JPS6032248A - Zinc and zinc alloy for negative electrode of primary battery - Google Patents

Zinc and zinc alloy for negative electrode of primary battery

Info

Publication number
JPS6032248A
JPS6032248A JP58139494A JP13949483A JPS6032248A JP S6032248 A JPS6032248 A JP S6032248A JP 58139494 A JP58139494 A JP 58139494A JP 13949483 A JP13949483 A JP 13949483A JP S6032248 A JPS6032248 A JP S6032248A
Authority
JP
Japan
Prior art keywords
zinc
silver
alloy
gallium
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58139494A
Other languages
Japanese (ja)
Inventor
Ukitsu Ito
伊藤 右橘
Kenji Hagimori
健治 萩森
Junzo Nakagawa
中川 淳三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Zinc Co Ltd
Toho Aen KK
Original Assignee
Toho Zinc Co Ltd
Toho Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Zinc Co Ltd, Toho Aen KK filed Critical Toho Zinc Co Ltd
Priority to JP58139494A priority Critical patent/JPS6032248A/en
Publication of JPS6032248A publication Critical patent/JPS6032248A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To achieve high corrosion resistance and discharge utilization rate of zinc and a zinc alloy without performing any amalgamation by coating the surface of pure zinc with either a combination of silver and a specific corrosion- resistance-improving metal or an alloy consisting of silver and a specific corrosion-resistance-improving metal. CONSTITUTION:Pure zinc is treated with both an aqueous solution of a silver salt and an aqueous solution of salts of at least one metal element chosen from among gallium, indium, lead, bismuth and thallium to coat the surface of the pure zinc with a substitution layer of silver or that of above metal elements including silver. In another method, a zinc alloy containing at least one element chosen from among gallium, indium, lead, bismuth and thallium is treated with an aqueous solution of a silver salt to coat the zinc alloy with a substitution layer of silver. The thus obtained coated zinc or zinc alloy has remarkably increased corrosion resistance and zinc utilization rate during its use as a negative electrode for a primary battery.

Description

【発明の詳細な説明】 本発明は、負極用として耐食性および放電利用率にすぐ
れた一次電池負極用銀被着亜鉛および銀−亜鉛基合金に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to silver-coated zinc and silver-zinc-based alloys for primary battery negative electrodes that have excellent corrosion resistance and discharge utilization.

従来−次電池においては、電池貯蔵時における高い耐食
性と使用放電時にjrける高い亜鉛(り用率を得るため
に、6〜10%の水銀を亜鉛粒子表面に被覆ないし合金
化させたものが負極として使用されてきているが、最近
−次電池の需要の伸びから、このような水銀を含む使用
済み一次電池の廃1η処分が公害発生の懸念により問題
視されるようになっており、−次電池用として低氷化な
いし無氷化亜鉛負極の開発が切望されてきている。
Conventionally, in secondary batteries, in order to obtain high corrosion resistance during battery storage and high zinc usage rate during use and discharge, the negative electrode is coated or alloyed with 6 to 10% mercury on the surface of zinc particles. However, due to the recent growth in demand for secondary batteries, the disposal of used primary batteries containing mercury has become a problem due to concerns about pollution. There is a strong desire to develop a low-icing or no-icing zinc negative electrode for use in batteries.

しかし、現在−次電池用負極として使用されている氷化
亜鉛は高い耐食性を有するのみならず、亜鉛の放電利用
千は90%を越え、性能の面からはすぐれた電極材料で
ある。これまで無氷化ないし低木化条件下での代替材と
してガリウム、インジウム、鉛、ビスマス、タリウム等
の金属元素を添加した亜鉛合金、あるいは塩類水溶液中
の処理でそれら金属元素を表面に直換被着させた亜鉛な
どいろいろ試みられており、耐食性については氷化亜鉛
に匹敵する値を有するものが提供されるようになってき
ている。しかしながら、一方の亜鉛利用率の面ではまだ
問題が残されている。従来の単純な無氷化亜鉛の場合で
は、放電使用の際にみられる放電生成物が表面を覆って
固着して流電を妨げ、逐には電気化学的不働態となり、
結果的に亜鉛の放電利用率はたとえば40%というよう
なかなりの低率に止まることになるものである。これま
で、前記のようなガリウム等を含む高耐食性亜鉛合金あ
るいは合金被着亜鉛によって若干改善はされており、た
とえば特開昭58−26456号にみられるガリウム−
インジウム−亜鉛合金では放電利用率が85係程度にま
で向上しているが、まだ充分にンに1足されているとは
いえない。
However, frozen zinc, which is currently used as a negative electrode for rechargeable batteries, not only has high corrosion resistance, but also has a discharge utilization rate of over 90%, making it an excellent electrode material in terms of performance. Until now, zinc alloys to which metal elements such as gallium, indium, lead, bismuth, and thallium have been added have been used as substitute materials under conditions of no ice or shrub formation, or those metal elements have been directly converted to the surface by treatment in an aqueous salt solution. Various attempts have been made, such as zinc coating, and products with corrosion resistance comparable to that of frozen zinc are now available. However, problems still remain in terms of zinc utilization. In the case of conventional simple ice-free zinc, discharge products seen during discharge use cover and stick to the surface, impeding current flow, and eventually becoming electrochemically passive.
As a result, the discharge utilization rate of zinc remains at a fairly low rate of, for example, 40%. Up to now, some improvements have been made using highly corrosion-resistant zinc alloys containing gallium, etc., or zinc alloy coatings.
In indium-zinc alloys, the discharge utilization rate has improved to about 85 coefficients, but it cannot be said that it has been sufficiently improved.

本発明は、このような−次電池負極用亜鉛合金に関し、
無氷化ないし低汞化条件下で高い耐食性と高い放電利用
率を示す亜鉛または亜鉛合金の提供を目的としたもので
あり、純亜鉛を銀塩水溶液とガリウム、インジウム、鉛
、ビスマスおよびタリウムのうちの1つまたは2つ以上
の金属元素の塩類水溶液とで処理して表面に銀または銀
を含む前記金属元素の置換層を被着させた一次電池負極
用亜鉛、あるいはガリウム、インジウム、鉛、ビスマス
およびタリウムのうちの1つか2つ以上の金属元素と銀
とを含む亜鉛合金を銀塩水溶液で処理して銀の置換層を
被着させた一次電池負極用亜鉛合金である。
The present invention relates to such a zinc alloy for secondary battery negative electrodes,
The purpose is to provide zinc or zinc alloys that exhibit high corrosion resistance and high discharge utilization under ice-free or low-fragrance conditions. Zinc for primary battery negative electrodes, treated with an aqueous salt solution of one or more of the metal elements to deposit a substitution layer of silver or the metal element containing silver on the surface, or gallium, indium, lead, This zinc alloy for primary battery negative electrodes is prepared by treating a zinc alloy containing silver and one or more metal elements of bismuth and thallium with an aqueous silver salt solution to deposit a silver substitution layer.

本発明者等は、銀の酸化物が電気伝導度にすぐれている
こと、および電解液や腐食性水溶液等における銀−亜鉛
合金ではイオン化傾向の差により亜鉛が優先的に溶解し
銀が残留することに着目し、その電池特性の調査検耐を
行なったものである。
The present inventors have discovered that silver oxide has excellent electrical conductivity, and that in silver-zinc alloys in electrolytes and corrosive aqueous solutions, zinc preferentially dissolves and silver remains due to differences in ionization tendency. Focusing on this, we conducted an investigation and test of the battery characteristics.

その結果純亜鉛の表面に0.05%以上の銀を被着させ
た亜鉛、特には銀0.01%以上と同時に耐食性改善金
属であるところのガリウム、インジウム、鉛、ビスマス
およびタリウムのうち1つまたは2つ以上を0.005
%以上複合的に混在ないし合金化状態で被着させた亜鉛
は耐食性とともに、放電使用時の亜鉛利用率が著しく高
められていることが見出された。すなわち亜鉛利用率は
90%を越え耐食性と共に氷化亜鉛と同等以上の効果を
有することが見出された。特に后者においては明らかに
被着Mにおける銀と前記ガリウム等金属元素との相乗効
果が見られたのである。これは、電池の放電使用中に生
成するいわゆる放電生成物の被膜中に銀が残留し、これ
が導電経路となり、亜鉛の不働態化を阻み、活性状態を
維持するものと考えられ、さらに前記ガリウム等耐食性
改善金属の効果が相乗的に加算されるものと考えられる
As a result, zinc with 0.05% or more silver coated on the surface of pure zinc, especially 1 of gallium, indium, lead, bismuth, and thallium, which are metals that improve corrosion resistance at the same time as 0.01% or more silver. 0.005 for one or more
It has been found that when zinc is deposited in a mixed or alloyed state in a mixed or alloyed state in an amount of % or more, not only the corrosion resistance but also the zinc utilization rate during discharge use is significantly increased. In other words, it was found that the zinc utilization rate exceeds 90%, and that it has corrosion resistance and an effect equal to or higher than that of frozen zinc. Particularly in the latter case, a synergistic effect between silver in the deposit M and the metal element such as gallium was clearly observed. This is thought to be because silver remains in the film of so-called discharge products generated during discharge use of the battery, which becomes a conductive path, prevents zinc from becoming passivated, and maintains the active state. It is thought that the effects of corrosion resistance-improving metals are added synergistically.

純亜鉛に対する前記ガリウム等耐食性改善金属の被着の
ための塩類水溶液の処理および銀被着のための銀塩水溶
液の処理は通常別個の処理であって順次行なわれる。塩
類水溶液は塩化物水溶液、硫酸塩水溶液、チオ硫酸塩水
溶液等が用いられ、この中に亜鉛粒子を投入攪拌するこ
とで亜鉛表面への銀等金属の置換被着が行なわれる。
The treatment of pure zinc with an aqueous salt solution for depositing the corrosion resistance improving metal such as gallium and the treatment with an aqueous silver salt solution for depositing silver are usually separate treatments and are carried out sequentially. As the aqueous salt solution, a chloride aqueous solution, a sulfate aqueous solution, a thiosulfate aqueous solution, etc. are used, and by introducing zinc particles into the solution and stirring, metals such as silver are deposited on the zinc surface by displacement.

また、これらの知見に加え、純亜鉛に前記ガリウム、イ
ンジウム、鉛、ビスマスおよびタリウムという耐食性改
善金属のうちの1つまたは2つ以上を0.01%以上予
め添加し合金化せしめておき、これを銀塩水溶液で処理
し銀を合金表面に置換被着させることによって、上記複
合被着の場合と同様無氷化負極材として有効なものであ
ることが見出されている。
In addition to these findings, we have added 0.01% or more of one or more of the corrosion resistance improving metals, gallium, indium, lead, bismuth, and thallium, to pure zinc in advance to form an alloy. It has been found that by treating silver with an aqueous silver salt solution to deposit silver on the alloy surface by substitution, it is effective as an ice-free negative electrode material, similar to the case of the composite deposition described above.

なお本発明は、主として無氷化亜鉛または無氷化亜鉛合
金の開発を意図してなされたものであって、その面での
効果も主張されるものであるが、本発明は低氷化処理に
よって銀ないし前記ガリウム等耐食性改善金属の節減を
図ることを妨げるものではない。
The present invention was mainly made with the intention of developing ice-free zinc or ice-free zinc alloys, and the present invention is also claimed to be effective in that respect. However, this does not prevent the use of corrosion resistance improving metals such as silver or the above-mentioned gallium to be reduced.

特許出願人 東邦亜鉛株式会社 1“、・11ソPatent applicant: Toho Zinc Co., Ltd. 1",・11 so

Claims (2)

【特許請求の範囲】[Claims] (1)純亜鉛をガリウム2、インジウム、鉛、ビスマス
およびタリウムのうちの1つまたは2つ以上の金属元素
および銀のそれぞれの塩類水溶液で順次処理して表面に
銀を含−む前記金属元素の置換層を被着せしめたことを
特徴とする一次電池負極用亜鉛
(1) The metal element containing silver on the surface by sequentially treating pure zinc with an aqueous salt solution of one or more metal elements of gallium 2, indium, lead, bismuth, and thallium and silver. Zinc for primary battery negative electrode characterized by having a replacement layer of
(2)純亜鉛にガリウム、インジウム、鉛、ビスマスお
よびタリウムのうちの1つまたは2つ以上の金属元素を
添加した亜鉛合金を銀塩水溶液で処理し、表面に置換層
を被着せしめた一次電池負極用亜鉛基合金。
(2) A primary zinc alloy made by adding one or more metal elements of gallium, indium, lead, bismuth, and thallium to pure zinc is treated with a silver salt aqueous solution and a substitution layer is deposited on the surface. Zinc-based alloy for battery negative electrodes.
JP58139494A 1983-08-01 1983-08-01 Zinc and zinc alloy for negative electrode of primary battery Pending JPS6032248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139494A JPS6032248A (en) 1983-08-01 1983-08-01 Zinc and zinc alloy for negative electrode of primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139494A JPS6032248A (en) 1983-08-01 1983-08-01 Zinc and zinc alloy for negative electrode of primary battery

Publications (1)

Publication Number Publication Date
JPS6032248A true JPS6032248A (en) 1985-02-19

Family

ID=15246569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139494A Pending JPS6032248A (en) 1983-08-01 1983-08-01 Zinc and zinc alloy for negative electrode of primary battery

Country Status (1)

Country Link
JP (1) JPS6032248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115733U (en) * 1980-02-06 1981-09-04
JPS61208751A (en) * 1985-03-14 1986-09-17 Fuji Elelctrochem Co Ltd Dry cell
JPS62248118A (en) * 1986-04-21 1987-10-29 Toho Denshi Kogyo Kk Test method for magnetic head or magnetic tape

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066737A (en) * 1973-10-18 1975-06-05
JPS5098636A (en) * 1974-12-13 1975-08-05
JPS5371233A (en) * 1976-12-06 1978-06-24 Matsushita Electric Ind Co Ltd Nickel zinc storage battery
JPS5825083A (en) * 1981-07-22 1983-02-15 ヴアルタ・バツテリ−・アクチエンゲゼルシヤフト Zinc powder cathode not amalgamed for battery having alkaline electrolyte and method of producing same
JPS5875769A (en) * 1981-10-30 1983-05-07 Mitsui Mining & Smelting Co Ltd Cathode active substance for cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066737A (en) * 1973-10-18 1975-06-05
JPS5098636A (en) * 1974-12-13 1975-08-05
JPS5371233A (en) * 1976-12-06 1978-06-24 Matsushita Electric Ind Co Ltd Nickel zinc storage battery
JPS5825083A (en) * 1981-07-22 1983-02-15 ヴアルタ・バツテリ−・アクチエンゲゼルシヤフト Zinc powder cathode not amalgamed for battery having alkaline electrolyte and method of producing same
JPS5875769A (en) * 1981-10-30 1983-05-07 Mitsui Mining & Smelting Co Ltd Cathode active substance for cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115733U (en) * 1980-02-06 1981-09-04
JPS61208751A (en) * 1985-03-14 1986-09-17 Fuji Elelctrochem Co Ltd Dry cell
JPS62248118A (en) * 1986-04-21 1987-10-29 Toho Denshi Kogyo Kk Test method for magnetic head or magnetic tape

Similar Documents

Publication Publication Date Title
CA1087244A (en) Alloy-coated cathode for lead-acid batteries
JPS59111277A (en) Electrolyte for zinc-bromine secondary battery
JPS62278290A (en) Galvanizing bath
Paramasivam et al. Influence of alloying additives on the performance of commercial grade aluminium as galvanic anode in alkaline zincate solution for use in primary alkaline batteries
Tripathy et al. Zinc electrowinning from acidic sulphate solutions Part II: Effects of triethylbenzylammonium chloride
US1969553A (en) Electrolyte for the deposition of
JPS6032248A (en) Zinc and zinc alloy for negative electrode of primary battery
GB2160897A (en) Electroless plating solution
JP4038553B2 (en) Method for producing alkaline battery negative electrode material
FR2525822A1 (en) ELECTRICAL ACCUMULATOR HAVING ZINC AND HALOGEN ELECTRODES
JPH0773060B2 (en) Secondary battery
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
JPS6032249A (en) Zinc alloy for negative electrode of primary battery
JPH02171129A (en) Antifouling method of fishing net
JPS61109256A (en) Zinc anode of alkaline call
JPH09283150A (en) Alkaline battery and its negative current collector
JPS604917B2 (en) Plating method for lead-indium alloy
Kublanovsky et al. Criteria for the Selection of Ligands in the Development of Complex Electrolytes for the Electrochemical Formation of Functional Tin Films as Effective Anode Materials for Lithium-ion Batteries
JPS5842740A (en) Zinc alloy for electrode
JP3466824B2 (en) Tin-silver alloy plating bath
JPH0665747A (en) Negative electrode container for alkaline battery
JPH0471162A (en) Nonaqueous electrolytic battery
JPH07109762B2 (en) Method for producing zinc alloy for zinc alkaline battery and zinc alkaline battery using the same
SU840209A1 (en) Electrolyte for precipitating silver-cadmium alloy coatings
WO2002063071A2 (en) Acid dip for zinc-manganese alloy electrodeposition