JPS6032732A - Production of oxygen-containing compound composed mainly of ethanol - Google Patents

Production of oxygen-containing compound composed mainly of ethanol

Info

Publication number
JPS6032732A
JPS6032732A JP58141084A JP14108483A JPS6032732A JP S6032732 A JPS6032732 A JP S6032732A JP 58141084 A JP58141084 A JP 58141084A JP 14108483 A JP14108483 A JP 14108483A JP S6032732 A JPS6032732 A JP S6032732A
Authority
JP
Japan
Prior art keywords
catalyst
oxygen
ethanol
rhodium
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58141084A
Other languages
Japanese (ja)
Other versions
JPS6049616B2 (en
Inventor
Satoshi Arimitsu
有光 聰
Katsumi Yanagi
柳 勝美
Masaru Ichikawa
勝 市川
Seishirou Matsushita
松下 聖志郎
Toshihiro Saito
寿広 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58141084A priority Critical patent/JPS6049616B2/en
Publication of JPS6032732A publication Critical patent/JPS6032732A/en
Publication of JPS6049616B2 publication Critical patent/JPS6049616B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled compound in high yield and selectivity, by reacting an abundantly and inexpensively available gaseous mixture containing CO and H2 in the presence of an Rh-Mn-Fe catalyst optionally added with the other components such as V, Ti, etc. CONSTITUTION:A gaseous mixture containing CO and H2 is made to react under normal pressure-350kg/cm<2>G at 150-450 deg.C in the presence of a catalyst (preferably supported by a carrier) comprising Rh-Mn-Fe and optionally added with the other components selected from V, Ti, Ir and Ni to obtain an oxygen-containing 2C compound composed mainly of ethanol and containing acetaldehyde, acetic acid and its ester, etc. The catalyst can be prepared by the conventional process for the preparation of noble metal catalyst, e.g. dissolving a metallic compound such as RhCl3, MnCl2, FeCl2, etc. in a solvent such as water, C2H5OH, etc., immersing a carrier such as silica in the solution, distilling out the solvent, and drying the residue.

Description

【発明の詳細な説明】 本発明は一酸化炭素と水素とを含有する混合気体を触媒
の存在下反応させ、エタノールを主成分とする含酸素化
合物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an oxygen-containing compound containing ethanol as a main component by reacting a gas mixture containing carbon monoxide and hydrogen in the presence of a catalyst.

更に詳しくは本発明は(イ)ロジウム、(ロ)マンガン
及びlk)鉄より成る触媒の存在下、あるいは(イ)ロ
ジウム、(ロ)マンガン、(ハ)鉄及びに)バナジウム
、チタン、イリジウム、ニッケルから成る群から選けれ
た成分を添加して成る触媒の存在下、当該混合気体を反
応させることによりエタノールを主成分とする含酸素化
合物を製造する方法に関する。
More specifically, the present invention is carried out in the presence of a catalyst consisting of (a) rhodium, (b) manganese and lk) iron, or (a) rhodium, (b) manganese, (c) iron and (c) vanadium, titanium, iridium, The present invention relates to a method for producing an oxygen-containing compound containing ethanol as a main component by reacting the mixed gas in the presence of a catalyst containing a component selected from the group consisting of nickel.

本発明において目的とする含酸素化合物とは、アルコー
ル、アルデヒド、脂肪酸及びそのエステル等を意味する
。更に詳しくは本発明において目的とする物質は炭素数
2の含酸素化合物、すなわちエタノール、アセトアルデ
ヒド、酢酸及びそのエステルである。更に限定的に言え
ば、本発明の目的物はエタノールを主成分とした炭素数
2の含酸素化合物である。
The oxygen-containing compounds targeted in the present invention include alcohols, aldehydes, fatty acids, esters thereof, and the like. More specifically, the target substances in the present invention are oxygen-containing compounds having 2 carbon atoms, namely ethanol, acetaldehyde, acetic acid, and esters thereof. More specifically, the object of the present invention is an oxygen-containing compound having 2 carbon atoms and containing ethanol as a main component.

含酸素化合物、特にエタノール等の炭素数2の含酸素化
合物は従来ナフサを原料とする石油化学的方法によって
製造されてきた。しかし、近年の原油高騰により、製造
価格の著しい上昇が起り、原料転換の必要性が生じてい
る。
Oxygen-containing compounds, particularly oxygen-containing compounds having two carbon atoms such as ethanol, have conventionally been produced by petrochemical methods using naphtha as a raw material. However, due to the rise in crude oil prices in recent years, manufacturing prices have risen significantly, creating the need to switch raw materials.

一方、豊富で且つ安価に入手可能な一酸化炭素及び水素
の混合ガスより含酸素化合物を製造する方法が種々検討
されている。即ち、−酸化炭素と水素の混合ガスを、ロ
ジウムを主成分とし、マンガン、チタン、ジルコニウム
、タングステンなどの金属もしくは金属酸化物より成る
触媒の存在下に反応させて、炭素数2の含酸素化合物を
選択的に製造する方法は公知である。
On the other hand, various methods have been studied for producing oxygen-containing compounds from a mixed gas of carbon monoxide and hydrogen, which is abundant and available at low cost. That is, by reacting a mixed gas of carbon oxide and hydrogen in the presence of a catalyst containing rhodium as a main component and consisting of a metal or metal oxide such as manganese, titanium, zirconium, or tungsten, an oxygen-containing compound having two carbon atoms is produced. Methods for selectively producing are known.

しかしながら、かかる方法も副生ずる炭化水素、例えば
メタン等の量が多く、含酸素化合物の選択率が低いもの
や含酸素化合物の選択率が高い場合には主生成物の選択
性が低いものであった。更に高価な貴金属であるロジウ
ムあたシの目的化合物の生成量がまだまだ少く、経済的
にもプロセス的にも完成された技術が提供されていない
のが実状である。
However, this method also produces a large amount of by-product hydrocarbons such as methane, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the selectivity of the main product is low. Ta. Furthermore, the amount of the target compound produced from rhodium, which is an expensive noble metal, is still small, and the reality is that no technology has been developed that is economically or process-perfect.

更に含酸素化合物を高収量で高選択的に製造することを
目的としたロジウムにマンガンを添加する触媒及びその
改良法(特開昭52−14706.56−8333及び
56−8334号)が提案されているが、いずれの方法
もアセトアルデヒド、酢酸ヲ主生成物とするものであり
、エタノールの収率、選択性などは著しく低い欠点を有
している。
Furthermore, a catalyst for adding manganese to rhodium and its improved method (Japanese Unexamined Patent Publication Nos. 52-14706.56-8333 and 56-8334) have been proposed for the purpose of producing oxygen-containing compounds with high yield and high selectivity. However, both methods use acetaldehyde and acetic acid as the main products, and have the disadvantage that the yield and selectivity of ethanol are extremely low.

以上述べた如く、−酸化炭素及び水素を含廟する気体よ
りエタノールを主成分とする含酸素化合物を効率よく経
済性よく製造する方法は提供されていない。
As mentioned above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing carbon oxide and hydrogen.

本発明者等はエタノールを主成分とする含酸素化合物を
選択的に製造する方法について鋭意検討を重ねた結果、
前述した如くアセトアルデヒドや酢酸の製造用触媒とし
て知られていたロジウム−マンガン触媒に鉄を加えた触
媒の存在下、あるいはそれらにバナジウム、チタン、イ
リジウム、ニッケルから成る群から選はれた成分を添加
して成る触媒の存在下に一酸化炭素と水素とを反応させ
ることにより、エタノールが選択的に得られることを見
出し、本発明を完成した。
As a result of extensive research into a method for selectively producing oxygen-containing compounds containing ethanol as the main component, the present inventors have found that:
As mentioned above, in the presence of a rhodium-manganese catalyst known as a catalyst for producing acetaldehyde and acetic acid with iron added thereto, or to these catalysts, a component selected from the group consisting of vanadium, titanium, iridium, and nickel is added. They discovered that ethanol can be selectively obtained by reacting carbon monoxide and hydrogen in the presence of a catalyst, and completed the present invention.

本発明はロジウム、マンガン及び鉄よ構成る触媒の存在
下、あるいはそれらにバナジウム、チタン、イリジウム
、ニッケルから成る群から選ばれた成分を添加して成る
触媒の存在下に一酸化炭素及び水素を含有する混合気体
を反応させ、エタノールを主成分とする含酸素化合物を
製造するものでおる。
The present invention provides for the production of carbon monoxide and hydrogen in the presence of a catalyst consisting of rhodium, manganese and iron, or in the presence of a catalyst consisting of vanadium, titanium, iridium and nickel. The mixed gas contained therein is reacted to produce an oxygen-containing compound whose main component is ethanol.

本発明において用いられる触媒は前述した如く、(イ)
ロジウム、(ロ)マンガン及び(ハ)鉄から成る成分を
主たる構成成分とする。あるいはそれらにに)ノ(ナジ
ウム、チタン、イリジウム、ニッケルの群から選ばれた
成分を添加した触媒を構成成分とする。
As mentioned above, the catalyst used in the present invention is (a)
The main constituents are rhodium, (b) manganese, and (c) iron. Alternatively, the component is a catalyst to which a component selected from the group consisting of (nadium, titanium, iridium, and nickel) is added.

実質的には通常貴金属触媒において行われる如く、担体
上に上記の成分を分散させた触媒を用いる。
Substantially, a catalyst in which the above-mentioned components are dispersed on a carrier is used, as is normally done with noble metal catalysts.

本発明において用いられる触媒は種々の方法を用いて調
製できる。例えは含浸法、浸漬法、イオン交換法、共沈
法等によって調製できる。
Catalysts used in the present invention can be prepared using a variety of methods. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, etc.

触媒を構成する諸成分、ロジウム、マンガン及び鉄ある
いはバナジウム、チタン、イリジウム、ニッケルの群か
ら選ばれた成分よ構成る触媒を調製するための原料化合
物としては酸化物、塩化物、硝酸塩、炭酸基環の無機塩
、酢酸塩、シーウ酸塩、アセチルアセトナート錯体、ジ
メチルグリオキシム錯体、エチレンジアミン酢酸塩等有
機塩又はキレート錯体、カルボニル化合物、アルキル金
属化合物等通常貴金属触媒を調製する際に用いられる化
合物を使用することが出来る。
The raw material compounds for preparing the catalyst, which are components selected from the group consisting of rhodium, manganese and iron, or vanadium, titanium, iridium and nickel, include oxides, chlorides, nitrates and carbonate groups. Inorganic salts of rings, acetates, cealates, acetylacetonate complexes, dimethylglyoxime complexes, organic salts such as ethylenediamine acetate, or chelate complexes, carbonyl compounds, alkyl metal compounds, etc. Compounds normally used in preparing noble metal catalysts can be used.

以下に含浸法を例にと9触媒の調製法を説明する0 上記の金属化合物を水、メタノール、エタノール、テト
ラヒドロンラン、ジオキサン、ヘキサン、ベンゼン、ト
ルエン、酢酸エチル、ジクロルメタン等の溶媒に溶解し
、その溶液に担体を加え浸漬し、溶媒を留去、乾燥し、
磨製とあれば加熱等の処理を行い、担体に金属化合物を
担持する。担持の方法としてはロジウム、マンガン及び
鉄、あるいはそれらにバナジウム、チタン、イリジウム
、ニスケルの群から選ばれた成分を含む原料化合物を同
一溶媒に同時に溶解した混合溶液をつくり、担体に同時
に担持する方法、各成分を遂次的に担体に担持する方法
、あるいは各成分を必要に応じて還元熱処理等の処理を
行い、遂次的、段階的に担持する方法など各手法を用い
ることができる。
The preparation method of catalyst 9 will be explained below using the impregnation method as an example.0 The above metal compound is dissolved in a solvent such as water, methanol, ethanol, tetrahydrone, dioxane, hexane, benzene, toluene, ethyl acetate, dichloromethane, etc. Add the carrier to the solution, immerse it, distill off the solvent, dry it,
If it is polished, it undergoes treatment such as heating to support the metal compound on the carrier. The method of supporting is to prepare a mixed solution in which raw material compounds containing rhodium, manganese and iron, or a component selected from the group of vanadium, titanium, iridium, and Niskel are simultaneously dissolved in the same solvent, and to simultaneously support them on the carrier. Various techniques can be used, such as a method of sequentially supporting each component on a carrier, or a method of sequentially or stepwise supporting each component by subjecting each component to treatment such as reduction heat treatment as necessary.

その他の調製法、例えば担体のイオン交換能を利用した
イオン交換によって金属を担持する方法、共沈法によっ
て触媒を調製する方法なども本発明に用いられる触媒の
調製手法として採用できる。
Other preparation methods, such as a method in which a metal is supported by ion exchange utilizing the ion exchange ability of a carrier, a method in which a catalyst is prepared by a coprecipitation method, etc., can also be employed as a method for preparing the catalyst used in the present invention.

上述の手法によって調製された触媒は通常還元処理を行
うことにより活性化し次いで反応に供せられる。還元を
行うには水素を含有する気体によシ昇温下で行うことが
簡便であって好ましい。
The catalyst prepared by the above method is usually activated by reduction treatment and then subjected to reaction. It is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature.

この際還元温度として、ロジウムの還元される温度、即
ち100C程度の温度条件下でも還元処理ができるので
あるが、好ましくは200C〜600Cの温度下で還元
処理を行なう。この際触媒の各成分の分散を十分に行わ
せる目的で低温よシ徐々に、あるいは段階的に昇温しな
がら水素還元を行ってもよい。また還元剤を用いて、化
学的に還元を行うこともできる。たとえば−酸化炭素と
水を用いたり、ヒドラジン、水素化ホウ素化合物、水素
化アルミニウム化合物などの還元剤を用いた還元処理を
行ってもよい。
At this time, the reduction treatment can be carried out at the temperature at which rhodium is reduced, that is, about 100C, but preferably the reduction treatment is carried out at a temperature of 200C to 600C. At this time, hydrogen reduction may be carried out from a low temperature while gradually or stepwise increasing the temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example, reduction treatment may be performed using carbon oxide and water, or using a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound.

本発明において用いられる担体は、好ましくは比表面積
10〜xooo、d/g、細孔径10A以上を有するも
のであれは通常担体として知られているものを使用する
ことができる。具体的な担体としては、シリカ、シリカ
ゲル、モレキュラーシープ、ケイソウ上等のシリカ系担
体、アルミナ、活性炭などがあけられるが、シリカ系の
担体が好ましい。
As the carrier used in the present invention, those commonly known as carriers can be used as long as they preferably have a specific surface area of 10 to xooo, d/g, and a pore diameter of 10 A or more. Specific carriers include silica-based carriers such as silica, silica gel, molecular sheep, and diatomaceous materials, alumina, and activated carbon, but silica-based carriers are preferred.

本発明において、触媒中の各成分の添加量と組成比は広
い範囲でかえることができる。ロジウムの担体に対する
比率は担体の比表面積を考慮して重量比で0.0001
〜0.5、好ましくは0.001〜0.3である。ロジ
ウムとマンガンの比率は原子比でマンガン/ロジウムが
0.001〜10.好ましくはo、o i〜4の範囲で
ある。また鉄/ロジウムが原子比で0.005〜10、
好ましくは0.01〜3の範囲が適用できる。また、バ
ナジウム、チタン、イリジウム、ニッケルの添加量はマ
ンガンと同様の範囲が適用できる。
In the present invention, the amount and composition ratio of each component in the catalyst can be varied within a wide range. The ratio of rhodium to the carrier is 0.0001 by weight considering the specific surface area of the carrier.
-0.5, preferably 0.001-0.3. The ratio of rhodium and manganese is manganese/rhodium in atomic ratio of 0.001 to 10. Preferably it is in the range of o, o i to 4. Also, the atomic ratio of iron/rhodium is 0.005 to 10,
Preferably, a range of 0.01 to 3 can be applied. Furthermore, the amounts of vanadium, titanium, iridium, and nickel to be added may be in the same range as that for manganese.

本発明は固定床の流通式反応装置に適用することができ
る。即ち、反応器内に触媒を充填し、原料ガスを送入し
て反応を行わせる。生成物は分離し、未反応の原料ガス
は精製したのちに循環再使用することも−tjl能であ
る。
The present invention can be applied to a fixed bed flow reactor. That is, a catalyst is filled in a reactor, and a raw material gas is introduced to cause a reaction. It is also possible to separate the product and purify the unreacted raw material gas and then recycle and reuse it.

また、本発明は流動床式の反応装置にも適用できる。す
なわち原料ガスと流動化した触媒を同伴させて反応を行
わせることもできる。更には本発明は溶媒中に触媒を分
散させ、原料ガスを送入し反応を行うことからなる液相
不均一反応にも適用できる。
Further, the present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction.

本発明を実施するに際して採用される条件は、エタノー
ルを主成分とする含酸素化合物を高収率・高選択率で製
造することを目的として種々の反応条件の因子を有機的
に組合せて選択される。反応圧力は、常圧(すなわち0
〜/cntゲージ)でも尚該目的化合物を高選択率・高
収率で製造できるのであるが、空時収率を高める目的で
加圧下において反応を行うことができる。従って反応圧
力としてはOKp/cntゲージ〜350に97dゲー
ジ、好−&しくはOK9/cdゲージ〜250に9/i
ゲージの圧力下で行う。反応温度は150C〜450C
,好ましくは180C〜350Cである。反応温度が高
い場合には、炭化水素の副生量が増加するため原料の送
入速度を早くする必要がある。従って、空間速度(原料
ガス送入量×触媒容積)は、標準状態(Otll’、 
1気圧)換算で10h 1〜10’h−’の範囲より、
反応圧力と反応温度、原料ガス組成との関係よシ適宜選
択される。
The conditions employed in carrying out the present invention are selected by organically combining various reaction condition factors with the aim of producing an oxygen-containing compound containing ethanol as a main component with high yield and high selectivity. Ru. The reaction pressure was normal pressure (i.e. 0
~/cnt gauge), the target compound can still be produced with high selectivity and high yield, but the reaction can be carried out under pressure for the purpose of increasing the space-time yield. Therefore, the reaction pressure is OK p/cnt gauge ~ 350 to 97d gauge, preferably OK9/cd gauge ~ 250 to 9/i
Perform under gauge pressure. Reaction temperature is 150C to 450C
, preferably 180C to 350C. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material. Therefore, the space velocity (feeding amount of raw material gas x catalyst volume) is the standard state (Otll',
1 atm) converted to 10h From the range of 1 to 10'h-',
It is selected as appropriate depending on the relationship between reaction pressure, reaction temperature, and raw material gas composition.

当該原料ガスの組成は、主として一酸化炭素と水素を含
有しているガスであって、窒素、アルゴン、ヘリウム、
メタン等の不活性ガスあるいは反応条件下において、気
体の状態であれば炭化水素や炭酸ガスや水を含有してい
てもよい。−酸化炭素と水素の混合比はCO/H2比で
0.1〜10.好ましくは0.2〜4(容積比)である
The composition of the raw material gas is a gas mainly containing carbon monoxide and hydrogen, and nitrogen, argon, helium,
It may contain an inert gas such as methane, or hydrocarbons, carbon dioxide, or water as long as it is in a gaseous state under the reaction conditions. - The mixing ratio of carbon oxide and hydrogen is CO/H2 ratio of 0.1 to 10. Preferably it is 0.2 to 4 (volume ratio).

以下実施例によって本発明を更に詳細に説明する。The present invention will be explained in more detail below with reference to Examples.

実施例1 塩化ロジウム(RhC13・3H20)0.480g(
1,82mm0l)、塩化−r7ガン(MnC12・4
H20)0.361 g (1,82mmol)及び塩
化第一鉄(FeC12・4H20)0.036 g (
0,18mmoJ)を溶解させたエタノール溶液中に予
め280Cで2時間高真空下す で焼成脱気したシリカゲル(Davison 57、D
avison社製) 3.7g (10rILl)を加
え浸漬した。次いでロータリーエバポレーターを用いて
エタノールを留去し乾固した後、更に真空乾燥した。
Example 1 Rhodium chloride (RhC13.3H20) 0.480g (
1,82mm0l), chloride-r7 gun (MnC12.4
H20) 0.361 g (1,82 mmol) and ferrous chloride (FeC12・4H20) 0.036 g (
Silica gel (Davison 57, D
Avison) 3.7g (10rILl) was added and immersed. Next, ethanol was distilled off using a rotary evaporator to dryness, followed by further vacuum drying.

その後、バイレックス反応管に充填し、常圧で水素及U
 窒素+7) 混合カス(H2= 100 m17分N
2−100ml 7分)の通気下で連続的に400Cま
で昇温しく昇温速度25C/hr)、4oocで4時間
、約20時間水素還元し触媒の活性化処理を行った。
After that, the Vilex reaction tube was filled with hydrogen and U at normal pressure.
Nitrogen + 7) Mixed scum (H2 = 100 m 17 min N
The catalyst was activated by hydrogen reduction for 4 hours at 4 oocc (heating rate 25 C/hr) for about 20 hours.

このようにして得られた触媒をシリカゲル3QmJで希
釈し、高圧流通反応装置の反応管(チタン製内径13m
cn)に充填し、常圧水素ガスの通気下(400mJ/
m1t1) 、300Cで2時間柱度再還元処理した後
、−酸化炭素と水素の混合ガス(CO/H2=1/2)
を送入し、所定の反応圧、温度、ガス流速の条件下で反
応を行った。反応生成物の中、含酸素化合物などの有機
物は水に溶解し捕集し、気体の炭化水素及び炭酸ガスは
直接ガス採取し、ガスクロ分析を行い、定性及び定量分
析し、生成物の分布をめた。結果f:fflに示した。
The catalyst thus obtained was diluted with 3 QmJ of silica gel, and the reaction tube (made of titanium, inner diameter 13 m) of a high-pressure flow reactor was
cn) and under normal pressure hydrogen gas ventilation (400 mJ/
m1t1), after 2 hours of columnar re-reduction treatment at 300C, - mixed gas of carbon oxide and hydrogen (CO/H2 = 1/2)
was introduced, and the reaction was carried out under the conditions of predetermined reaction pressure, temperature, and gas flow rate. Among the reaction products, organic substances such as oxygen-containing compounds are dissolved in water and collected, and gaseous hydrocarbons and carbon dioxide are directly collected and subjected to gas chromatography analysis, qualitative and quantitative analysis, and the distribution of the products is determined. I met. The results are shown in f:ffl.

実施例2〜3 塩化マンガン(MnC12・4H20)の担持量を0.
181 g (0,91mmo l)、0.036g(
0,18mmol)と変化させた以外は実施例1と同様
の調製法及び活性化処理を用いて調製した0 実施例1と同様の装置及び反応条件下で活性試験を行っ
た。結果を表−1に示した0 実施例4 塩化ロジウム(Rh(J、・3H20)0.480g 
(ts2mmol)、塩化77ガy (MnCJ 2 
・4HgO) 0.072g(0,364mmol)、
塩化第一鉄(Fe(4!2−4H20)0.109 g
 (0,547mmo J)及び四塩化チタ10.34
5g (1,82mmol)をエタノールに溶解させ、
この混合溶液にシリカゲル(Davisonす57、D
avison社製)3.7g(予め280Cで2時間高
真空下で焼成脱気したもの)を加え浸漬した。次いでロ
ータリーエバポレーターを用いてエタノールを留去した
後、真空乾燥した。その後、バイレックス反応管に充填
し、常圧で水素及び窒素の混合ガス田2= 100 d
/分、N、=100d/分)の通気下で連続的に400
t:’まで昇温(昇温速度25 U/hr) L、40
0Cで4時間、約20時間水素還元し触媒の活性化処理
を行った。このようにして得られた触媒をシリカゲル3
0mで希釈したものを、高圧流通反応装置の反応管(チ
タン製内径13 mm )に充填し、常圧水素ガスの通
気下(400In!!/min )で300trで2時
間程度再還元処理した後、水素、−酸化炭素の混合ガス
(CO/H2=1/2)を送入し、所定の反応圧、温度
、ガス流速の条件下で反応を行った。反応生成物の中、
含酸素化合物などの有機物は水に溶解し捕集し、気体の
炭化水素及び炭酸ガスは直接ガス採取し、ガスクロ分析
を行い、定性及び定量分析し、生成物の分布をめた。結
果を表1に示した。
Examples 2 to 3 The amount of manganese chloride (MnC12.4H20) supported was 0.
181 g (0.91 mmol), 0.036 g (
0.18 mmol) was prepared using the same preparation method and activation treatment as in Example 1.The activity test was conducted under the same apparatus and reaction conditions as in Example 1. The results are shown in Table 1. Example 4 Rhodium chloride (Rh(J, 3H20) 0.480g
(ts2mmol), 77gay chloride (MnCJ 2
・4HgO) 0.072g (0,364mmol),
Ferrous chloride (Fe(4!2-4H20) 0.109 g
(0,547 mmo J) and tita tetrachloride 10.34
Dissolve 5g (1.82mmol) in ethanol,
Add silica gel (Davison 57, D) to this mixed solution.
Avison) (3.7 g) (previously baked and degassed under high vacuum at 280C for 2 hours) was added and immersed. Next, ethanol was distilled off using a rotary evaporator, followed by vacuum drying. After that, it was filled into a Virex reaction tube and a mixed gas field of hydrogen and nitrogen 2 = 100 d at normal pressure.
400 d/min, N, = 100 d/min) continuously
Temperature increase to t:' (temperature increase rate 25 U/hr) L, 40
The catalyst was activated by hydrogen reduction at 0C for 4 hours and about 20 hours. The catalyst thus obtained was silica gel 3
The diluted product was filled into a reaction tube (made of titanium, inner diameter 13 mm) of a high-pressure flow reactor and subjected to re-reduction treatment at 300 tr for about 2 hours under normal pressure hydrogen gas ventilation (400 In!!/min). A mixed gas of , hydrogen, and carbon oxide (CO/H2=1/2) was introduced, and the reaction was carried out under conditions of predetermined reaction pressure, temperature, and gas flow rate. Among the reaction products,
Organic substances such as oxygen-containing compounds were dissolved in water and collected, and gaseous hydrocarbons and carbon dioxide gas were directly collected and subjected to gas chromatography analysis, qualitative and quantitative analysis, and the distribution of products was determined. The results are shown in Table 1.

実施例5 塩化イリジウム(IrCJ4−H2O) 0.320g
 (0,91mmo、/)を触媒成分として新たに添加
した以外は実施例4と同様の調製法及び活性化処理を用
いてロジウム−マンガン−鉄−チタン−イリジウム触媒
を調製した。
Example 5 Iridium chloride (IrCJ4-H2O) 0.320g
A rhodium-manganese-iron-titanium-iridium catalyst was prepared using the same preparation method and activation treatment as in Example 4, except that (0.91 mmo, /) was newly added as a catalyst component.

実施例1と同様の装置及び反応条件下で活性試験を行っ
た。結果を表−1に示した。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1. The results are shown in Table-1.

実施例6 四塩化チタンの代シにオキシ塩化バナジル(VOCla
)0.316g (1,82mmol)を、塩化マンガ
y (MnCJ z ・4JO)の添加量を0.036
 g(0,182mmoJ)に変化させた以外は実施例
4と同様の調製法及び活性化処理を用いてロジウム−マ
ンガン−鉄−バナジン触媒を調製した。
Example 6 Vanadyl oxychloride (VOCl) was substituted for titanium tetrachloride.
)0.316g (1,82mmol), and the amount of manga chloride (MnCJ z ・4JO) added was 0.036g (1,82mmol).
A rhodium-manganese-iron-vanadine catalyst was prepared using the same preparation method and activation treatment as in Example 4, except that the catalyst was changed to g (0,182 mmoJ).

実施例1と同様の装置及び反応条件下で活性試験を行っ
た。結果を表−1に示した。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1. The results are shown in Table-1.

実施例7 四塩化チタンの代りにオキシ塩化バナジル(VO(Js
)0.316g (1,82mmoJ)、塩化? 7 
i 7(MnCJ 2・4H,0)の添加量tl−0,
108g (0,546mm0l)、触媒成分として塩
化イリジウム(I r C14・H2O)0.160g
 (0,45mmoJ)を新たに添加した以外は実施例
4と同様の調製法及び活性化処理を用いてロジウム−マ
ンガン−鉄−バナジン−イリジウム触媒を調製した。
Example 7 Vanadyl oxychloride (VO (Js
)0.316g (1,82mmoJ), chloride? 7
Addition amount tl-0 of i7(MnCJ 2・4H,0),
108g (0,546mm0l), 0.160g of iridium chloride (I r C14 H2O) as a catalyst component
A rhodium-manganese-iron-vanadine-iridium catalyst was prepared using the same preparation method and activation treatment as in Example 4, except that (0.45 mmoJ) was newly added.

実施例1と同様の装置及び反応条件下で活性化試験を行
った。結果を表−1に示した。
An activation test was conducted under the same equipment and reaction conditions as in Example 1. The results are shown in Table-1.

実施例8 塩化イリジウム(IrC14−H2O)0.064g(
0,18mmol)を新たに添加した以外は実施例1と
同様の調製法及び活性化処理を用いてロジウムロマンガ
ン=鉄−イリジウム触媒を調製した。
Example 8 Iridium chloride (IrC14-H2O) 0.064 g (
A rhodium romanganese=iron-iridium catalyst was prepared using the same preparation method and activation treatment as in Example 1, except that 0.18 mmol) was newly added.

実施例1と同様の装置及び反応条件下で活性試験を行っ
た。結果を表−1に示した。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1. The results are shown in Table-1.

実施例9 塩化ニッケル(NiC12・6)(20)0.043g
(0,18mmol)を新たに添加した以外は実施例1
と同様の調製法及び活性化処理を用いて調製した。
Example 9 Nickel chloride (NiC12.6) (20) 0.043g
Example 1 except that (0.18 mmol) was newly added.
It was prepared using the same preparation method and activation treatment.

実施例1と同様の装置及び反応条件下で活性試験を行っ
た。結果を表−1に示した。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1. The results are shown in Table-1.

比較例1 塩化第一鉄を除いた以外は実施例1と同様の調製法及び
活性化処理を用いてロジウム−マンガン触媒を調製した
Comparative Example 1 A rhodium-manganese catalyst was prepared using the same preparation method and activation treatment as in Example 1, except that ferrous chloride was omitted.

実施例1と同様の装置及び反応条件下で活性試験を行っ
た。結果を表−1に示した。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1. The results are shown in Table-1.

比較例2,3 塩化マンガンを除き、塩化第一鉄(FeC7、・4H,
0)を0.026 g (0,13mmoり、0.10
9 g (0,fmmoAりと変化させた以外は実施例
1と同様の調製法及び活性化処理を用いて、ロジウム−
鉄触媒を調製した。
Comparative Examples 2 and 3 Ferrous chloride (FeC7, 4H,
0) to 0.026 g (0.13 mm, 0.10
Using the same preparation method and activation treatment as in Example 1, except that the rhodium-
An iron catalyst was prepared.

実施例1と同様の装置及び反応条件下で活性試験を行っ
た。結果を表−1に示した。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1. The results are shown in Table-1.

特開昭GO−32732(7)JP-A-Sho GO-32732 (7)

Claims (2)

【特許請求の範囲】[Claims] (1) H)ロジウム、(ロ)マンガン及びf、9鉄よ
9成る触媒の存在下、−酸化炭素及び水素を含有する混
合気体を反応させ、エタノールを主成分とする含酸素化
合物の製造法。
(1) A method for producing an oxygen-containing compound containing ethanol as a main component by reacting a mixed gas containing -carbon oxide and hydrogen in the presence of a catalyst consisting of H) rhodium, (b) manganese and f,9 iron. .
(2)(イ)ロジウム、(ロ)マンガン、(ハ)鉄及び
に)バナジウム、チタン、イリジウム、ニッケルから成
る群から選ばれた成分を添加して成る触媒の存在下、−
酸化炭素及び水素を含有する混合気体を反応させ、エタ
ノールを主成分とする含酸素化合物の製造法。
(2) In the presence of a catalyst containing a component selected from the group consisting of (a) rhodium, (b) manganese, (c) iron, and (b) vanadium, titanium, iridium, and nickel, -
A method for producing oxygen-containing compounds whose main component is ethanol by reacting a gas mixture containing carbon oxide and hydrogen.
JP58141084A 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethanol as the main component Expired JPS6049616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141084A JPS6049616B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethanol as the main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141084A JPS6049616B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethanol as the main component

Publications (2)

Publication Number Publication Date
JPS6032732A true JPS6032732A (en) 1985-02-19
JPS6049616B2 JPS6049616B2 (en) 1985-11-02

Family

ID=15283831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141084A Expired JPS6049616B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethanol as the main component

Country Status (1)

Country Link
JP (1) JPS6049616B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191632A (en) * 1985-02-02 1986-08-26 Agency Of Ind Science & Technol Production of ethanol
JPS61191635A (en) * 1985-02-02 1986-08-26 Agency Of Ind Science & Technol Production of ethanol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191632A (en) * 1985-02-02 1986-08-26 Agency Of Ind Science & Technol Production of ethanol
JPS61191635A (en) * 1985-02-02 1986-08-26 Agency Of Ind Science & Technol Production of ethanol
JPS6238335B2 (en) * 1985-02-02 1987-08-17 Kogyo Gijutsuin
JPS6238333B2 (en) * 1985-02-02 1987-08-17 Kogyo Gijutsuin

Also Published As

Publication number Publication date
JPS6049616B2 (en) 1985-11-02

Similar Documents

Publication Publication Date Title
EP0147219B1 (en) Pd/re hydrogenation catalyst and process for making tetrahydrofuran and 1,4-butanediol
US4758600A (en) Process for the manufacture of ethanol
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6032732A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6119608B2 (en)
JPS6032730A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6341373B2 (en)
JPS6119611B2 (en)
JPS6032736A (en) Production of oxygen-containing compound composed mainly of ethyl alcohol
JPS6259232A (en) Production of ethanol
JPS63412B2 (en)
JPS6238336B2 (en)
JPS61191635A (en) Production of ethanol
JPS63162637A (en) Production of ethanol
JPS6125691B2 (en)
JPS6259228A (en) Production of ethanol
JPS6210486B2 (en)
JPS59227832A (en) Production of oxygen-containing compound having two carbon atoms
JPS6032729A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6238334B2 (en)
JPS6238337B2 (en)
JPS63162638A (en) Production of ethanol
JPS63414B2 (en)
JPS6238338B2 (en)
JPS6238340B2 (en)