JPS6032960B2 - Induction heating method for multiple running wires - Google Patents

Induction heating method for multiple running wires

Info

Publication number
JPS6032960B2
JPS6032960B2 JP52121547A JP12154777A JPS6032960B2 JP S6032960 B2 JPS6032960 B2 JP S6032960B2 JP 52121547 A JP52121547 A JP 52121547A JP 12154777 A JP12154777 A JP 12154777A JP S6032960 B2 JPS6032960 B2 JP S6032960B2
Authority
JP
Japan
Prior art keywords
conductor
loop
heating
induction heating
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52121547A
Other languages
Japanese (ja)
Other versions
JPS5455840A (en
Inventor
正衛 沼波
幸夫 香村
喜治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP52121547A priority Critical patent/JPS6032960B2/en
Publication of JPS5455840A publication Critical patent/JPS5455840A/en
Publication of JPS6032960B2 publication Critical patent/JPS6032960B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 本発明は複数本の導体を一個のカーレントトランスを通
して引出し、それぞれの導体を所望の温度に誘導加熱す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of drawing out a plurality of conductors through a single current transformer and inductively heating each conductor to a desired temperature.

従来複数本の導体を加熱して絶縁塗料を塗布焼付けて絶
縁電線を製造しているが、塗料塗布装置に赤外線ヒータ
或は熱風による子熱装置を前遣して複数本の導体芯線を
子熱している。このような子熱装置は温度制御の遠応性
が遅く所望の加熱温度にするまでに長時間を要し又加熱
効率が悪いので、省エネルギの面からも好ましくない。
そこで複数本の導体を一個のカーレントトランスの貫通
孔を通してループ状に走行させ、誘起電流により加熱す
る誘導加熱方法が提案された。この誘導加熱方法は第2
図及び第3図に示すように複数本の導体芯線1′を通電
電極ロ−ル2′と絶縁シーフ3′を通してループ4′に
して一個のカーレントトランス5′を貫通させ、矢印方
向に走行させればループ4′の部分には誘起電流が生じ
て導体1′を加熱するのである。なお第2図において6
′は塗料塗布装置を示す。このような誘導加熱による導
体1′の加熱温度はカーレントトランス5′のスライド
トランス7′の調整により容易に調整でき、加熱温度の
遠応性もよい。しかして加熱すべき複数本の導体1′の
材質、線速、形状等が同一であれば、スライドトランス
7′の調整により複数本の導体1′の加熱温度が同時に
同一温度に制御が可能で極めて能率的であるが、複数本
の導体の材質、サイズ等が異なる場合には、それぞれの
導体に適した温度に加熱することができないうらみがあ
った。本発明はこれに鑑み材質、サイズ等の異なる複数
本の導体の誘導加熱において、個々の導体の加熱温度を
それぞれ所望の温度に容易に調整し得るようにしたので
ある。即ち複数本の導体をループにして一個のカーレン
トトランスを貫通させて加熱する誘導加熱において個々
の導体のループ長を加減して加熱温度を調整するのであ
る。次にこれを図面に塞いて更に詳細に説明する。
Conventionally, insulated wires are manufactured by heating multiple conductors, applying and baking insulating paint, but in this method, an infrared heater or a heating device using hot air is used in advance of the paint coating device to heat the multiple conductor core wires. ing. Such a heating element is not preferable from the viewpoint of energy saving, since the long-range response of temperature control is slow and it takes a long time to reach the desired heating temperature, and the heating efficiency is poor.
Therefore, an induction heating method was proposed in which multiple conductors are run in a loop through the through-hole of a single current transformer and heated by the induced current. This induction heating method is the second
As shown in the figure and FIG. 3, a plurality of conductor core wires 1' are passed through a current-carrying electrode roll 2' and an insulating thief 3', and formed into a loop 4' that passes through one current transformer 5' and runs in the direction of the arrow. If this is done, an induced current will be generated in the loop 4', heating the conductor 1'. In addition, in Figure 2, 6
' indicates a paint application device. The heating temperature of the conductor 1' by such induction heating can be easily adjusted by adjusting the slide transformer 7' of the current transformer 5', and the heating temperature has good long-range response. If the material, linear speed, shape, etc. of the multiple conductors 1' to be heated are the same, the heating temperature of the multiple conductors 1' can be controlled to the same temperature at the same time by adjusting the slide transformer 7'. Although this method is extremely efficient, it has the disadvantage that when the plurality of conductors are made of different materials, sizes, etc., it is not possible to heat each conductor to a temperature suitable for each conductor. In view of this, the present invention makes it possible to easily adjust the heating temperature of each conductor to a desired temperature in induction heating of a plurality of conductors of different materials, sizes, etc. That is, in induction heating in which a plurality of conductors are looped and heated by passing through one current transformer, the heating temperature is adjusted by adjusting the loop length of each conductor. Next, this will be explained in more detail with reference to the drawings.

第1図は本発明を実施する装置の要部を示したもので、
同図は簡単にするため一条の導体を加熱する場合を示し
た。同図においてサプライ(図示してない)から供給さ
れる導体1を通電電極ロール2と絶縁シーブ3を通して
ループ4を構成し、このループ4を一個のカーレントト
ランス5を貫通させて図の矢EO方向に走行させ、ルー
プ4に誘起電流を生じさせ、これにより導体1を加熱す
ることは従来の誘導加熱と同じである。本発明はこのよ
うな誘導加熱方法において、ループ4に補助シーブ8を
設け、この補助シーブ8をシリンダその他適宜な手段に
より図の矢印方向に動かして導体1が通電電極ロール2
から補助シーブ8および絶縁シーブ3を介して再び通電
電極ロール2へ戻るまでの範囲に形成されるループ4の
長さを加減し、これにより加熱温度を調整する。すなわ
ち通電電極ロール2と絶縁シーブ3の位置は固定されて
いるので、補助シーブ8が左右に変位することにより、
補助シーブ8と通電電極ロール2および絶縁シーブ3と
の間の導体1の長さが変化し、この結果、ループ4の長
さが変化する。カーレントトランス5の二次電圧および
周波数が等しければ、ループ4に生じる誘起電圧E(V
)は一定であるが、ループ4の全体の加熱量P(W)は
、ループ4の長さをL(伽)、ループ4を構成する導体
の単位長さ当たりの抵抗をp(0/肌)とすると、P=
E2/(p・L)となり、pは導体の外径、材質不変の
ため一定であるから、したがって、ループ4の長さが大
きい程、加熱量が4・さくなり、導体1の加熱温度は低
下する。例えば補助シーブ8を図の右方に動かせばルー
プ長は長〈なり、加熱温度は低くなり、左方に動かせば
ループ長は短くなり、加熱温度は高くなるのである。こ
のような補助シーブ8は複数本の導体のそれぞれに設け
て調整するものであり、複数本の導体全部の加熱温度は
カーレントトランス5のスライドトランス7の調整によ
り制御するほか、個々の加熱温度もループ長の加減によ
り調整できるので、複数本の導体の材質、サイズ等が異
なる場合でもそれぞれに適した温度に加熱することがで
きるのである。以上説明したように本発明によれば複数
本の導体をループにして一個のカーレントトランスによ
り誘導加熱するので、多数の芯線を同時に速応性のある
加熱ができ、しかも個々の導体もそれぞれのループ長を
加減して加熱温度を調整し得るので、それぞれの導体に
適した温度に加熱することができ、小型の設備で材質及
びサイズの異なる多数本の導体の並設加熱が可能で、省
エネルギ効果も大きい等の顕著な効果がある。
FIG. 1 shows the main parts of an apparatus for carrying out the present invention.
The figure shows the case where a single conductor is heated for simplicity. In the same figure, a conductor 1 supplied from a supply (not shown) passes through a current-carrying electrode roll 2 and an insulating sheave 3 to form a loop 4, and a current transformer 5 is passed through this loop 4 to connect it to the arrow EO in the figure. It is the same as conventional induction heating that the conductor 1 is heated by causing the conductor 1 to run in the direction to generate an induced current in the loop 4, thereby heating the conductor 1. In the induction heating method of the present invention, an auxiliary sheave 8 is provided in the loop 4, and the auxiliary sheave 8 is moved in the direction of the arrow in the figure by a cylinder or other appropriate means, so that the conductor 1 is connected to the energized electrode roll 2.
The length of the loop 4 formed in the range from the point to the point where it returns to the energized electrode roll 2 via the auxiliary sheave 8 and the insulating sheave 3 is adjusted, thereby adjusting the heating temperature. In other words, since the positions of the current-carrying electrode roll 2 and the insulating sheave 3 are fixed, the auxiliary sheave 8 is displaced from side to side.
The length of the conductor 1 between the auxiliary sheave 8 and the energized electrode roll 2 and the insulating sheave 3 changes, and as a result the length of the loop 4 changes. If the secondary voltage and frequency of the current transformer 5 are equal, the induced voltage E (V
) is constant, but the total heating amount P(W) of loop 4 is calculated by setting the length of loop 4 to L(弽) and the resistance per unit length of the conductor constituting loop 4 to p(0/skin). ), then P=
E2/(p・L), and p is constant because the outer diameter of the conductor and the material do not change. Therefore, the longer the length of the loop 4, the smaller the amount of heating, and the heating temperature of the conductor 1 is descend. For example, if the auxiliary sheave 8 is moved to the right in the figure, the loop length becomes longer and the heating temperature becomes lower; if it is moved to the left, the loop length becomes shorter and the heating temperature becomes higher. Such an auxiliary sheave 8 is provided and adjusted for each of the plurality of conductors, and in addition to controlling the heating temperature of all the plurality of conductors by adjusting the slide transformer 7 of the current transformer 5, it also controls the heating temperature of each individual conductor. Since the temperature can be adjusted by adjusting the loop length, it is possible to heat each conductor to an appropriate temperature even if the conductors are made of different materials, sizes, etc. As explained above, according to the present invention, a plurality of conductors are looped and heated by induction using a single current transformer, so a large number of core wires can be heated simultaneously with quick response, and each conductor can also be heated in its own loop. Since the heating temperature can be adjusted by adjusting the length, it is possible to heat each conductor to the appropriate temperature, and it is possible to heat many conductors of different materials and sizes in parallel with small equipment, which saves energy. There are significant and significant effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の要部を示す説明図
、第2図は従来の譲導加熱方法を示す斜視図、第3図は
その要部を示す説明図である。 1・・・・・・導体、2・・・・・・通電電極ロール、
3・・・…絶縁シーブ、4……ループ、5……カーレン
トトランス、8・・・・・・補助シーフ。 第1図 第3図 第2図
FIG. 1 is an explanatory view showing the main parts of an apparatus for carrying out the method of the present invention, FIG. 2 is a perspective view showing a conventional conductive heating method, and FIG. 3 is an explanatory view showing the main parts thereof. 1... Conductor, 2... Current-carrying electrode roll,
3...Insulation sheave, 4...Loop, 5...Current transformer, 8...Auxiliary thief. Figure 1 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 複数本の導体を一個のカーレントトランスの貫通孔
を通してループ状に走行させて誘導加熱する方法におい
て、個々の導体のループ長を加減して加熱温度を調整す
ることを特徴とする複数本の走行電線の誘導加熱方法。
1. A method of induction heating by running a plurality of conductors in a loop through a through-hole of a current transformer, which is characterized in that the heating temperature is adjusted by adjusting the loop length of each conductor. Induction heating method for running electric wires.
JP52121547A 1977-10-12 1977-10-12 Induction heating method for multiple running wires Expired JPS6032960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52121547A JPS6032960B2 (en) 1977-10-12 1977-10-12 Induction heating method for multiple running wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52121547A JPS6032960B2 (en) 1977-10-12 1977-10-12 Induction heating method for multiple running wires

Publications (2)

Publication Number Publication Date
JPS5455840A JPS5455840A (en) 1979-05-04
JPS6032960B2 true JPS6032960B2 (en) 1985-07-31

Family

ID=14813941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52121547A Expired JPS6032960B2 (en) 1977-10-12 1977-10-12 Induction heating method for multiple running wires

Country Status (1)

Country Link
JP (1) JPS6032960B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100829C1 (en) * 2001-01-10 2002-05-08 Rainer Menge Induction annealing device used for conductively heating a wire comprises transformers with parallel primary windings each wound around a magnetic core formed by a packet of annular cores made of highly permeable material

Also Published As

Publication number Publication date
JPS5455840A (en) 1979-05-04

Similar Documents

Publication Publication Date Title
AU632085B2 (en) Electro-magnetic induction heating of strip-material
US4899031A (en) Pulsed electrical heating of concrete
CA2243110A1 (en) Strip heating coil apparatus with series power supplies
US3722462A (en) Apparatus for coating materials of all kinds with a plastic coating, in particular for impregnating webs of insulating material with electrically conducting plastic dispersions
JPS6032960B2 (en) Induction heating method for multiple running wires
US4443679A (en) Induction furnace for heat shrinking thermoplastic sheet onto mandrels in a forming process
US3842239A (en) Power control circuit for resistance heating moving conductors
EP0878980B1 (en) Process to manufacture heating panels and panels obtained therefrom
EP0075782B1 (en) Method and apparatus for controlling a product which is influenced by a metering process
US4186041A (en) Method and device for insulating covering of cables
ES8705533A1 (en) Process and apparatus for coating metallic conducting wires.
US3739132A (en) Power control circuit for resistance heating moving conductors
JPS583274Y2 (en) Electrical heating device for the striatum using induced current
EP0263439A2 (en) Electromagnetic induction furnace for the thermic treatment of wires
JP2000012200A (en) Heating electric wire
CN219499577U (en) Electromagnetic induction heating device
JPS5528311A (en) Controlling method for heating for edge of metallic piece
JP2517811B2 (en) Insulation pipe
US3796556A (en) Manufacture of welded glazing units
JPS56139622A (en) Heat treatment method of threaded part by high-frequency induction heating and its device
ATE47951T1 (en) TRAVELLING WAVE INDUCTION HEATER.
JPS56149617A (en) Temperature controller of electric heating device
GB1473864A (en) Electric heating inductors
SU1211563A1 (en) Heating furnace
SU147137A1 (en) The method of drying electrical insulation materials