting device is exactly the same as the conventional one, and a ring-shaped superconducting magnet 15 is installed outside the chamber 1, with its axis oriented at 45 degrees to the vertical direction.
It is placed at an angle. This superconducting magnet 15 is attached with a liquid helium refrigerator (not shown), and can continue to be excited semi-permanently.

上記引上装置により溶融シリコン10に鉛直方向に対し
て45°傾いた方向に磁場Bを印加することができる。
The above-mentioned pulling device can apply a magnetic field B to the molten silicon 10 in a direction inclined at 45 degrees with respect to the vertical direction.

しかして、上記引上装置によれば、磁場BOX軸方向成
分BXによって熱対流の水平方向成分(対流c)を抑制
することができ、磁場Bの2軸方向内戚分B2によって
強制対流(対流a)及び熱対流の鉛直方向成分(対流b
)を抑制することができるので、単結晶シリコン引上げ
中の結晶成長界面近傍における溶融シリコンの温度分布
、不純物濃度、酸素濃度全均一化することができる。し
たがって、単結晶シリコンの成長方向、径方向のいずれ
においても比抵抗分布及び酸素濃度分布を均一化するこ
とができる。
According to the above-mentioned pulling device, the horizontal component (convection c) of thermal convection can be suppressed by the axial component BX of the magnetic field B, and the forced convection (convection a) and the vertical component of thermal convection (convection b
), it is possible to uniformize the temperature distribution, impurity concentration, and oxygen concentration of molten silicon in the vicinity of the crystal growth interface during single-crystal silicon pulling. Therefore, the resistivity distribution and oxygen concentration distribution can be made uniform both in the growth direction and in the radial direction of single crystal silicon.

事実、上記実施例の引上装置(夏)、横型MCZ Ql
)及び縦型MCZ曲)Kよってそれぞれ引上げられた単
結晶シリコンについてその成長方向の微小部分の比抵抗
及び酸素濃度を測定したところこれらの分布が均一化し
ていることが確認された。
In fact, the lifting device (summer) of the above embodiment, horizontal MCZ Ql
) and vertical MCZ curve) K. When measuring the specific resistance and oxygen concentration of a minute portion in the growth direction of single crystal silicon pulled by K, it was confirmed that these distributions were uniform.

この結果全第4図及び第5図に示す。なお、比抵抗は4
点法により、酸素濃度はフーリエ変換赤外吸収スペクト
ルによりそれぞれ測定した。
The results are shown in FIGS. 4 and 5. In addition, the specific resistance is 4
Oxygen concentration was measured by Fourier transform infrared absorption spectrum using the point method.

第4図から明らかなように横型MCZ Ql)では微小
比抵抗のばらつきが大きく、最大値と最小値に約10チ
の違いがあった。また、縦型MCZ(ト)では分布の均
一性が向上し、最大値と最小値に約2%の違いがあった
。更に、上記実施例の引上装置(1)では分布はより均
一化し、最大値と最小値の違いは2%以下になった。
As is clear from FIG. 4, in the horizontal MCZ Ql), the variation in minute resistivity was large, with a difference of about 10 inches between the maximum and minimum values. Further, in the vertical MCZ (g), the uniformity of the distribution was improved, and there was a difference of about 2% between the maximum value and the minimum value. Furthermore, in the pulling device (1) of the above example, the distribution became more uniform, and the difference between the maximum value and the minimum value was 2% or less.

また、第5図から明らかなように横型MCZ ([)で
は酸素濃度のばらつきが大きく最大値と最小値との差は
15X10”tY++−3であった。縦型MCZについ
ては図示していないが、ばらつきはそれほど小さくなら
ないうえに、全体的に酸素濃度カカなり高くなった。こ
れに対して上記実施例の引上装置(I)では酸素濃度の
ばらつきが小さく。
Furthermore, as is clear from Fig. 5, in the horizontal MCZ ([), there was a large variation in oxygen concentration, and the difference between the maximum and minimum values was 15X10"tY++-3. Although the vertical MCZ is not shown, In addition, the variation was not so small, and the overall oxygen concentration was rather high.On the other hand, in the pulling device (I) of the above embodiment, the variation in oxygen concentration was small.

最大値と最小値との差は1.0xlOcm となつたO なお、上記実施例では磁場の方向を鉛直方向に対して4
5°としたが、この角度は任意に変化させることができ
る。特に、このように磁場の方向を変化させると、鉛直
方向の対流の抑制度合が変化するので、溶融シリコン融
液面での酸素濃度が変化し、単結晶シリコン中の酸素濃
度の値を広い範囲で容易に制御することができる。
The difference between the maximum value and the minimum value was 1.0xlOcm. In the above example, the direction of the magnetic field was set to 4
Although the angle is set at 5°, this angle can be changed arbitrarily. In particular, when the direction of the magnetic field is changed in this way, the degree of suppression of vertical convection changes, which changes the oxygen concentration at the surface of the molten silicon, allowing the value of the oxygen concentration in single crystal silicon to vary over a wide range. can be easily controlled.

下記表に従来及び本願、の引上装置を用いた場合の単結
晶シリコン引上げ中の溶融シリコンの温度変化と、引上
げられる単結晶シリコンの酸素濃度範囲をまとめて示す
The table below summarizes the temperature change of molten silicon during pulling of single crystal silicon and the oxygen concentration range of the pulled single crystal silicon when using the conventional pulling apparatus and the pulling apparatus of the present application.

表 また、上記実施例では印加する磁場の方向を単結晶シリ
コン引上げ中、常に一定にしていたが、途中で角度を変
化させてもよい。この場合。
In addition, in the above embodiment, the direction of the applied magnetic field was always kept constant during pulling of single crystal silicon, but the angle may be changed midway. in this case.

引上げが進み、融液量が減少していくと、徐々に強制対
流の影響が大きくなっていくので、鉛直方向に対する磁
場の傾き方向を徐々に大きくしていくことが望ましい。
As the pulling progresses and the amount of melt decreases, the influence of forced convection gradually increases, so it is desirable to gradually increase the direction of inclination of the magnetic field with respect to the vertical direction.

また、単結晶シリコン引上げ中に超電導マグネ、トの軸
をコマのように回転させてもよい。
Furthermore, the axis of the superconducting magnet may be rotated like a top during pulling of single crystal silicon.

このようにすれば、磁場BOX軸方向成内戚工の方向を
変化させることができ、鉛直方向の対流を有効に抑制で
きるので、酸素濃度の値をより一層広い範囲に亘って制
御することができる。
In this way, the direction of the magnetic field BOX axis direction can be changed, and vertical convection can be effectively suppressed, making it possible to control the oxygen concentration value over a wider range. can.

更に、以上においては単結晶シリコンの製造を例にとっ
て説明してきたが、本発明の引上装置はGaAs等の他
の単結晶半導体の製造にもそのまま利用できる。
Further, although the above explanation has been given by taking the production of single crystal silicon as an example, the pulling apparatus of the present invention can also be used as is for the production of other single crystal semiconductors such as GaAs.

以上詳述した如く、本発明の単結晶半導体引上装置によ
れば、比抵抗、酸素濃度等の物性の分布を均一化し、超
LSI用の高品質な半導体つエバを供給できる等顕著な
効果を奏するものである。
As detailed above, the single crystal semiconductor pulling apparatus of the present invention has remarkable effects such as uniform distribution of physical properties such as resistivity and oxygen concentration, and the ability to supply high quality semiconductor chips for VLSI. It is something that plays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単結晶半導体引上装置の断面図、第2図
はルツ?内の対流の状態を示す説明図、第3図は本発明
の実施例における単結晶半導体引上装置の断面図、第4
図は微小比抵抗分布を示す特性図、第5図は酸素濃度分
布を示す特性図である。 1・・・チャンバー、2・・・5良竹捺、3・・・保護
体、4・・・ルツ?、5・・・ヒータ、6.7・・・保
温筒、8・・・チェーン、9・・・種結晶、10・・・
溶融シリコン、11・・・単結晶シリコン、15・・・
超電導マグネッ ト。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第3図 へ\ △
Figure 1 is a cross-sectional view of a conventional single crystal semiconductor pulling device, and Figure 2 is a cross-sectional view of a conventional single crystal semiconductor pulling device. FIG. 3 is a cross-sectional view of a single crystal semiconductor pulling apparatus in an embodiment of the present invention, and FIG.
The figure is a characteristic diagram showing a minute resistivity distribution, and FIG. 5 is a characteristic diagram showing an oxygen concentration distribution. 1...chamber, 2...5 good bamboo printing, 3...protector, 4...Rutsu? , 5... Heater, 6.7... Heat insulation cylinder, 8... Chain, 9... Seed crystal, 10...
Molten silicon, 11... Single crystal silicon, 15...
Superconducting magnet. Applicant's agent Patent attorney Takehiko Suzue Go to Figure 1, Figure 2, Figure 3\ △

Claims (2)

【特許請求の範囲】[Claims] (1) チャンバー内にルッ?を回転自在に支掲し、該
ルッぎ内の溶融半導体原料に該ルッぎ上方から回転自在
に吊下された種結晶を浸し、核種結晶全引上げることに
より単結晶半導体を造る装置において、前記ルッは内の
溶融半導体原料に鉛直方向に対して所定角度傾いた方向
に磁場を印youする手段を設けたことを特徴とする単
結晶半導体引上装置。
(1) Is there something inside the chamber? In an apparatus for manufacturing a single crystal semiconductor by rotatably supporting a semiconductor material, dipping a seed crystal rotatably suspended from above the material into the molten semiconductor raw material in the material, and pulling up the entire nuclide crystal, the device comprises: 1. A single-crystal semiconductor pulling device, comprising means for applying a magnetic field to a molten semiconductor material in a direction inclined at a predetermined angle with respect to the vertical direction.
(2) 印711Iする磁場の方向が鉛直方向に対して
10〜80’であることを特徴とする特許請求の範囲第
1項記載の単結晶半導体引上装置。
(2) The single crystal semiconductor pulling apparatus according to claim 1, wherein the direction of the magnetic field indicated by the mark 711I is 10 to 80' with respect to the vertical direction.
JP13925483A 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor Granted JPS6033293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13925483A JPS6033293A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13925483A JPS6033293A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Publications (2)

Publication Number Publication Date
JPS6033293A true JPS6033293A (en) 1985-02-20
JPH0157079B2 JPH0157079B2 (en) 1989-12-04

Family

ID=15241020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13925483A Granted JPS6033293A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Country Status (1)

Country Link
JP (1) JPS6033293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647904A (en) * 1987-09-21 1997-07-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing superconducting ceramics in a magnetic field

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217493A (en) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> Method for pulling up single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217493A (en) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> Method for pulling up single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647904A (en) * 1987-09-21 1997-07-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing superconducting ceramics in a magnetic field

Also Published As

Publication number Publication date
JPH0157079B2 (en) 1989-12-04

Similar Documents

Publication Publication Date Title
KR100793950B1 (en) Silicon single crystal ingot and manufacturing method thereof
CA1336061C (en) High-oxygen-content silicon monocrystal substrate for semiconductor devices and production method therefor
JPH0455388A (en) Pulling-up method of semiconductor single crystal
JPH05155682A (en) Method for pulling up silicon single crystal
JP2004189559A (en) Single crystal growth method
JP4013324B2 (en) Single crystal growth method
JPS6033293A (en) Pulling device for single crystal semiconductor
JP3132412B2 (en) Single crystal pulling method
JPH0359040B2 (en)
JP2016117603A (en) Production method of silicon single crystal
JP2000044387A (en) Production of silicon single crystal
JP4951186B2 (en) Single crystal growth method
JPS6033297A (en) Pulling device for single crystal semiconductor
JPWO2002036861A1 (en) Apparatus and method for producing silicon semiconductor single crystal
JPS6033296A (en) Pulling device for single crystal semiconductor
JP2000239096A (en) Production of silicon single crystal
JPS61261288A (en) Apparatus for pulling up silicon single crystal
JP5003733B2 (en) Single crystal growth method
JP3018738B2 (en) Single crystal manufacturing equipment
JPS6033290A (en) Preparation of single crystal semiconductor
JPS58181792A (en) Apparatus for pulling up single crystal silicon
JPS60191095A (en) Method and device for manufacturing silicon single crystal
JPS5938199B2 (en) Compound semiconductor crystal growth equipment
JPH04357191A (en) Single crystal production apparatus
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal