JPS6031856B2 - Method for spheroidizing thermoplastic particles - Google Patents

Method for spheroidizing thermoplastic particles

Info

Publication number
JPS6031856B2
JPS6031856B2 JP58090488A JP9048883A JPS6031856B2 JP S6031856 B2 JPS6031856 B2 JP S6031856B2 JP 58090488 A JP58090488 A JP 58090488A JP 9048883 A JP9048883 A JP 9048883A JP S6031856 B2 JPS6031856 B2 JP S6031856B2
Authority
JP
Japan
Prior art keywords
air flow
particles
supply pipe
thermoplastic particles
pressurized hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58090488A
Other languages
Japanese (ja)
Other versions
JPS5911331A (en
Inventor
寿彦 小口
一吉 斎藤
毅 上野
勉 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58090488A priority Critical patent/JPS6031856B2/en
Publication of JPS5911331A publication Critical patent/JPS5911331A/en
Publication of JPS6031856B2 publication Critical patent/JPS6031856B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/166Deforming granules to give a special form, e.g. spheroidizing, rounding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】 本発明は樹脂粒子、着色樹脂粒子等の熱可塑性粒子を球
型化する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for spheroidizing thermoplastic particles such as resin particles and colored resin particles.

従釆、この種の球型化方法としては、熱可塑性粒子を熱
雰囲気の流動層に一定時間懸濁浮遊せしめたり、熱筒内
に前記粒子を落下させたり、する乾式法、或いは水乃至
有機溶媒に分散または溶解させた溶質を熱雰囲気中に霧
化し、溶媒を蒸発せしめた後球型の港質粒子を得る湿式
法、などが採用されている。
Accordingly, this type of spheroidization method includes a dry method in which thermoplastic particles are suspended in a fluidized bed in a hot atmosphere for a certain period of time, or the particles are dropped into a heated cylinder, or A wet method is employed in which a solute dispersed or dissolved in a solvent is atomized in a hot atmosphere, and after the solvent is evaporated, spherical particles are obtained.

しかしながら、上記前者の乾式法にあっては、粒子を個
々に分離させた状態で一定時間、定められた空間に保持
することが難しく、とりわけ粒子径が100ム肌以下の
ものを得る場合には、球型化操作中粒子同志の融着によ
る団塊化や容器壁への付着などを起こすため、球型化度
の不均一化、収率の著しい低下を招く欠点がある。
However, in the former dry method mentioned above, it is difficult to maintain the particles individually in a predetermined space for a certain period of time, especially when obtaining particles with a particle size of 100 μm or less. However, during the spheroidizing operation, particles may fuse together to form agglomerates and adhere to the container wall, resulting in non-uniformity in the degree of spheroidization and a significant decrease in yield.

一方、後者の湿式法、たとえばスプレードラィャ法にあ
っては、粒径が数〃の〜数百〃肌の広範囲にわたって均
質な球型化粒子が得られる利点を有する。
On the other hand, the latter wet method, such as the spray dryer method, has the advantage that homogeneous spherical particles can be obtained over a wide range of particle sizes ranging from several to several hundred.

しかしながら、霧化した粒子を浦集するまで、粒子中に
含まれる溶媒のほとんどを蒸発させなければならないこ
とから、広大な乾燥室が必要であり装置が大型化するこ
と、蒸発溶媒が水以外の場合には、溶媒の回収などのた
めに更に付帯設備が増加するばかりか、火災、毒性など
の危険性を伴なう問題がある。本発明は従来法にみられ
る各種の問題点を一挙に解消するためになされたもので
、熱可塑性粒子を極めて簡便かつ迅速に球型化し得る方
法を提供しようとするものである。
However, since most of the solvent contained in the particles must be evaporated until the atomized particles are collected, a vast drying room is required and the equipment becomes large. In some cases, the number of incidental facilities not only increases to recover the solvent, but also poses problems such as fire, toxicity, and other dangers. The present invention was made in order to solve all the problems found in the conventional methods, and it is an object of the present invention to provide a method by which thermoplastic particles can be formed into spheres extremely simply and quickly.

以下、本発明の一実施例を図面を参照して説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図中1は、底部周縁にたとえば4つの噴射口2a・・・
・・・2d(2dは図示されていない)を互いに一定間
隔をあげて閉口した有底円筒状の供給管(加圧熱気流供
給部材)である。
1 in the figure indicates, for example, four injection ports 2a...
... 2d (2d is not shown) is a closed cylindrical supply pipe (pressurized hot air flow supply member) with a closed end at a constant interval from each other.

この供給管1には熱交換器3で加熱された圧縮ガスを該
供給管1内に導入する導入管4が連結されている。この
場合、熱交換器3による圧縮ガスの加熱温度は通常、後
述する熱可塑性粒子の軟化温度より10000以上高く
なるように設定される。また前記供給管1の外周囲に、
その噴射口2a……2dに対応する4本のノズル5a…
…5d(分散気流供給部材)を該供給管1の薮線に対し
て同0円状に配設している。
An introduction pipe 4 for introducing compressed gas heated by a heat exchanger 3 into the supply pipe 1 is connected to the supply pipe 1 . In this case, the heating temperature of the compressed gas by the heat exchanger 3 is usually set to be 10,000 or more higher than the softening temperature of the thermoplastic particles, which will be described later. Further, around the outer periphery of the supply pipe 1,
Four nozzles 5a...corresponding to the injection ports 2a...2d...
...5d (distributed airflow supply member) is arranged in the same circular shape with respect to the bush line of the supply pipe 1.

なお、これらノズル5a・・・・・・5dの藤線の角度
は、供給管1の鞠線に対して300乃至600となるよ
うに設定される。さらに、上記ノズル5a……5bには
、ホッパー6から供給された通常粒径が100山肌以下
の熱可塑性粒子7を、含有する圧縮ガスを導入する導入
管4′が夫々連結されている。この場合ホッパー6から
の熱可塑性粒子供給量及び導管4′内を流通する圧縮ガ
ス量は、ノズル5a・・・・・・5d内に熱可塑性粒子
濃度2000タノ〆以下、好ましくは100〜1000
夕/あの圧縮ガスが導入されるように調整する。このよ
うな構成によれば、今、供給管1内に導管4を介して熱
交換器3で加熱された熱可塑性粒子の軟化点より100
00以上高い、たとえば温度42000の圧縮空気を導
入すると、供給管1の噴射口2a・・・・・・2dから
速度成分(しx)の加圧熱気流8a,..,..8dが
放射状に噴出される。
Incidentally, the angle of the wisteria lines of these nozzles 5a...5d is set to be 300 to 600 with respect to the marking line of the supply pipe 1. Further, the nozzles 5a, . . . , 5b are connected with inlet pipes 4', respectively, for introducing compressed gas containing thermoplastic particles 7, which are supplied from the hopper 6 and usually have a particle size of 100 mounds or less. In this case, the amount of thermoplastic particles supplied from the hopper 6 and the amount of compressed gas flowing through the conduit 4' are such that the concentration of thermoplastic particles in the nozzles 5a...5d is 2,000 or less, preferably 100 to 1,000.
Evening: Adjust so that that compressed gas is introduced. According to this configuration, the temperature is 100° below the softening point of the thermoplastic particles heated in the heat exchanger 3 through the conduit 4 in the supply pipe 1.
When compressed air with a temperature of 42,000 or higher, for example 42,000, is introduced, compressed hot air flows 8a, . .. 、. .. 8d is ejected radially.

しかるにホッパ一6から熱可塑性粒子、たとえば平均粒
径10#の、軟化点130℃のェポキジ樹脂粒子7を供
給し、導管4′を流通する圧縮空気によりェポキシ樹脂
粒子の濃度が500夕/あの圧縮空気をノズル5a・・
・…5dに導入すると、これらノズル5a・・・・・・
5d先端から速度成分(ひx′)のェポキシ樹脂粒子分
散気流9a・・・・・・9dが噴射され、この分散気流
9a・・・・・・9dが前記放射状に噴出された加圧熱
気流8a.・.・・・8dに吹き込まれる。しかして、
分散気流の吹き込みの過程において、放射状に噴出され
た加圧熱気流の高温領域に分散気流が衝突して混合され
るため、ヱポキシ樹脂粒子は迅速かつ均一に軟化、溶融
されその粒子表面の軟化層が表面張力作用を受けて均一
に粒型化された粒子を容易に得ることができる。放射状
の加圧熱気流中で球型化された粒子は次いで該加圧熱気
流の速度成分(ひy)と分散気流の速度成分(ひy′)
とによって冷却部へ強制的に移行せしめられる。したが
って、本発明装置によれば次に挙げるような種々の効果
を発揮できるものである。{11 球型化度が著しく高
い均質な球型化粒子を大量かつ短時間に得ることとがで
きる。■ 球型化操作時において、粒子同志の融着によ
る団塊化、装置の部材壁面への付着などを防止できるた
め、製造能率の向上化、作業の簡便化を図ることができ
る。
However, thermoplastic particles, for example, epoxy resin particles 7 with an average particle size of 10# and a softening point of 130°C, are supplied from the hopper 16, and the concentration of the epoxy resin particles is increased to 500°C by the compressed air flowing through the conduit 4'. Air is passed through nozzle 5a...
・When introduced into 5d, these nozzles 5a...
An epoxy resin particle dispersion airflow 9a...9d having a velocity component (x') is injected from the tip of 5d, and this dispersion airflow 9a...9d is the pressurized hot airflow ejected radially. 8a.・.. ...is blown into 8d. However,
In the process of blowing the dispersed air stream, the dispersed air stream collides with the high temperature area of the radially ejected pressurized hot air stream and mixes, so the epoxy resin particles are quickly and uniformly softened and melted, forming a softened layer on the particle surface. can easily obtain uniformly shaped particles under the action of surface tension. The particles spheroidized in the radial pressurized hot air stream then have a velocity component (hy) of the pressurized hot air stream and a velocity component (hy') of the dispersed air stream.
and is forced to move to the cooling section. Therefore, the apparatus of the present invention can exhibit various effects as listed below. {11 Homogeneous spherical particles with a significantly high degree of sphericity can be obtained in large quantities and in a short time. (2) During the spheroidizing operation, it is possible to prevent particles from forming into agglomerates due to fusion and adhesion to the walls of equipment members, thereby improving manufacturing efficiency and simplifying work.

‘3’球型化操作時の空間が従釆の湿式法、乾式法に比
して著しく小さく、局部的な加熱を行なうことができる
ため、熱効率の著しい向上化を図ることができる。
The space during the '3' spheroidizing operation is significantly smaller than that of the secondary wet method or dry method, and local heating can be performed, so thermal efficiency can be significantly improved.

‘41 装置自体が従来の湿式法、乾式法に用いるもの
に比して著しく小型、軽量にでき、かつ操作も簡単とな
り作業性を向上できる。
'41 The device itself can be made significantly smaller and lighter than those used in conventional wet and dry methods, and is also easier to operate, improving work efficiency.

なお、本発明に用いる圧縮ガスは圧縮空気に限定されず
、たとえば熱可塑性粒子が酸化され易いなど不安定な場
合には、窒素ガスなどの不活性ガスが使用される。本発
明に使用する熱可塑性粒子は、ェポキシ樹脂に限らず、
たとえばロジン、コパール、シヱラックなどの天然樹脂
、或いは固型パラフィン、ポリスチレン樹脂、ポリエチ
レン樹脂、塩化ビニル樹脂、ポリアミド樹脂、アルキド
樹脂、フェノール樹脂、ポリガーボネート樹脂、酢酸ビ
ニル樹脂などの合成樹脂、またはこれら樹脂の混合物あ
るし、は共重合体の粒子、比較的低融点のセラミックス
粒子、砂糖、ピッチ、熱溶融性の染料などの有機物粒子
、または場合によっては前記の各種樹脂と顔料、その他
のフィラーとを熱混練し、粉砕、分級した粒子も使用で
きる。
Note that the compressed gas used in the present invention is not limited to compressed air; for example, when the thermoplastic particles are unstable, such as being easily oxidized, an inert gas such as nitrogen gas may be used. The thermoplastic particles used in the present invention are not limited to epoxy resin,
For example, natural resins such as rosin, copal, and shellac, or synthetic resins such as solid paraffin, polystyrene resin, polyethylene resin, vinyl chloride resin, polyamide resin, alkyd resin, phenolic resin, polygarbonate resin, and vinyl acetate resin, or these resins. Mixtures of resins, copolymer particles, relatively low-melting ceramic particles, organic particles such as sugar, pitch, heat-melting dyes, or in some cases, the various resins listed above, pigments, and other fillers. Particles obtained by thermally kneading, pulverizing, and classifying can also be used.

本発明の加圧熱気流供給部材から噴出される加圧熱気流
の流速及び分散気流供給部村から吹き込む熱可塑性粒子
分散気流の吹き込み速度は加圧熱気流の温度、つまり使
用する熱可塑性粒子の軟化速度、及び熱可塑性粒子の大
きさ(比表面積)等により適宜選定すればよい。
The flow rate of the pressurized hot air stream ejected from the pressurized hot air stream supply member of the present invention and the blowing rate of the thermoplastic particle dispersion air stream blown from the dispersed air stream supply section are determined by the temperature of the pressurized hot air stream, that is, the temperature of the thermoplastic particles used. It may be appropriately selected depending on the softening rate and the size (specific surface area) of the thermoplastic particles.

また、本発明における加圧熱気流供給部村及び分散気流
供給部材の構造並びに配置状態は上記実施例に限定され
ず、たとえば第2図、第3図乃至第4図の如き構成して
もよい。
Further, the structure and arrangement of the pressurized hot air flow supply section and the distributed air flow supply member in the present invention are not limited to the above embodiments, and may be configured as shown in FIGS. 2, 3, and 4, for example. .

すなわち、第2図中の1′は台錐形の底面に複数の噴射
口2′・・・・・・2′を閉口し、かつ側壁に加熱圧縮
ガスを導入する導入筒10が連結された分配環(加圧熱
気流供給部材)である。
That is, 1' in Fig. 2 has a frustum-shaped bottom surface with a plurality of injection ports 2'...2' closed, and an introduction tube 10 connected to the side wall for introducing heated compressed gas. This is a distribution ring (pressurized hot air flow supply member).

そして、この分配環1′の空洞部11の中心に、円錐状
の先端部12に複数のノズル口13・・・・・・13を
開口したノズル5′(分散気流供給部材)を置き、該分
配環1′の噴射口2′・・・・・・2′から噴射される
放射状の加圧熱気流8′・・・・・・8′に該ノズル5
′のノズルロー3・・・・・・13からの熱可塑性粒子
分散気流9′・・・・・・9′が一定の角度で吹込まれ
るように挿層せしめて、球型装置を構成している。また
、第3図中の1″は下端側面に複数の噴射口2″・・・
・・・2″を互いに一定間隔あげて関口した有底円筒状
の供給管(加圧熱気流供給部村)を置き、この供給管r
の外周図に、下端周縁にスリット14を開口し、かつ側
壁に熱可塑性粒子を含有する圧縮ガスを導入する導入筒
10′が連結された中空逆合錐形状の環体5^(分散気
流供給部材)を該供給管1″に対して同心円状に配設せ
しめて球型化装置を構成している。
A nozzle 5' (distributed airflow supply member) having a conical tip 12 with a plurality of nozzle ports 13 is placed in the center of the cavity 11 of the distribution ring 1'. The nozzle 5 is connected to the radial pressurized hot air stream 8'...8' injected from the injection port 2'...2' of the distribution ring 1'.
The thermoplastic particle dispersion airflow 9'...9' from the nozzle row 3...13 of There is. In addition, 1" in Fig. 3 indicates a plurality of injection ports 2" on the lower end side surface.
...Place a bottomed cylindrical supply pipe (pressurized hot air flow supply section village) with 2" ends raised at a certain distance from each other, and connect this supply pipe r
In the outer circumferential view, a hollow inverted pyramid-shaped ring body 5^ (distributed air flow supply A spheroidizing device is constructed by arranging the members) concentrically with respect to the supply pipe 1''.

このような構成によれば、供給管rの噴射口2″……2
″から噴出された放射状の加圧熱気流8″……8rに環
体5″のスリット14より膜状の熱可塑性粒子分散気流
9″を吹込むことができるため極めて大量の球型化粒子
を短時間で得ることができる。さらに、第4図中の1…
は先端関口部に所望間隙をあげて板15を配置した供孫
舎管(加圧熱気流供給部材)である。
According to such a configuration, the injection port 2'' of the supply pipe r...2
Since the film-like thermoplastic particle dispersion airflow 9'' can be blown into the radial pressurized hot airflow 8'' ... 8r ejected from the annular body 5'' through the slit 14 of the annular body 5'', an extremely large amount of spheroidized particles can be can be obtained in a short time. Furthermore, 1 in Figure 4...
1 is a pressurized hot air flow supplying member in which a plate 15 is arranged at the tip end with a desired gap.

そして、この供給管1…の外周函に下端周縁にスリット
14′を開□しかつ側壁に熱可塑性粒子を含有する圧縮
ガスを導入する導入筒10″が連結された環体5…(分
散気流供給部材)を該供給管1′′′に対して同D円状
に配設せしめて球型化装置を構成している。こような構
成によれば、供給管1…に導入された加熱圧縮ガスは板
15に衝突し、供鎌倉管1…先端関口部と板15との間
の間隙から放射膜状の加圧熱気流8肌を噴出でき、しか
も環体5川のスリット14′より膜状の熱可塑性粒子分
散気流9…を前記放射膜状の加圧熱気流8…に吹込むこ
とができるため、前述した第3図の装置よりさらに大量
の球型化粒子を著しく短時間で得ることができる。以上
詳述した如く、本発明によれば粒子同志の融着による団
塊化、装置の各部材壁への付着などのトラブルを招くこ
となく、球型化度が著しく高い均質な球型化粒子を大量
かつ短時間に得ることができ、ししも従来の湿式法、乾
式法に比して熱効率の向上化、及び装置自体の4・型、
軽量化、操業の簡素化を図ることができる等顕著な効果
を有するものである。
Then, an annular body 5 (dispersed air flow The spheroidizing device is constructed by arranging the supply members) in the same D-circular shape with respect to the supply pipes 1'''. With such a configuration, the heating introduced into the supply pipes 1'... The compressed gas collides with the plate 15, and a radial film-like pressurized hot air flow 8 can be ejected from the gap between the tip entrance and the plate 15, and furthermore, from the slit 14' in the annular body 5. Since the film-like thermoplastic particle dispersion airflow 9 can be blown into the radial film-like pressurized hot airflow 8, a larger amount of spheroidized particles can be produced in a significantly shorter time than the device shown in FIG. 3 described above. As detailed above, according to the present invention, it is possible to obtain homogeneous particles with a significantly high degree of sphericity without causing problems such as agglomeration due to fusion of particles or adhesion to the walls of each member of the device. It is possible to obtain spherical particles in large quantities in a short time, and it also has improved thermal efficiency compared to the conventional wet method and dry method, and the 4-shaped device itself.
It has remarkable effects such as being able to reduce weight and simplify operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いられる球型化装置の概
略図、第2図は本発明の他の実施例に用いられる球型化
装置の断面図、第3図は本発明のさらに他の実施例に用
いられる球型化装置の斜視図、第4図は本発明のさらに
また他の実施例に用いられる球型化装置の断面図である
。 1,1′,lr,1…・・・・・・加圧熱気流供給部材
、5,5′,5〆,5′′′・・…・分散気流供V給部
材、8a・・・8d,8′・・・8′,8へ・・8r,
8川・・・・・・加圧熱気流、9a・・・9d,9′・
・・9′,9″,9′′′・・・・・・熱可塑性粒子分
散気流。 第1図 第2図 第3図 第4図
FIG. 1 is a schematic diagram of a spheroidization device used in one embodiment of the present invention, FIG. 2 is a sectional view of a spheroidization device used in another embodiment of the invention, and FIG. 3 is a schematic diagram of a spheroidization device used in another embodiment of the present invention. FIG. 4 is a perspective view of a spheroidization device used in yet another embodiment, and FIG. 4 is a sectional view of the spheroidization device used in yet another embodiment of the present invention. 1, 1', lr, 1...... Pressurized hot air flow supply member, 5, 5', 5〆, 5'''... Distributed air flow supply V supply member, 8a...8d , 8'...8', to 8...8r,
8 River... Pressurized hot air flow, 9a...9d, 9'.
...9', 9'', 9'''... Thermoplastic particle dispersion air flow. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 加熱気流を噴出させるための噴出口を有する加熱気
流供給管と、この供給管の噴出口に交叉するように噴出
ノズルを形成した分散気流供給管とを具備し、上記加熱
気流供給管から噴出された加熱気流供給管から噴出され
た熱可塑性粒子を衝突混合せしめて球型化するにあたり
、加熱空気を噴出するノズルの軸線と供給管の軸線の交
叉する角度を30°乃至60°となるように配設し、し
かも上記加熱気流の温度を上記熱可塑性粒子の軟化点よ
り100℃以上高い温度に設定すると共に、分散気流中
の熱可塑性粒子濃度を100〜1000g/m^3の範
囲にすることを特徴とする熱可塑性粒子の球型化方法。 2 加圧熱気流供給管として加圧熱気流を放射状に噴出
させるものを用い、かつ分散気流供給管として前記放射
状に噴出された加圧熱気流に熱可塑性粒子の分散気流を
噴出させるものを用いることを特徴とする特許請求の範
囲第1項記載の熱可塑性粒子の球型化方法。
[Scope of Claims] 1. A heated air flow supply pipe having a jet nozzle for ejecting a heated air flow, and a distributed air flow supply pipe having a jet nozzle formed to intersect with the jet nozzle of the supply pipe, When colliding and mixing the thermoplastic particles ejected from the heated air supply pipe to form a sphere, the angle at which the axis of the nozzle that ejects heated air intersects with the axis of the supply pipe is set at 30°. In addition, the temperature of the heated air stream is set to a temperature higher than the softening point of the thermoplastic particles by 100°C or more, and the concentration of the thermoplastic particles in the dispersed air stream is set to 100 to 1000 g/m. A method for spheroidizing thermoplastic particles, characterized by forming the particles into spheres in the range of ^3. 2. As the pressurized hot air flow supply pipe, a pipe that ejects a pressurized hot air flow radially is used, and as the dispersion air flow supply pipe, a pipe that ejects a dispersed air flow of thermoplastic particles into the pressurized hot air flow that is ejected radially is used. A method for spheroidizing thermoplastic particles according to claim 1, characterized in that:
JP58090488A 1983-05-23 1983-05-23 Method for spheroidizing thermoplastic particles Expired JPS6031856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58090488A JPS6031856B2 (en) 1983-05-23 1983-05-23 Method for spheroidizing thermoplastic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58090488A JPS6031856B2 (en) 1983-05-23 1983-05-23 Method for spheroidizing thermoplastic particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5583977A Division JPS53140357A (en) 1977-05-04 1977-05-14 Sphering device of thermoplastic particles

Publications (2)

Publication Number Publication Date
JPS5911331A JPS5911331A (en) 1984-01-20
JPS6031856B2 true JPS6031856B2 (en) 1985-07-24

Family

ID=13999925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58090488A Expired JPS6031856B2 (en) 1983-05-23 1983-05-23 Method for spheroidizing thermoplastic particles

Country Status (1)

Country Link
JP (1) JPS6031856B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640947B2 (en) * 1985-03-19 1994-06-01 第一工業製薬株式会社 Method for producing low-moisture, high-concentration anionic surfactant
JP5181611B2 (en) * 2006-11-10 2013-04-10 株式会社リコー Resin particle manufacturing apparatus and resin particle manufacturing method
JP5845094B2 (en) * 2012-01-13 2016-01-20 恵和株式会社 Method for producing beads for light diffusion sheet
KR102382178B1 (en) * 2017-03-31 2022-04-01 세키스이가세이힝코교가부시키가이샤 Spherical polyester resin particles and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5911331A (en) 1984-01-20

Similar Documents

Publication Publication Date Title
US4221554A (en) Method and apparatus for forming spherical particles of thermoplastic material
US5632100A (en) Process and a spray drying apparatus for producing an agglomerated powder
US5227017A (en) Spray drying apparatus equipped with a spray nozzle unit
US3009826A (en) Process of forming a dispersion of aerosol particles and process for coating solid particles with said dispersion
JPS6257601A (en) Method and apparatus for drying liquid stock material
US4619843A (en) Process for the preparation of granules
US7237679B1 (en) Process for sizing particles and producing particles separated into size distributions
PT80479B (en) PROPER METHOD AND APPARATUS FOR THE COATING OF PARTICLES OR LIQUID GOTICLES
JP2000044371A (en) Granulation of mixed fertilizers
CA1205978A (en) Method and apparatus for pelletizing sulphur
JP2019504759A (en) Fluidized bed apparatus and method used for coating or granulating particles
US5435945A (en) Method and apparatus for generating sulphur seed particles for sulphur granule production
US3856269A (en) Mixing apparatus
JPH0440169B2 (en)
JPS6031856B2 (en) Method for spheroidizing thermoplastic particles
CN206897343U (en) A kind of low tower spray-cooling granulating device
JPS59127662A (en) Method and apparatus for treating powder or particles
Somerville et al. Microencapsulation using physical methods
CA1045769A (en) Prilling method and apparatus
JPS5941844B2 (en) Method for spheroidizing thermoplastic particles
JPS59125742A (en) Heat treating equipment of powder or granular
JP3100257B2 (en) Granulation apparatus and granulation system provided with the same
JP3921813B2 (en) Squeezing disk for granule coating apparatus, granule coating apparatus having the disc, and granule coating method
JPH0352858B2 (en)
RU2134965C1 (en) Granulated trichlorfon production method