JPS6032964B2 - Method for manufacturing magnetic recording media - Google Patents

Method for manufacturing magnetic recording media

Info

Publication number
JPS6032964B2
JPS6032964B2 JP15342877A JP15342877A JPS6032964B2 JP S6032964 B2 JPS6032964 B2 JP S6032964B2 JP 15342877 A JP15342877 A JP 15342877A JP 15342877 A JP15342877 A JP 15342877A JP S6032964 B2 JPS6032964 B2 JP S6032964B2
Authority
JP
Japan
Prior art keywords
magnetic recording
magnetic
film
weight
ferromagnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15342877A
Other languages
Japanese (ja)
Other versions
JPS5485398A (en
Inventor
龍司 白幡
康雄 玉井
達治 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP15342877A priority Critical patent/JPS6032964B2/en
Publication of JPS5485398A publication Critical patent/JPS5485398A/en
Publication of JPS6032964B2 publication Critical patent/JPS6032964B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は強磁性金属層を磁気記録層とする磁気記録媒体
に関するもので、特に磁気特性および耐摩耗性に優れた
磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium having a ferromagnetic metal layer as a magnetic recording layer, and particularly to a magnetic recording medium having excellent magnetic properties and wear resistance.

従来より磁気記録媒体としては、非支持性支持体上にy
−Fe203,Coをドープしたy−Fe203,Fe
304,CoをドープしたFe304,y−Fe203
とFe304のベルトラィド化合物、Cの2等の酸化物
磁性粉あるいはCo−Fe−Cr等の強磁性金属合金粉
末等の粉末磁性材料を塩化ビニル−酢酸ビニル共重合体
、スチレンーブタジェン共重合体、ェポキシ樹脂、ポリ
ウレタン樹脂等の有機バインダーに分散せしめたものを
塗布し乾燥させる塗布型のものが広く使用されてきてい
る。
Conventionally, as a magnetic recording medium, y
-Fe203,Co-doped y-Fe203,Fe
304, Co-doped Fe304,y-Fe203
Powder magnetic materials such as bertolide compounds of Fe304, C2, etc. oxide magnetic powders, or ferromagnetic metal alloy powders such as Co-Fe-Cr are combined with vinyl chloride-vinyl acetate copolymer, styrene-butadiene copolymer A coating type, in which a dispersion in an organic binder such as epoxy resin or polyurethane resin is coated and dried, has been widely used.

近年高密度記録への要求の高まりと共に真空蒸着、イオ
ンプレーティング、スパッタリング、CVD(化学気相
成長法)等のペーパーデポジション法あるいは電気メッ
キ、無電解〆ッキ等のメッキ法により形成される強磁性
金属薄膜を磁気記録層とする、有機バインダーを使用し
ない、無バインダー型磁気記録媒体が注目を浴びており
実用化への努力が種々行なわれている。従来の塗布型の
磁気記録媒体では主として強磁性金属より飽和磁化の小
さい金属酸化物を磁性材料として使用しているため、高
密度記録の実現に必要な磁気記録層の薄形化が、信号出
力の低下をもたらしてしまうので、限界に達しており、
且つその製造工程も複雑で、港済回収あるいは公害防止
のための大きな付帯設備を要するという欠点を有してい
る。
In recent years, with the increasing demand for high-density recording, paper deposition methods such as vacuum evaporation, ion plating, sputtering, and CVD (chemical vapor deposition), or plating methods such as electroplating and electroless finishing are used. Binderless magnetic recording media that do not use an organic binder and have a ferromagnetic metal thin film as a magnetic recording layer are attracting attention, and various efforts are being made to put them into practical use. Conventional coating-type magnetic recording media mainly use metal oxides, which have lower saturation magnetization than ferromagnetic metals, as magnetic materials, so thinning the magnetic recording layer, which is necessary to achieve high-density recording, improves signal output. It has reached its limit as it causes a decrease in
Moreover, the manufacturing process is complicated, and it has the drawback of requiring large-scale incidental equipment for port recovery and pollution prevention.

無バインダー型の磁気記録媒体では上記酸化物磁性材料
よりも大きな飽和磁化を有する強磁性金属を有機バイン
ダーの如き非磁性物質を含有しない状態で、薄膜として
形成せしめるために、高密度記録のための超薄形化が極
めて容易であるという利点を有し、しかもその製造工程
は簡単である。特に真空黍着あるいはイオンプレーティ
ングによる方法はメッキの場合のような排液処理を必要
とせず、製造工程も簡単で膜の析出速度も大きくできる
ため従来から検討されてきている。
In a binder-free magnetic recording medium, a ferromagnetic metal having a saturation magnetization higher than that of the above-mentioned oxide magnetic material is formed as a thin film without containing a non-magnetic substance such as an organic binder. It has the advantage that it is extremely easy to make it ultra-thin, and the manufacturing process is simple. In particular, methods using vacuum deposition or ion plating have been studied since they do not require drainage treatment unlike plating, the manufacturing process is simple, and the deposition rate of the film can be increased.

真空蒸着によって磁気記録媒体に望ましい抗磁力および
角型性を有する磁性膜を得る方法としては、‘1}真空
度あるし、は蒸着速度を制御する方法〔A.VDavj
es等、lEEE Trans,Magnetics,
Vol,MAG−1,No.4(1965)、344頁
;米国特許3787237号明細書〕、{21強磁性金
属蒸発ビームを基体に対しそて斜めに入射させる斜め蒸
着法〔WJ..Sch山e,J.Appl.PhyS,
Vol.35(1964>、2558頁;米国特許第3
342632号明細書:米国特許第3342633号明
細書〕、{3ー銅を主成分とする基体を加熱しつつ強磁
性金属を蒸着する方法〔侍磯昭52−82503号〕等
が知られている。しかしながら、これらの方法では所望
の磁気特性が充分に得られないとか、蒸着工程が複雑で
あるとか、蒸着効率が悪いとか、基体が限定されてしま
うとかの欠点を有していて必ずしも満足すべき方法では
ない。一方イオンプレーテイング法では、イオンプレー
ティング時の希ガスの圧力を大きくすると抗磁力の大き
い磁性膜が得られるが、基体との密着が著しく悪いし、
希ガスの圧力を小さくすると密着性は極めて良いが磁気
特性が極めて悪く、実用的な磁気記録媒体が得られ難か
った。さらに強磁性金属を用いた無バインダー型磁気記
録媒体に係る大きな問題として、磁気ヘッドとの接触に
よる摩擦や破壊の問題がある。
As a method for obtaining a magnetic film having coercive force and squareness desirable for a magnetic recording medium by vacuum deposition, there is a method of controlling the degree of vacuum and the deposition rate [A. VDavj
es, etc., lEEE Trans, Magnetics,
Vol, MAG-1, No. 4 (1965), p. 344; US Pat. No. 3,787,237], {21 Oblique evaporation method in which a ferromagnetic metal evaporation beam is incident obliquely on a substrate [WJ. .. Schyamae, J. Appl. PhyS,
Vol. 35 (1964>, p. 2558; U.S. Patent No. 3
342632 specification: U.S. Patent No. 3342633 specification], {3-method of vapor depositing a ferromagnetic metal while heating a substrate mainly composed of copper [Samurai Iso Sho 52-82503], etc. are known. . However, these methods have drawbacks such as not being able to sufficiently obtain the desired magnetic properties, the deposition process being complicated, the deposition efficiency being poor, and the substrate being limited, so they are not necessarily satisfactory. Not the method. On the other hand, in the ion plating method, a magnetic film with a large coercive force can be obtained by increasing the pressure of the rare gas during ion plating, but the adhesion with the substrate is extremely poor.
When the pressure of the rare gas is reduced, the adhesion is extremely good, but the magnetic properties are extremely poor, making it difficult to obtain a practical magnetic recording medium. Furthermore, a major problem with binderless magnetic recording media using ferromagnetic metals is the problem of friction and destruction due to contact with a magnetic head.

無バインダー型磁気記録媒体の耐摩耗性を向上させる方
法としては、Rh,Cr,Cr酸化物、Si酸化物等の
保護層あるいは潤滑剤層を設ける方法や磁性膜表面を酸
化して酸化物保護層を形成する方法等が従来より行なわ
れてきている。しかし、一旦保護層が摩擦してしまうと
カタストロフィツクに磁気記録層が破壊してしまったり
、また保護層を設けると磁気ヘッドと磁気記録層とのス
ベーシングにより再生出力の損失が生じるため、磁性層
そのものの耐摩耗性を向上させることが望まれていた。
本発明の目的は、強磁性金属膜を磁気記録層とする新し
い磁気記録媒体を提供することにある。さらに本発明の
目的は磁気特性および耐摩耗性に優れた新しい無バイン
ダー型磁気記録媒体の製造方法を提供することにある。
すなわち本発明は、真空蒸着あるいはイオンフ。
Methods for improving the wear resistance of binder-free magnetic recording media include providing a protective layer or lubricant layer of Rh, Cr, Cr oxide, Si oxide, etc., and oxidizing the magnetic film surface to protect it from oxides. Methods of forming layers have been conventionally used. However, once the protective layer rubs against the magnetic recording layer, it will catastrophically destroy the magnetic recording layer, and if a protective layer is provided, a loss of reproduction output will occur due to spacing between the magnetic head and the magnetic recording layer. It has been desired to improve the wear resistance of the material itself.
An object of the present invention is to provide a new magnetic recording medium using a ferromagnetic metal film as a magnetic recording layer. A further object of the present invention is to provide a method for producing a new binder-free magnetic recording medium with excellent magnetic properties and wear resistance.
That is, the present invention uses vacuum evaporation or ion deposition.

レーティングにより非磁性支持体上に強磁性金属薄膜を
形成してなる磁気記録媒体の製造方法において、該強磁
性金属薄膜にCoを主成分とすると共にBを0.2〜3
.の重量%、Nを0〜2.の重量%含有せしめることを
特徴とする磁気記録媒体である。本発明者等は真空蒸着
法およびイオンプレーティング法による磁気記録体に関
し鋭意研究の結果、Coを主成分とする強磁性金属薄膜
にBが0.2〜3.の重量%含有されると磁気特性、耐
摩耗性が向上し、さらに2.の重量%以下のNが含有さ
れるとより改良されることを見出したものである。本発
明における真空蒸着は、当業者に公知の通常の真空蒸着
装暦により通常の方法で行なえば良い。真空蒸着法につ
いては例えば、L.日.Holland著“Vacu側
Deposition of minFilms”(
Chapman&伍lILtd,,1956):L,1
.Maissel&R.Clang共編“Hand−b
ook of Thin FilmTechnolog
y’’(McGraw一日ilICo.,1970)に
詳述されている。真空蒸着を行なう際の真空度は5×1
0‐4Torr以下、蒸着速度は0.03〜3仏肌/分
が望ましい。又、イオンプレーティング法は特公昭44
一8328号公報、米国特許第3329601号明細書
に開示されている方法によれば良く、不活性ガスを含む
装置内の真空度は一般には10‐3〜10‐ITon、
好ましくは5×10‐3〜5×10‐2Tonである。
In a method for producing a magnetic recording medium in which a ferromagnetic metal thin film is formed on a non-magnetic support by rating, the ferromagnetic metal thin film contains Co as a main component and 0.2 to 3 B as a main component.
.. % by weight, N from 0 to 2. % by weight of the magnetic recording medium. As a result of extensive research into magnetic recording media produced by vacuum evaporation and ion plating, the present inventors found that a ferromagnetic metal thin film containing Co as a main component contains B of 0.2 to 3. Magnetic properties and abrasion resistance are improved when the weight percent of 2. It has been found that the improvement is further improved when N is contained in a weight percent or less. Vacuum deposition in the present invention may be carried out in a conventional manner using conventional vacuum deposition equipment known to those skilled in the art. Regarding the vacuum evaporation method, for example, L. Day. “Vacu side Deposition of minFilms” by Holland (
Chapman & 5IL Ltd, 1956): L, 1
.. Maissel&R. “Hand-b” co-edited by Clang
ook of Thin FilmTechnolog
y'' (McGraw, IlI Co., 1970). The degree of vacuum during vacuum evaporation is 5×1
It is desirable that the deposition rate is 0-4 Torr or less and the deposition rate is 0.03-3 Torr/min. In addition, the ion plating method was developed in
The method disclosed in Japanese Patent No. 18328 and US Pat. No. 3,329,601 may be used, and the degree of vacuum in the apparatus containing an inert gas is generally 10-3 to 10-ITon,
Preferably it is 5×10-3 to 5×10-2 Ton.

直流印加電圧は一般には0.1〜7KV、好ましくは0
.2〜5.0KVである。イオンプレーテイングにおい
て使用するガスは窒素、ヘリウム、ネオン、アルゴン、
クリプトン、キセノン、ラドン等であるが本発明では窒
素またはこれらと窒素の混合物が好ましい。真空蒸着お
よびオンプレーティングにおいて強磁性金属を得るため
の蒸発源に使用する原料は本発明の強磁性金属膜の組成
と成るようにCo,B,N、またはこれ以外にFe,N
i,Si,V,Y,い,Ce,Pr,Sm,Gd,Mn
,Cu,Crなどを含んで、これらの単体の混合物、固
溶体または合金などを使用する。基体としてはポリエチ
レンテレフタレート、ポリイミド、ポリエチレンナフタ
レート、ポリ塩化ビニル、三酢酸セルロース、ポリカー
ボネートのようなプラスチック材料、さらにはアルミニ
ウム、銅、糞銅、ステンレス鋼のような非磁性金属、ま
たはガラス、セラミックのような無機質の基体も使用す
ることができる。
The DC applied voltage is generally 0.1 to 7 KV, preferably 0.
.. It is 2-5.0KV. Gases used in ion plating include nitrogen, helium, neon, argon,
Examples include krypton, xenon, radon, etc., but nitrogen or a mixture of these and nitrogen is preferred in the present invention. The raw materials used for the evaporation source to obtain the ferromagnetic metal in vacuum evaporation and on-plating are Co, B, N, or other materials such as Fe, N, etc. so as to have the composition of the ferromagnetic metal film of the present invention.
i, Si, V, Y, I, Ce, Pr, Sm, Gd, Mn
, Cu, Cr, etc., and a mixture, solid solution, or alloy of these elements is used. Substrates include plastic materials such as polyethylene terephthalate, polyimide, polyethylene naphthalate, polyvinyl chloride, cellulose triacetate, and polycarbonate, as well as non-magnetic metals such as aluminum, copper, copper, and stainless steel, or glass and ceramic materials. Inorganic substrates can also be used.

基体の形状についても、テープ、シート、カード、デス
ク、ドラム等いずれでも良い。これらの基体の厚味、形
状等は磁気記録媒体の用途に応じて任意に選定される。
本発明において強磁性金属膜の“Coを主成分とする”
とは“Coを75重量%以上含有する”ことを意味し、
75重量%以上のCo,0.2〜3.の重量%のB、0
〜2.の重量%のN以外に残部としてFe,Ni,Si
,V,Y,La,Ce,Pr,Sm,Gd,Mn,Cu
,Crあるいはこれら混合を含有しても良い。
The shape of the base may be tape, sheet, card, desk, drum, or the like. The thickness, shape, etc. of these substrates are arbitrarily selected depending on the intended use of the magnetic recording medium.
In the present invention, the ferromagnetic metal film “mainly contains Co”
means “contains 75% by weight or more of Co”,
75% by weight or more of Co, 0.2-3. Weight% of B, 0
~2. In addition to the weight percent of N, the balance is Fe, Ni, and Si.
, V, Y, La, Ce, Pr, Sm, Gd, Mn, Cu
, Cr, or a mixture thereof.

これら残部の組成は磁気記録媒体の用途に応じて選定さ
れる。強磁性金属膜の厚さは約0.02〜5山肌、好ま
しくは0.05〜2仏机が良い。次に実施例をもって本
発明を具体的に説明するが、本発明はこれに限定される
ものではない。
The composition of the remaining portion is selected depending on the intended use of the magnetic recording medium. The thickness of the ferromagnetic metal film is approximately 0.02 to 5 degrees thick, preferably 0.05 to 2 degrees thick. Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例−125山肌厚のポリエチレンテレフタレートフ
ィルムを市販の真空蒸着装置の基板ホルダーに取付け、
抵抗加熱式の蒸発源にはCo−B固熔体をチャージした
Example 1: A polyethylene terephthalate film with a thickness of 25 cm was attached to a substrate holder of a commercially available vacuum evaporation device.
The resistance heating type evaporation source was charged with a Co-B solid melt.

装置内を5×10‐6Torr迄真空排気して、50A
/秒の速度で膜厚0.3仏机となる迄真空蒸着を行なっ
た。磁性膜中のBの含有量と磁気特性および耐摩耗性の
関係は下記の第1表のようであった。耐摩耗性は磁性膜
の同一個所を統一1型VTRの回転ヘッドと摺接させ、
傷の発生する迄の時間を測定することによって解析した
。第1表このようにBを0.2〜3.の重量%含有する
Co蒸着磁性膜は磁気特性と耐摩耗性が共にすぐれ磁気
記録媒体としてすぐれている。実施例−2 2.5仏の厚のポリィミドフィルムを市販のイオンプレ
ーティング装置の陰極板に取付け、陽極側の抵抗加熱式
の蒸発源にはCo−V−B合金をチャージしたし。
The inside of the device was evacuated to 5×10-6 Torr, and 50A
Vacuum deposition was performed at a rate of 0.3 cm/sec until the film thickness was 0.3 cm. The relationship between the content of B in the magnetic film, magnetic properties and wear resistance is as shown in Table 1 below. Wear resistance is achieved by sliding the same part of the magnetic film with the rotating head of a unified type 1 VTR.
The analysis was carried out by measuring the time it took for scratches to occur. Table 1 shows that B is 0.2 to 3. A Co vapor-deposited magnetic film containing . Example 2 A polyimide film with a thickness of 2.5 mm was attached to the cathode plate of a commercially available ion plating device, and a resistance heating type evaporation source on the anode side was charged with a Co-V-B alloy.

まず装置内を5×10‐6Ton迄真空排気した後アル
ゴンガスを導入して装置内をITorr程度にし再び真
空排気して5×10‐6Torrの高真空とする。次に
アルゴンガスをニードルバルブから導入しつつ、装置内
の排気を行ない装置内の真空度を2xlo‐2Tonに
保つ。陰極・陽極間に2.2KVの高電圧を印加してグ
ロー放電を発生させ、蒸発源から合金を蒸発させてイオ
ンプレーテイングを行なった。こうして作製された磁性
膜の磁気特性と耐摩耗性は下記の第2表のようであった
。耐摩耗性は実施例1と同じ方法で測定した。第2表こ
こで磁性膜の膜厚は0.2r机、CoとVの比は85/
15(重量比)と一定にした。
First, the inside of the apparatus is evacuated to 5 x 10-6 Torr, and then argon gas is introduced to bring the inside of the apparatus to about I Torr, which is evacuated again to a high vacuum of 5 x 10-6 Torr. Next, while introducing argon gas through the needle valve, the inside of the device is evacuated to maintain the vacuum level inside the device at 2xlo-2Ton. A high voltage of 2.2 KV was applied between the cathode and the anode to generate glow discharge, and the alloy was evaporated from the evaporation source to perform ion plating. The magnetic properties and wear resistance of the magnetic film thus produced were as shown in Table 2 below. Abrasion resistance was measured in the same manner as in Example 1. Table 2: The thickness of the magnetic film is 0.2r, and the ratio of Co and V is 85/
The weight ratio was kept constant at 15 (weight ratio).

このようにBを0.2〜3.の重量%含有するCo−V
イオンプレーティング膜は、磁性特性と耐摩耗性が共に
すぐれ磁気記録媒体としてすぐれている。
In this way, B is 0.2 to 3. Co-V containing % by weight of
Ion plating films have excellent magnetic properties and wear resistance, making them excellent as magnetic recording media.

実施例−325山肌厚のポリイミドフィルムに実施例−
1と同様な方法で0.25仏の厚のCo−Cr−B−N
合金磁性膜を形成させた。
Example - Example on a polyimide film with a thickness of 325 mounds -
Co-Cr-B-N with a thickness of 0.25 mm in the same manner as in 1.
An alloy magnetic film was formed.

葵着時の真空度は2×10‐5Torr、蒸着速度は3
0A/秒である。磁性膜中のBおよびNの含有量と磁気
特性および耐摩耗性の関係は下記の第3表のようであっ
た。耐摩耗性の測定は実施例−1と同じ方法で行なった
。第3表ここでCo/Cr比は95/5(重量比)と一
定にした。
The degree of vacuum during Aoi deposition was 2×10-5 Torr, and the deposition rate was 3.
It is 0A/sec. The relationship between the content of B and N in the magnetic film, magnetic properties, and wear resistance is as shown in Table 3 below. Abrasion resistance was measured using the same method as in Example-1. Table 3 Here, the Co/Cr ratio was kept constant at 95/5 (weight ratio).

実施例−4 実施例2と同様にイオンプレーテイング装置を用い厚さ
約3肋のアルミニウム坂上に厚さ0.35山肌のCo−
Ni−B−N合金磁性膜を形成させた。
Example 4 Using an ion plating device in the same manner as in Example 2, a 0.35 mound of Co--
A Ni-B-N alloy magnetic film was formed.

導入ガスとしては窒素を使用し、ガス圧は0.01To
m、印加電圧は2.0KVとした。
Nitrogen is used as the introduced gas, and the gas pressure is 0.01To.
m, and the applied voltage was 2.0 KV.

得られた磁性膜の磁性特性と耐摩耗性は下記の第4表の
ようであった。耐摩耗性は直径1/4インチのタングス
テンカーバイト球を用いたTa■r式摩耗試験機にて行
ない、タングステンカーバイト球を試料に接触移動させ
試料に傷が生じる迄のパス回数を調べた。第4表 ここでCo/Nj比は90/10(重量比)と一定にし
た。
The magnetic properties and wear resistance of the obtained magnetic film were as shown in Table 4 below. Abrasion resistance was measured using a Ta■r type abrasion tester using a tungsten carbide ball with a diameter of 1/4 inch.The tungsten carbide ball was moved in contact with the sample and the number of passes until the sample was scratched was measured. . Table 4 Here, the Co/Nj ratio was kept constant at 90/10 (weight ratio).

これらの実施例にて明らかなように真空蒸着あるいはイ
オンプレーティングにより形成された、Coを主成分と
し、Bを0.2〜3.の重量%、Nを0〜2.の重量%
含有する磁性膜は磁気記録媒体としてすぐれており、特
に抗磁力、角型比等の磁気特性の向上、および耐摩耗曲
こ優れていることが確認された。
As is clear from these examples, it was formed by vacuum evaporation or ion plating, with Co as the main component and B in an amount of 0.2 to 3. % by weight, N from 0 to 2. weight% of
It was confirmed that the magnetic film contained therein is excellent as a magnetic recording medium, particularly in improved magnetic properties such as coercive force and squareness ratio, and excellent wear resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 真空蒸着あるいはイオンプレーテイングにより非磁
性支持体上に強磁性金属薄膜を形成する磁気記録媒体の
製造方法において、該強磁性金属薄膜にCoを75重量
%以上、Bを0.2〜3.0重量%、さらにNを0〜2
.0重量%含有せしめることを特徴とす磁気記録媒体の
製造方法。
1. A method for producing a magnetic recording medium in which a ferromagnetic metal thin film is formed on a non-magnetic support by vacuum evaporation or ion plating, wherein the ferromagnetic metal thin film contains 75% by weight or more of Co and 0.2 to 3.0% by weight of B. 0% by weight, and 0 to 2 N
.. A method for manufacturing a magnetic recording medium, characterized in that the content is 0% by weight.
JP15342877A 1977-12-20 1977-12-20 Method for manufacturing magnetic recording media Expired JPS6032964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15342877A JPS6032964B2 (en) 1977-12-20 1977-12-20 Method for manufacturing magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15342877A JPS6032964B2 (en) 1977-12-20 1977-12-20 Method for manufacturing magnetic recording media

Publications (2)

Publication Number Publication Date
JPS5485398A JPS5485398A (en) 1979-07-06
JPS6032964B2 true JPS6032964B2 (en) 1985-07-31

Family

ID=15562290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15342877A Expired JPS6032964B2 (en) 1977-12-20 1977-12-20 Method for manufacturing magnetic recording media

Country Status (1)

Country Link
JP (1) JPS6032964B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198615A (en) * 1981-05-30 1982-12-06 Nippon Gakki Seizo Kk Magnetic recording tape
JPS57198614A (en) * 1981-05-30 1982-12-06 Nippon Gakki Seizo Kk Magnetic recording tape
JPH07101496B2 (en) * 1985-07-22 1995-11-01 松下電器産業株式会社 Magnetic recording medium
JPH03122266A (en) * 1989-10-06 1991-05-24 Matsushita Electric Ind Co Ltd Production of thin nitride film
JP2008193793A (en) * 2007-02-02 2008-08-21 Mirai Ind Co Ltd Fixture tool on wall hole

Also Published As

Publication number Publication date
JPS5485398A (en) 1979-07-06

Similar Documents

Publication Publication Date Title
US4582746A (en) Magnetic recording medium
US3342632A (en) Magnetic coating
US4002546A (en) Method for producing a magnetic recording medium
JPS6032964B2 (en) Method for manufacturing magnetic recording media
JP2761859B2 (en) Magnetic recording media
US4643915A (en) Process for producing magnetic recording medium
JPS61253622A (en) Magnetic recording medium and its production
US4639815A (en) Magnetic recording medium with chromiumiron protective layer
JPH0462163B2 (en)
US4835068A (en) Magnetic recording medium
JPS5837615B2 (en) magnetic recording medium
JPS624774B2 (en)
JPS61246914A (en) Magnetic recording medium and its production
JPS59178626A (en) Manufacture of magnetic recording medium
JPH1064035A (en) Magnetic recording medium and its production
JPH07111773B2 (en) Magnetic recording medium
JPH0512765B2 (en)
JPH0760523B2 (en) Method of manufacturing magnetic recording medium
JPS59148123A (en) Magnetic recording medium
JPS60205820A (en) Magnetic recording medium and its production
JPS63197026A (en) Magnetic recording medium
JPH0785445A (en) Magnetic recording medium and manufacture thereof
JPH08325718A (en) Film formation
JPS61224120A (en) Magnetic recording medium and its production
JPS6154024A (en) Magnetic recording medium