JPS6032933A - Diesel engine with supercharger - Google Patents

Diesel engine with supercharger

Info

Publication number
JPS6032933A
JPS6032933A JP58140712A JP14071283A JPS6032933A JP S6032933 A JPS6032933 A JP S6032933A JP 58140712 A JP58140712 A JP 58140712A JP 14071283 A JP14071283 A JP 14071283A JP S6032933 A JPS6032933 A JP S6032933A
Authority
JP
Japan
Prior art keywords
engine
pressure
supercharger
working space
receiving part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58140712A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58140712A priority Critical patent/JPS6032933A/en
Publication of JPS6032933A publication Critical patent/JPS6032933A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/06After-charging, i.e. supplementary charging after scavenging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To prevent combustion noises and vibrations of an engine by increasing the temperature of the intake air in an operation chamber and shortening the ignition delay time during the fuel injection at a low-load region. CONSTITUTION:An intake valve 5 is constituted so as to be closed at the bottom dead point of a piston 1 during an intake stroke, and a sub-intake valve 7 is constituted so as to start opening immediately before the intake valve 5 is closed and to be closed in the middle of the compression stroke. During the supercharging of an engine, the intake air fed by pressure from a supercharger 10 is supercharged into an operation chamber 3 in addition to the intake air poured into the operation chamber 3 through an intake air passage 8. At a low- load region, a control valve 9 is fully closed and closing valves 20, 23 are fully opened. The intake air flowing into an operation space 15 is discharged into a communicating passage 19 and the discharge side passage 17 of the supercharger 10 and is poured into the operation chamber 3 of the engine.

Description

【発明の詳細な説明】 本発明は、機関の出力軸へ連結する過給機を備えた過給
機付デイーゼル機関に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a supercharged diesel engine equipped with a supercharger connected to an output shaft of the engine.

一般にデイーゼル機関では、機関の空転状態を含む極低
負荷域においては圧縮端温度(燃料噴射時の燃焼室内給
気温度と考えて良い)が十分に上昇せず、着火遅れ期間
が長くなる結果となり、急激な燃焼圧力上昇に基く燃焼
騒音の増大・機関の振動の増大等の不具合が生ずる。
Generally, in a diesel engine, the compression end temperature (which can be thought of as the temperature of the air supply in the combustion chamber during fuel injection) does not rise sufficiently in the extremely low load range, including when the engine is idling, resulting in a prolonged ignition delay period. , problems such as increased combustion noise and increased engine vibration occur due to the rapid increase in combustion pressure.

この理由は、デイーゼル機関ではシリンダー内に充填さ
れる給気重量が負荷の大小如何によらず常にほぼ一定で
ある事に起因するシリンダー内熱容量の過大さから来る
もので、この為に一般には圧縮端温度の十分な上昇は望
めない。
The reason for this is that in diesel engines, the weight of air charged into the cylinder is always almost constant regardless of the size of the load, and the heat capacity inside the cylinder is large. A sufficient rise in end temperature cannot be expected.

この対策としては、絞弁による給気絞りが考えられるが
、機関のポンプ損失(給気吸入抵抗損失)が増大して好
ましくない。
A conceivable countermeasure for this problem is to throttle the supply air using a throttle valve, but this is not preferable because it increases pumping loss (air supply suction resistance loss) of the engine.

本発明はこの様な欠点を解決しようとしたもので、以下
図面に従つて説明する。
The present invention is intended to solve these drawbacks, and will be described below with reference to the drawings.

第1図は本発明による過給機付デイーゼル機関の一実施
例で、機関の出力軸へチエーン・ペルト等を介して連結
する過給機10を備えている。
FIG. 1 shows an embodiment of a supercharged diesel engine according to the present invention, which includes a supercharger 10 connected to the output shaft of the engine via a chain pelt or the like.

吸気弁5、排気弁6、副吸気弁7はカム(図示せず)で
駆動され、吸気弁5は吸気過程においてピストン1の下
死点位置近傍で閉じる様に構成される一方、副吸気弁7
は吸気弁5が閉じる直前から開き始め、圧縮行程の中途
(例えば機関出力軸角度で下死点後70°)で閉じる様
に構成されており、従つて機関の過給時には給気通路8
から作動室3(吸入・圧縮・膨張・排出が行なわれる空
間を言う)内へ充填された給気に追加する如く、過給機
10から圧送されてくる給気を作動室3内へ一定期間圧
入して過給を行う様になつている。
The intake valve 5, the exhaust valve 6, and the auxiliary intake valve 7 are driven by a cam (not shown), and the intake valve 5 is configured to close near the bottom dead center position of the piston 1 during the intake process, while the auxiliary intake valve 7
is configured to start opening just before the intake valve 5 closes and close in the middle of the compression stroke (for example, 70 degrees after bottom dead center at the engine output shaft angle).
For a certain period of time, the air supplied from the supercharger 10 is fed under pressure into the working chamber 3 (the space where suction, compression, expansion, and exhaust are performed). It is press-fitted to provide supercharging.

今、機関の空転状態を含む(極)低負荷域を考えると、
制御弁9は全閉、閉鎖弁20・23は全開しており、作
動空間15(過給機における容積変化を伴う空間を言い
、給気の吸入・吐出を行う空間を言う)の最小容積位置
から最大容積位置へ到るまでに作動空間15内へ流入し
た給気は、この作動空間15が最大容積位置から最小容
積位置へ到るまでに連通路19、過給機吐出側通路17
内へ吐出され、言い換えると機関の吸気行程によつて生
ずる負圧を受ける受圧部(給気通路8、連絡路22、又
は連通路19、過給機吐出側通路17とも考えられる)
へ吐出される様になつており、かくして機関の作動室3
内へ充填される給気重量を制限しているのである。
Now, considering the (extremely) low load range that includes engine idling,
The control valve 9 is fully closed, the closing valves 20 and 23 are fully open, and the minimum volume position of the working space 15 (referring to the space in which the volume changes in the supercharger and the space in which air is taken in and discharged) is reached. The supply air that has flowed into the working space 15 from the maximum volume position to the maximum volume position flows through the communication passage 19 and the supercharger discharge side passage 17 until the working space 15 reaches the minimum volume position from the maximum volume position.
In other words, a pressure receiving part that receives negative pressure generated by the intake stroke of the engine (also considered to be the air supply passage 8, the communication passage 22, the communication passage 19, or the supercharger discharge side passage 17)
It is designed to be discharged into the working chamber 3 of the engine.
This limits the weight of air that can be filled into the tank.

制御弁9を全閉、閉鎖弁20・23を全開させた時の作
動空間15のP−V線図(圧力−容積線図)を第2図に
示すが、図からも明らかの様に本発明においては過給機
10は斜線の部分に相当する仕事、即ち動力を発生し、
これを機関へ伝達しているのである(Poは大気圧、P
iは前記受圧部の圧力−負圧−を示す)。
Figure 2 shows a PV diagram (pressure-volume diagram) of the working space 15 when the control valve 9 is fully closed and the closing valves 20 and 23 are fully open. In the invention, the supercharger 10 generates work, that is, power, corresponding to the shaded area,
This is transmitted to the engine (Po is atmospheric pressure, P
(i indicates the pressure of the pressure receiving part - negative pressure).

一般に、機関へ供給される給気の密度を減少させる(機
関の作動室内へ充填される給気を制限させる)様にする
と機関のポンプ損失の為に燃費は悪仕するが、本発明に
おいては過給機10から機関へ動力が伝達されるので、
これにより機関のポンプ損失は大部分回収され(相殺さ
れ)、燃費の悪化は避けられる。
In general, reducing the density of the supply air supplied to the engine (limiting the supply air filled into the working chamber of the engine) will result in poor fuel efficiency due to engine pumping loss, but in the present invention, Since power is transmitted from the supercharger 10 to the engine,
As a result, most of the engine pumping loss is recovered (offset) and deterioration in fuel efficiency is avoided.

この様に本発明においては、機関の空転状態を含む(極
)低負荷域では機関へ供給される給気の密度を減少させ
ているので、機関の作動室内に充填される給気重量は制
限され、作動室内熱容量は適度に減少される。
In this way, in the present invention, the density of the supply air supplied to the engine is reduced in the (extremely) low load range, including when the engine is idling, so the weight of the supply air filled into the working chamber of the engine is limited. and the heat capacity of the operating room is moderately reduced.

従つて、圧縮端温度(燃料噴射時の作動室内給気温度と
考えて良い)が十分に上昇し、着火遅れ期間が短縮され
るから、燃焼圧力の上昇は緩やかとなり、燃焼騒音及び
機関の振動が大幅に低減される。
Therefore, the compression end temperature (which can be thought of as the air supply temperature in the working chamber during fuel injection) rises sufficiently and the ignition delay period is shortened, so the rise in combustion pressure becomes gradual, reducing combustion noise and engine vibration. is significantly reduced.

又、圧縮端温度が上昇するから、燃料の完全燃焼が可能
となる一方、圧縮端圧力は減少するので、機関の摩擦損
失が減少し、燃費の改善も期待されるものである。
Furthermore, since the compression end temperature increases, complete combustion of the fuel becomes possible, while the compression end pressure decreases, reducing engine friction loss and improving fuel efficiency.

機関の作動室3内へ供給される給気が更に多量に要求さ
れる場合には、アクセルペダル(図示せず)の所定開度
から開き始める制御弁9(燃料噴射量を制御するコント
ロールラツクに運動させても良い)を開く(徐々に又は
急激に全開させる)様にすれば良く、これにより燃料噴
射弁4から噴射される燃料噴射量の増大と相まつて機関
の出力は一層増大する。
When a larger amount of supply air is required to be supplied into the working chamber 3 of the engine, a control valve 9 (a control rack for controlling the amount of fuel injection) that starts opening from a predetermined opening degree of the accelerator pedal (not shown) is activated. The fuel injection valve 4 may be opened (gradually or suddenly fully opened) (which may be moved), thereby increasing the amount of fuel injected from the fuel injection valve 4 and further increasing the output of the engine.

制御弁9を更に開いてゆくと、ダイアフラム装置21に
より閉鎖弁20が全閉し(給気通路8内の圧力がほぼ大
気圧となつた時点で全閉させる)、かつ閉鎖弁23も全
閉する様になつて、過給機吐出側通路17内の圧力は正
圧となり、燃料噴射弁4から噴射される燃料噴射量の増
大と相まつて、遂には機関に過給が行なわれる様になる
(閉鎖弁23はダイアフラム装置21へ連動させる如く
して閉鎖弁20とほぼ同時に全閉させるのが良い)。
As the control valve 9 is further opened, the diaphragm device 21 fully closes the shutoff valve 20 (it is fully closed when the pressure inside the air supply passage 8 reaches almost atmospheric pressure), and the shutoff valve 23 is also fully closed. As a result, the pressure inside the supercharger discharge passage 17 becomes positive, and together with the increase in the amount of fuel injected from the fuel injection valve 4, the engine is finally supercharged. (The closing valve 23 is preferably fully closed almost simultaneously with the closing valve 20 by interlocking with the diaphragm device 21.)

この場合、連通路19の作動空間15へ開口する開口部
18は、例えば各々の幅をベーン14の厚さ以下とする
如くして、ベーン14の側面により閉鎖される瞬間を有
する形状を持つ様に形成されており、従つて閉鎖弁20
が全閉した時にはベーン14が各々の開口部18を通過
する際、このベーン14を境界として隣り合う作動空間
が互いに連通する事はなく、給気の素通りも起らない。
In this case, the openings 18 of the communication passage 19 that open into the working space 15 have a shape that is closed by the side surface of the vane 14, for example, by making each width less than or equal to the thickness of the vane 14. Therefore, the closing valve 20
When the vanes 14 are fully closed, when the vanes 14 pass through the respective openings 18, adjacent working spaces with the vanes 14 as boundaries do not communicate with each other, and supply air does not pass through.

尚、機関の空転状態を含む(極)低負荷域においては制
御弁9を若干開く様にしても、換言すれば機関の作動室
3内へ供給される給気の大部分を占る如く(制御弁9が
全閉の場合は全部を占る如く)、給気を作動空間15内
へ流入させる様にしても、機関のポンプ損失を大部分回
収する事ができる。
In addition, even if the control valve 9 is slightly opened in the (extremely) low load range including the idling state of the engine, in other words, the control valve 9 may be opened slightly ( Even if the supply air is made to flow into the working space 15 (as when the control valve 9 is fully closed), most of the pumping loss of the engine can be recovered.

第1図において機関に更に高過給を行うには、作動空間
15の容積を拡大する様にすれば良い(ただし、制御弁
9が全閉又はほぼ全閉した時の機関の極低負荷域におい
ては、機関へ供給される給気の密度を何らかの方法によ
り同一となる様に維持させる必要がある。)。
In order to further supercharge the engine in Fig. 1, the volume of the working space 15 can be expanded. (In this case, it is necessary to maintain the same density of air supply to the engine by some means.)

これを第3、7図に示す。This is shown in Figures 3 and 7.

先ず第3図において、機関の空転状態を含む(極)低負
荷域においては制御弁9(第1図)は全閉又はほぼ全閉
、開閉弁25は全閉又はほぼ全閉、閉鎖弁20・23は
全開しており、ある1つの作動空間15に注目すると、
同作動空間15の容積の最小状態から最大状態へ到る行
程の中途Vc点までに、機関の作動室内へ供給される給
気の全部(制御弁9、開閉弁25が共に全閉の場合)又
は大部分(制御弁9、開閉弁25のいずれか一方が若干
開いている場合)を占る如く、給気を同作動空間15内
へ導き、換言すれば前記Vc点で同作動空間15と過給
機吸入側通路16との連通を遮断させ(前記Vc点まで
は給気が同作動空間15内へ導かれる)、これにより機
関の作動室内へ充填される給気を制限しているのである
(かつ、機関へ供給される給気の密度が第1図の場合と
同一となる様にしている)。
First, in FIG. 3, in the (extremely) low load range including the idling state of the engine, the control valve 9 (FIG. 1) is fully closed or almost fully closed, the on-off valve 25 is fully closed or almost fully closed, and the shut-off valve 20 is closed.・23 is fully open, and if you pay attention to one working space 15,
All of the air supplied into the working chamber of the engine up to point Vc in the middle of the journey from the minimum volume state to the maximum volume state of the working space 15 (when both the control valve 9 and the on-off valve 25 are fully closed) Or, most of the air is introduced into the working space 15 (when either the control valve 9 or the on-off valve 25 is slightly open), in other words, the supply air is introduced into the working space 15 at the Vc point. Communication with the supercharger suction side passage 16 is cut off (supply air is guided into the working space 15 up to the Vc point), thereby restricting the supply air filling into the working chamber of the engine. (and the density of the supply air supplied to the engine is made to be the same as in the case of Fig. 1).

そして、前記Vc点からは同作動空間15内の給気は断
熱的に膨張し、同作動空間15の最大容積位置から最小
容積位置へ到るまでに前記受圧部(例えば連通路19、
過給機吐出側通路17)へ吐出され、かくして機関へ給
気を供給する様になつている(第3図の場合は、ロータ
ー11に形成された切欠27が連通路19に連通する事
によつて、同作動空間15内の給気が連通路19内へ吐
出される様に構成した)。
Then, the supply air in the working space 15 expands adiabatically from the Vc point, and from the maximum volume position to the minimum volume position of the working space 15, the pressure receiving part (for example, the communication path 19
The air is discharged to the turbocharger discharge side passage 17), thus supplying air to the engine (in the case of Fig. 3, a notch 27 formed in the rotor 11 communicates with the communication passage 19). Therefore, the air supply in the working space 15 is configured to be discharged into the communication passage 19).

この場合、過給機吸入側通路24の作動空間15へ開口
する開口部26は、ベーン14の側面により閉鎖される
瞬間を有する形状を持つ様に各々形成されているから、
開閉弁25が各々の開口部26を閉鎖している時にはベ
ーン14が各々の開口部26を通過しても、このベーン
14を境界として隣り合う作動空間が互いに連通する事
はなく、給気の素通りは起らない(A−A′線断面図を
第4図に示した)。
In this case, the openings 26 of the supercharger suction side passage 24 that open into the working space 15 are each formed to have a shape that is closed by the side surface of the vane 14.
When the on-off valve 25 closes each opening 26, even if the vane 14 passes through each opening 26, adjacent working spaces with the vane 14 as a boundary do not communicate with each other, and the supply air is No passing occurs (a cross-sectional view taken along the line A-A' is shown in FIG. 4).

制御弁9・開閉弁25を全閉、閉鎖弁20・23を全開
させた時の作動空間15のP−V線図を第5図に示すが
、図からも明らかの様に過給機は斜線の部分に相当する
仕事、即ち動力を機関へ伝達して機関のポンプ損失を回
収しているのである。
Figure 5 shows a P-V diagram of the working space 15 when the control valve 9 and on-off valve 25 are fully closed and the closing valves 20 and 23 are fully open, and as is clear from the figure, the supercharger is The work corresponding to the shaded area, that is, the power, is transmitted to the engine and the pumping loss of the engine is recovered.

かくして、圧縮端温度は十分に上昇する(この場合、前
記Vc点からは作動空間15内の給気が膨張し、給気温
度が多少低下するので、給気を排ガス等により予熱して
おく事が望ましい)。
In this way, the compression end temperature rises sufficiently (in this case, the supply air in the working space 15 expands from the Vc point, and the supply air temperature drops somewhat, so it is necessary to preheat the supply air with exhaust gas, etc.) (preferably).

開閉弁25は、制御弁9と機械的に連動させるか、又は
過給機吐出側通路17内の圧力を感知して作動するダイ
アフラム装置(図示せず)に連動させ、開閉弁25が全
開すれば機関には過給(高過給)が行なわれる様になる
The on-off valve 25 is mechanically interlocked with the control valve 9 or interlocked with a diaphragm device (not shown) that operates by sensing the pressure in the supercharger discharge passage 17, so that the on-off valve 25 is fully opened. Engines will be supercharged (highly supercharged).

尚、ベーン14がローターハウジング12の中心を中心
として回転する様に構成すれば、開口部26を各々ロー
ターハウジング12に形成する事ができる。
Note that if the vanes 14 are configured to rotate around the center of the rotor housing 12, the openings 26 can be formed in each of the rotor housings 12.

即ち第6図において、ベーン14はローターハウジング
12の中心に備えられたベーン軸28を中心として揺動
運動を行いながらローター11と共に回転する様に構成
され、各々の開口部26はベーン14の先端面により閉
鎖される瞬間を有する形状を持つ様に形成されているの
である。
That is, in FIG. 6, the vanes 14 are configured to rotate together with the rotor 11 while performing rocking motion around a vane shaft 28 provided at the center of the rotor housing 12, and each opening 26 is located at the tip of the vane 14. It is formed to have a shape that is closed by a surface.

次に第7図において、機関の空転状態を含む(極)低負
荷域においては制御弁9(第1図)は全閉又はほぼ全閉
、開閉弁30及び閉鎖弁23は全開しており、作動空間
15の最小容積位置から最大容積位置へ到るまでに作動
空間15内へ導びかれた給気は、この作動空間15と給
気戻し通路29との連通が遮断される時点V′c点まで
過給機吸入側通路16内へ戻され、かつ作動空間15の
容積の最大状態から最小状態へ到る行程の中途(前記V
′c点の近傍)から、機関の作動室内へ供給される給気
の全部(制御弁9が全閉の場合)又は大部分(制御弁9
が若干開いた場合)を占る如く、受圧部(例えば過給機
吐出側通路17)へ吐出され、かくして機関の作動室内
へ充填される給気を制限し、機関へ供給される給気の密
度を第1図の場合と同一としているのである。
Next, in FIG. 7, in the (extremely) low load range including the idling state of the engine, the control valve 9 (FIG. 1) is fully closed or almost fully closed, and the on-off valve 30 and the closing valve 23 are fully open. The supply air introduced into the working space 15 from the minimum volume position to the maximum volume position of the working space 15 reaches a point V'c when communication between the working space 15 and the supply air return passage 29 is cut off. point, and in the middle of the process from the maximum volume state to the minimum state (the above-mentioned
'c) of the supply air supplied into the working chamber of the engine from all (when the control valve 9 is fully closed) or most of the supply air (near the control valve 9
is discharged to the pressure receiving part (for example, the turbocharger discharge passage 17), thus restricting the supply air filling into the working chamber of the engine, and reducing the amount of supply air supplied to the engine. The density is the same as in the case of FIG.

従つて、作動空間15のP−V線図は第2図と類似のも
のとなり、過給機から機関へ動力が伝達される事によつ
て機関のポンプ損失を大部分回収し、圧縮端温度を十分
に上昇させる事ができる。
Therefore, the PV diagram of the working space 15 is similar to that shown in Figure 2, and by transmitting power from the supercharger to the engine, most of the pumping loss of the engine is recovered, and the compression end temperature is can be sufficiently increased.

開閉弁30は例えば制御弁9と機械的に連動させ、開閉
弁30が全閉すれば機関には高過給が行なわれる様にな
る。
The on-off valve 30 is mechanically interlocked with, for example, the control valve 9, and when the on-off valve 30 is fully closed, the engine is highly supercharged.

尚、開口部31はベーン14の側面により閉鎖される瞬
間を有する形状を持つ様に各々形成されている事は言う
までもない。
It goes without saying that each of the openings 31 is formed to have a shape that is closed by the side surface of the vane 14.

第8図は、ローター32及び33を有する過給機40(
ねじ圧縮機−回転比は3/2)を備えた過給機付デイー
ゼル機関において本発明を適用したもので(機関は図示
せず−第1図において過給機10を40に置き換えて考
える)、機関の空転状態を含む(極)低負荷域において
は制御弁9(第1図)は全閉又はほぼ全閉、閉鎖弁20
・23は全開しており、作動空間36(図ではローター
32及び33、ローターハウジング34、サイドハウジ
ング35により形成される空間を言う)の最小容積位置
から最大容積位置へ到るまでに過給機吸入側通路16よ
り作動空間36内へ流入した給気は、この作動空間36
が最大容積位置から最小容積位置へ到るまでに受圧部(
例えば連通路19、過給機吐出側通路17)へ吐出され
る様になつており、かくして機関の作動室内へ充填され
る給気重量を制限しているのである。
FIG. 8 shows a supercharger 40 (
The present invention is applied to a supercharged diesel engine equipped with a screw compressor (rotation ratio: 3/2) (engine not shown - supercharger 10 is replaced with 40 in Fig. 1). , in the (extremely) low load range, including the idling state of the engine, the control valve 9 (Fig. 1) is fully closed or almost fully closed, and the closing valve 20 is closed.
・23 is fully open, and the supercharger is fully opened from the minimum volume position to the maximum volume position of the working space 36 (in the figure, the space formed by the rotors 32 and 33, the rotor housing 34, and the side housing 35). The supply air flowing into the working space 36 from the suction side passage 16 flows into the working space 36.
From the maximum volume position to the minimum volume position, the pressure receiving part (
For example, the air is discharged into the communication passage 19 and the supercharger discharge passage 17), thus limiting the weight of the air charged into the working chamber of the engine.

従つて、作動空間36のP−V線図は第2図と類似した
ものとなり、過給機40から機関へ動力が伝達される事
によつて機関のポンプ損失を大部分回収し、圧縮端温度
を十分に上昇させる事ができる。
Therefore, the P-V diagram of the working space 36 becomes similar to that shown in FIG. The temperature can be raised sufficiently.

連通路19の作動空間36に開口する開口部は、ロータ
ー32、33の側面により閉鎖される瞬間を有する形状
を持つ様に形成されている事は言うまでもない。
Needless to say, the opening of the communication passage 19 that opens into the working space 36 is formed to have a shape that is closed by the side surfaces of the rotors 32 and 33.

ここで、制御弁9が全閉又はほぼ全閉した機関の(極)
低負荷域を考えると、前記受圧部(例えば過給機吐出側
通路17、連絡路22)には強い負圧が発生しており、
従つて二点鎖線示の如く適当な流量制御装置38を有す
る排ガス導入通路37を備えれば、排気通路39内を流
れる排ガスを前記受圧部へ多量に導入させる事ができる
Here, the (pole) of the engine where the control valve 9 is fully closed or almost fully closed.
Considering the low load range, strong negative pressure is generated in the pressure receiving section (for example, the supercharger discharge side passage 17 and the communication passage 22),
Therefore, by providing an exhaust gas introduction passage 37 having a suitable flow rate control device 38 as shown by the two-dot chain line, a large amount of exhaust gas flowing in the exhaust passage 39 can be introduced into the pressure receiving section.

これにより(排ガスの温度は極めて高いから)、圧縮端
温度が更に上昇する利点が生ずると共に、排ガス中のN
Oxを大幅に低減させる事もできる(前記受圧部には強
い負圧が発生しているから、吸排気弁のオーバーラツプ
期間を増大させる様にしても同様の目的は達成される)
This has the advantage of further increasing the compression end temperature (since the temperature of the exhaust gas is extremely high), and also increases the amount of N in the exhaust gas.
It is also possible to significantly reduce Ox (since strong negative pressure is generated in the pressure receiving section, the same objective can be achieved even if the overlap period of the intake and exhaust valves is increased).
.

この場合、前記受圧部へ導入される(機関の作動室内へ
導入される)排ガスの流量を順次増加させてゆくと、遂
には前記受圧部の圧力はほぼ大気圧となり、過給機40
には動力が発生せず、従つて機関へ動力が伝達される事
はないが、同時に機関にもポンプ損失が発生しない様に
なるので、燃費の悪化は全くない(この様にしても、圧
縮端温度が十分に上昇するので、本発明の目的は達成さ
れる、ただし、機関の作動室内熱容量は従来とほぼ同一
となる−機関の作動室内へ供給される空気、即ち新気の
重量が制限されているのである)。
In this case, if the flow rate of the exhaust gas introduced into the pressure receiving section (introduced into the working chamber of the engine) is gradually increased, the pressure in the pressure receiving section will finally reach approximately atmospheric pressure, and the supercharger 40 will
No power is generated in the engine, so power is not transmitted to the engine, but at the same time, no pump loss occurs in the engine, so there is no deterioration in fuel efficiency (even with this method, the compression Since the end temperature rises sufficiently, the object of the invention is achieved; however, the heat capacity in the working chamber of the engine remains approximately the same as before - the weight of the air, i.e. fresh air, supplied into the working chamber of the engine is limited. ).

以上は第1、3、6、7図の場合にも適用される。The above also applies to the cases of FIGS. 1, 3, 6, and 7.

(ただし、第3、6図において受圧部の圧力がほぼ大気
圧となる如く排ガスを導入する場合には、連通路19、
閉鎖弁20を除去した方が良い事もある)。
(However, in the case of introducing exhaust gas so that the pressure of the pressure receiving part becomes almost atmospheric pressure in Figs. 3 and 6, the communication passage 19,
It may be better to remove the shutoff valve 20).

本発明は以上の如く構成されているので、機関の空転状
態を含む極低負荷域においても圧縮端温度が十分に上昇
し、燃焼騒音及び機関の振動を大幅に低減させる事がで
きる。
Since the present invention is configured as described above, the compression end temperature can be sufficiently increased even in an extremely low load range including when the engine is idling, and combustion noise and engine vibration can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による過給機付デイーゼル機関の断面図
、第2・5図はP−V線図、第3・6・7・8図は本発
明における過給機の図、第4図は第3図のA−A′線断
面図である。 1はピストン、2はシリンダー、3は作動室、4は燃料
噴射弁、5は吸気弁、6は排気弁、7は副吸気弁、8は
給気通路、9は制御弁、10・40は過給機、11・3
2・33はローター、12・34はローターハウジング
、13・35はサイドハウジング、14はベーン、15
・36は作動空間、16・24は過給機吸入側通路、1
7は過給機吐出側通路、18・26・31は開口部、1
9は連通路、20・23は閉鎖弁、21はダイアフラム
装置、22は連絡路、25・30は開閉弁、27は切欠
、28はベーン軸、29は給気戻し通路、37は排ガス
導入通路、38は流量制御装置、39は排気通路である
。 特許出願人 北村修一
Fig. 1 is a sectional view of a diesel engine with a supercharger according to the present invention, Figs. 2 and 5 are PV diagrams, Figs. 3, 6, 7, and 8 are views of the supercharger according to the present invention, and Fig. The figure is a sectional view taken along the line AA' in FIG. 3. 1 is a piston, 2 is a cylinder, 3 is a working chamber, 4 is a fuel injection valve, 5 is an intake valve, 6 is an exhaust valve, 7 is a sub-intake valve, 8 is an air supply passage, 9 is a control valve, 10 and 40 are Supercharger, 11.3
2.33 is the rotor, 12.34 is the rotor housing, 13.35 is the side housing, 14 is the vane, 15
・36 is the working space, 16 and 24 are the turbocharger suction side passages, 1
7 is the turbocharger discharge side passage, 18, 26, and 31 are the openings, 1
9 is a communication passage, 20 and 23 are closing valves, 21 is a diaphragm device, 22 is a communication passage, 25 and 30 are on-off valves, 27 is a notch, 28 is a vane shaft, 29 is a supply air return passage, and 37 is an exhaust gas introduction passage , 38 is a flow rate control device, and 39 is an exhaust passage. Patent applicant Shuichi Kitamura

Claims (10)

【特許請求の範囲】[Claims] (1)機関の作動室へ接続する給気通路の所定位置に備
えられた制御弁をバイパスして機関へ給気を供給する過
給機を機関の出力軸へ連結し、前記給気通路から機関の
作動室内へ充填された給気に追加する如く過給機から圧
送されてくる給気を機関の作動室内へ一定期間圧入して
過給を行うデイーゼル機関において、機関の作動室内へ
供給される給気の全部又は大部分を占る如く、給気を前
記過給機の作動空間内へ導き、これにより機関の作動室
内へ供給される新気を制限して圧縮端温度を上昇せしめ
、機関の作動室内へ供給される給気が更に要求される場
合には、少なくとも前記給気通路を介して給気を更に機
関の作動室内へ供給する様にした事を特徴とする過給機
付デイーゼル機関。
(1) A supercharger that supplies air to the engine by bypassing a control valve provided at a predetermined position in an air supply passage that connects to the working chamber of the engine is connected to the output shaft of the engine, and In a diesel engine that performs supercharging by pressurizing supply air from a supercharger into the engine's working chamber for a certain period of time in addition to the supply air filled in the engine's working chamber, the air supplied to the engine's working chamber is directing the charge air into the working space of the supercharger so as to account for all or most of the charge air, thereby restricting fresh air supplied into the working chamber of the engine and increasing the compression end temperature; A supercharger equipped with a supercharger, characterized in that when additional supply air is required to be supplied into the working chamber of the engine, the supplied air is further supplied into the working chamber of the engine through at least the air supply passage. diesel engine.
(2)過給機のある1つの作動空間に注目し、同作動空
間の容積の最小状態から最大状態へ到る行程の中途Vc
点までに、機関の作動室内へ供給される給気の全部又は
大部分を占る如く、給気を同作動空間内へ導き、かつ前
記Vc点までは給気を同作動空間内へ導き、これにより
機関の作動室内へ供給される新気を制限して圧縮端温度
を上昇せしめる様にした特許請求の範囲第1項記載の過
給機付デイーゼル機関。
(2) Focusing on one working space where the supercharger is located, Vc is in the middle of the process from the minimum state to the maximum volume of the same working space.
Directing the supply air into the working space so as to account for all or most of the supply air supplied into the working chamber of the engine up to the point Vc, and leading the supply air into the working space up to the point Vc, A diesel engine with a supercharger according to claim 1, wherein the fresh air supplied into the working chamber of the engine is thereby restricted to increase the compression end temperature.
(3)過給機のある1つの作動空間に注目し、同作動空
間の容積の最大状態から最小状態へ到る行程の中途V′
c点まで、機関の作動室内へ供給される給気の全部又は
大部分を占る如く、給気を同作動空間内へ導き、かつ前
記V′c点の近傍から同作動空間内の給気を機関の作動
室内へ供給し、これにより機関の作動室内へ供給される
新気を制限して圧縮端温度を上昇せしめる様にした特許
請求の範囲第1項記載の過給機付デイーゼル機関。
(3) Focusing on one working space where the supercharger is located, V' is halfway through the process from the maximum volume state to the minimum state of the volume of the same working space.
Up to point c, the supply air is introduced into the working space so as to account for all or most of the supply air supplied into the working space of the engine, and the supply air in the working space is introduced from the vicinity of the point V'c. 2. A supercharged diesel engine according to claim 1, wherein fresh air is supplied into the working chamber of the engine, thereby restricting fresh air supplied into the working chamber of the engine and raising the compression end temperature.
(4)Vc点の直前における作動空間内の圧力が機関の
吸気行程によつて生ずる負圧を受ける受圧部の圧力より
も十分に大である様にした特許請求の範囲第2項記載の
過給機付デイーゼル機関。
(4) The method according to claim 2, wherein the pressure in the working space immediately before the Vc point is sufficiently higher than the pressure in the pressure receiving part that receives the negative pressure generated by the intake stroke of the engine. Diesel engine with feeder.
(5)V′c点の直前における作動空間内の圧力が機関
の吸気行程によつて生ずる負圧を受ける受圧部の圧力よ
りも十分に大である様にした特許請求の範囲第3項記載
の過給機付デイーゼル機関。
(5) Claim 3 states that the pressure in the working space immediately before the point V'c is sufficiently higher than the pressure in the pressure receiving part that receives the negative pressure generated by the intake stroke of the engine. Diesel engine with supercharger.
(6)機関の吸気行程によつて生ずる負圧を受ける受圧
部へ連通する直前の作動空間内の圧力が、この受圧部の
圧力よりも十分に大である様にした特許請求の範囲第1
項記載の過給機付デイーゼル機関。
(6) Claim 1 in which the pressure in the working space immediately before communicating with the pressure receiving part that receives the negative pressure generated by the intake stroke of the engine is sufficiently higher than the pressure in this pressure receiving part.
Diesel engine with supercharger as described in section.
(7)排ガスを受圧部へ導入する様にした特許請求の範
囲第4項ないし第6項のいずれかに記載の過給機付デイ
ーゼル機関。
(7) A supercharged diesel engine according to any one of claims 4 to 6, wherein exhaust gas is introduced into the pressure receiving section.
(8)機関の吸気行程によつて生ずる負圧を受ける受圧
部へ連通する直前の作動空間内の圧力が、この受圧部の
圧力にほぼ等しくなる如く、排ガスを受圧部へ導入する
様にした特許請求の範囲第1項記載の過給機付デイーゼ
ル機関。
(8) Exhaust gas is introduced into the pressure receiving part so that the pressure in the working space just before communicating with the pressure receiving part, which receives negative pressure generated by the intake stroke of the engine, is approximately equal to the pressure in this pressure receiving part. A supercharged diesel engine according to claim 1.
(9)Vc点の直前における作動空間内の圧力が機関の
吸気行程によつて生ずる負圧を受ける受圧部の圧力にほ
ぼ等しくなる如く、排ガスをこの受圧部へ導入する様に
した特許請求の範囲第2項記載の過給機付デイーゼル機
関。
(9) A patent claim in which the exhaust gas is introduced into the pressure receiving part so that the pressure in the working space immediately before the Vc point is approximately equal to the pressure in the pressure receiving part that receives negative pressure generated by the intake stroke of the engine. A diesel engine with a supercharger as described in Scope 2.
(10)V′c点の直前における作動空間内の圧力が機
関の吸気行程によつて生ずる負圧を受ける受圧部の圧力
にほぼ等しくなる如く、排ガスをこの受圧部へ導入する
様にした特許請求の範囲第3項記載の過給機付デイーゼ
ル機関。
(10) A patent in which exhaust gas is introduced into the pressure receiving part so that the pressure in the working space just before the V'c point is approximately equal to the pressure in the pressure receiving part that receives negative pressure generated by the intake stroke of the engine. A supercharged diesel engine according to claim 3.
JP58140712A 1983-08-01 1983-08-01 Diesel engine with supercharger Pending JPS6032933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140712A JPS6032933A (en) 1983-08-01 1983-08-01 Diesel engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140712A JPS6032933A (en) 1983-08-01 1983-08-01 Diesel engine with supercharger

Publications (1)

Publication Number Publication Date
JPS6032933A true JPS6032933A (en) 1985-02-20

Family

ID=15274960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140712A Pending JPS6032933A (en) 1983-08-01 1983-08-01 Diesel engine with supercharger

Country Status (1)

Country Link
JP (1) JPS6032933A (en)

Similar Documents

Publication Publication Date Title
US7810329B2 (en) Dual-charged internal combustion engine and method for operating the same
RU2230914C2 (en) Method of operation of internal combustion diesel engine
JPS6032933A (en) Diesel engine with supercharger
JPH0457848B2 (en)
JPS6045719A (en) Internal-combustion system with supercharger
JPS6069235A (en) Diesel engine with supercharger
JPS6090924A (en) Internal-combustion engine with supercharger
JPH0436026A (en) Intake system of engine
JPS593111A (en) Internal combustion engine
KR100271467B1 (en) Low speed compensation device for turbo charger
JPH06200771A (en) Gas fuel engine with supercharger
JPS6040725A (en) Internal-combustion engine with pump
JPS58126427A (en) Internal-combustion engine with supercharger
JPS58167823A (en) Diesel engine with supercharger
JPS59213923A (en) Diesel engine with pump
JPS5857020A (en) Intake controller of internal-combustion engine
JPS6040726A (en) Diesel engine with pump
JPS60116820A (en) Internal-combustion engine with suprecharger
JPS6229617B2 (en)
JPS59231130A (en) Internal-combustion engine with supercharger
JPS61294133A (en) Internal-combustion engine with supercharger
JP2858708B2 (en) Engine control device
JPS59138719A (en) Compressive ignition engine with pump
JPS58162725A (en) Internal-combustion engine with supercharger
JPS58126423A (en) Diesel engine