JPS603165A - Light-receiving element - Google Patents

Light-receiving element

Info

Publication number
JPS603165A
JPS603165A JP58111246A JP11124683A JPS603165A JP S603165 A JPS603165 A JP S603165A JP 58111246 A JP58111246 A JP 58111246A JP 11124683 A JP11124683 A JP 11124683A JP S603165 A JPS603165 A JP S603165A
Authority
JP
Japan
Prior art keywords
light
layer
receiving element
photoconductor
xte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58111246A
Other languages
Japanese (ja)
Inventor
Etsuya Takeda
悦矢 武田
Yoshitaka Aoki
青木 芳孝
Kazumi Sadamatsu
和美 貞松
Shinji Fujiwara
藤原 愼司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58111246A priority Critical patent/JPS603165A/en
Publication of JPS603165A publication Critical patent/JPS603165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To give only a narrow wavelength region sensitivity by manufacturing a photoconductor by (CdxZn1-xTe)1-y(In2Te3)y (where 0<=x<=1, 0<y<0.1) and manufacturing a filter layer CdxZn1-xTe (where 0<=x<=1) when a light-receiving element, which responds to a light source having wavelengths within a narrow range, such as a semiconductor laser or an LED or the like is obtained. CONSTITUTION:Cd0.3Zn0.7Te as an optical cut-off layer 6 is formed on a light- transmitting substrate 5, the surface thereof has a transparent electrode 4 consisting of In2O3, SnO2, etc., while keeping the temperature of the substrate 5 at 200 deg.C, and coated with a layer 7 composed of ZnSe. A photoconductor layer 8 consisting of (Cd0.3Zn0.7Te)0.95(In2Te3)0.05 is deposited on the layer 7, and the whole is thermally treated at 500-600 deg.C for 3-60min in an inert gas or vacuum. The temperature is dropped to a low temperature of 270 deg.C and the whole is thermally treated for approximately 2hr in the same atmosphere, and an electrode 9 in Mo is evaporated on the layer 8 by using electron beams.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体レーザやLEDのように狭い範囲の波
長をもつ光源に応答する受光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a light receiving element that responds to a light source having a narrow range of wavelengths, such as a semiconductor laser or an LED.

従来例の構成と問題点 LED−jたは半導体レーザ等の比較的狭い波長領域ま
たは単一波長の光源を用いて、その光を受光素子で検出
するような装置のスイッチの応用が広く用いられている
。これらのLEDや半導体レーザ等の赤から近赤外光領
域に感度のある受光素子としては、Si フォトダイオ
ードが用いられている。しかし、Siフォトダイオード
は、可視光から近赤外光重での広い波長領域で感度をも
つ。このため、室内の照明等の光によって誤動作するこ
とがある。この誤動作防止の為、バンドパスフィルタを
外付してLEDまたは半導体レーザの波長のみを通過さ
せているのが現状である。したがって、従来の受光素子
は、このように81単結晶フオトダイオードの使用及び
外付はフィルタの使用により、高価となっていた。
Configuration and Problems of Conventional Examples It is widely used as a switch for devices that use a light source with a relatively narrow wavelength range or a single wavelength, such as an LED or semiconductor laser, and detect the light with a light receiving element. ing. Si photodiodes are used as light-receiving elements sensitive in the red to near-infrared light region of these LEDs, semiconductor lasers, and the like. However, Si photodiodes are sensitive in a wide wavelength range from visible light to near-infrared light. Therefore, it may malfunction due to light such as indoor lighting. In order to prevent this malfunction, currently a bandpass filter is attached externally to allow only the wavelength of the LED or semiconductor laser to pass through. Therefore, the conventional light receiving element is expensive due to the use of the 81 single crystal photodiode and the use of an external filter.

発明の目的 本発明の目的は、光導電体とフィルタ層を同一装置で形
成できる狭い波長領域にのみ高感度な受光素子を提供す
ることにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a light-receiving element that is highly sensitive only in a narrow wavelength range, in which a photoconductor and a filter layer can be formed in the same device.

発明の構成 本発明は、光導電体を(CdxZn、 、−xTe)、
 。
Structure of the Invention The present invention provides a photoconductor (CdxZn, -xTe),
.

(ln2Te3)、(04x≦1.0<’y<01 )
 とし、フィルタ層を GdxZn、−xTe (0イ
x41)として、主として光導電体の不純物による光導
電効果のおこる狭い波長領域にのみ感度をもたせている
。フィルタ層はCdxZn1−xTe と限定する必要
はなく、同等の透過特性をもつものであっても良い。
(ln2Te3), (04x≦1.0<'y<01)
The filter layer is made of GdxZn, -xTe (0 x 41) to provide sensitivity only in a narrow wavelength range where the photoconductive effect mainly occurs due to impurities in the photoconductor. The filter layer does not need to be limited to CdxZn1-xTe, and may have similar transmission characteristics.

実施例の説明 以下に本発明の実施例を図面を用いて説明する。Description of examples Embodiments of the present invention will be described below with reference to the drawings.

(GtflxZn、 −xTe ) 、y (工n2T
e3)y は特開昭52−46285号公報で示された
ごとく、ある熱処理を加えると母体のCdxZn1−x
Te 自身の光導電に加えて長波長側に感度がでる。
(GtflxZn, -xTe), y (ENGn2T
e3) y is the parent CdxZn1-x when a certain heat treatment is applied, as shown in JP-A No. 52-46285.
In addition to its own photoconductivity, Te is sensitive to longer wavelengths.

第1図にZn”、e5 (cd[1,32n0.7Te
)0.95 (In2 Te5)0.05の例を示す、
曲線aが通常の熱処理をした場合の分光感度、曲線すが
再度低温熱処理したときの分光感度である。したがって
第2図に示すようなCd、3Zno、、 ’re、、と
同等の透過特性曲線Cをもつ材料を光の入射側に設ける
と、第3図の曲線dのように近赤外光にのみ感度もつ受
光素子となる。具体的な構成としては、第4図Aに示す
ように(Cdo、5”0.7Te)0.95(In2T
e3 )0.05の低温熱処理によりCdo、3Zlo
、 Te自身の禁止帯幅より長波長寸で増感した光導電
体膜1および、短波長の不要な光を遮断するフィルタの
役割をもつ物質層2、透光性7[極3、裏面電極4とか
らなる。透光性電極3の方から光が入射するようにする
のはもちろんである。
Figure 1 shows Zn'', e5 (cd[1,32n0.7Te
)0.95 Showing an example of (In2 Te5)0.05,
Curve a is the spectral sensitivity when normal heat treatment is performed, and curve a is the spectral sensitivity when low temperature heat treatment is performed again. Therefore, if a material with a transmission characteristic curve C equivalent to Cd, 3Zno, 're, as shown in Figure 2 is provided on the light incident side, near-infrared light will be transmitted as shown by curve d in Figure 3. It becomes a light-receiving element with only sensitivity. As shown in FIG. 4A, the specific configuration is (Cdo, 5"0.7Te) 0.95(In2T
e3) Cdo, 3Zlo by low temperature heat treatment at 0.05
, a photoconductor film 1 sensitized at wavelengths longer than the forbidden band width of Te itself, a material layer 2 having the role of a filter for blocking unnecessary light of short wavelengths, and a light transmitting property 7 [pole 3, back electrode]. It consists of 4. Of course, the light should be made to enter from the transparent electrode 3.

フィルタの役割をする物質層2は光導電体膜1の母体材
料Cdo、5zno、7Teど同じ組成のX−Q、3で
ある必要は必ずしもない。
The material layer 2 serving as a filter does not necessarily have to be X-Q, 3 having the same composition as the base material Cdo, 5zno, 7Te, etc. of the photoconductor film 1.

このフィルタ層2の上に直接光導電体膜1(Cdo、3
zno、、’re) 0.95 (In2 Te5 )
0.05 を形成する場合、光導電体膜1の母体のCd
o、、 zn、5’reをフィルタ層2として用いると
、光導電体の膜質は良く光導電特性、例えば応答速度は
改善される。しかし、狭い波長領域に感度をもつために
は、フィルタ層2自体は感度をもたないように光導電体
に対して低抵抗にし、電界は光導電体膜1の方にもたせ
るようにしなければならない。この制約を除くためには
、第4図BK示すように、フィルタ層2の次に透光性の
電析層3をフィルタ層2と入れかえた構成にすると良い
。このような場合、フィルタ層5と透光性電極3とは必
ずしも接触していなくても良く、中間に透光性の層が入
−)でもかまわない。
A photoconductor film 1 (Cdo, 3
zno,,'re) 0.95 (In2 Te5)
0.05, the Cd of the matrix of the photoconductor film 1
When o, zn, 5're is used as the filter layer 2, the film quality of the photoconductor is good and the photoconductive properties, such as response speed, are improved. However, in order to have sensitivity in a narrow wavelength range, the filter layer 2 itself must have a low resistance to the photoconductor so that it has no sensitivity, and the electric field must be applied to the photoconductor film 1. No. In order to eliminate this restriction, as shown in FIG. 4BK, it is preferable to adopt a structure in which a transparent electrodeposition layer 3 is replaced with the filter layer 2 next to the filter layer 2. In such a case, the filter layer 5 and the transparent electrode 3 do not necessarily need to be in contact with each other, and a transparent layer may be inserted between them.

光導電体(CdxZn1−xTe)1−y(工n2Te
5)yの組成は、y=oでは長波長の増感効果がなく、
y≧0.1では暗電流が大きく、受光素子として通さな
いのでO< y< O−1が適している。
Photoconductor (CdxZn1-xTe)1-y(Engin2Te
5) The composition of y has no long wavelength sensitizing effect when y=o,
When y≧0.1, the dark current is large and the light does not pass through as a light receiving element, so O<y<O−1 is suitable.

以下具体的な実施例で説明する。This will be explained below using specific examples.

実施例1 第6図に示すように、工n203,5rI02 等の、
透明電極4を有する光透過性基板5上にCdo3Zno
7Teを基板11i1A度200 ”Cに保ちながら4
μm形成し、光遮断層6を形成する。ついでZn5eを
0・1μm形成し、第2層7を形成する。さらに第27
inT上に(cdO,3znO07To)0.95 (
In2Te5 )0.05からなる光導電体膜8を3〜
4μm形成する。この蒸着膜を600〜600″C53
〜60分間不活性ガス捷たは真空中で第1回の熱処理を
行なう。その後、第1回1月の熱処理より低い温度、た
とえば270“Cを2時間真空中1だは不活性ガス中で
熱処理を行なう。そO の後、電子ビーム蒸着によりへを10oO入形成して電
極9を得、受光素子とする。このときの分光感度は第3
図の曲線dの通りである。
Example 1 As shown in Fig. 6, engineering n203,5rI02, etc.
Cdo3Zno on the light-transmissive substrate 5 having the transparent electrode 4
7Te to the substrate 11i1A while keeping it at 200"C
μm to form a light blocking layer 6. Next, Zn5e is formed to a thickness of 0.1 μm to form a second layer 7. Furthermore, the 27th
(cdO,3znO07To)0.95 (
The photoconductor film 8 made of In2Te5)0.05 is
Form 4 μm. This vapor-deposited film is 600~600″C53
The first heat treatment is performed in an inert gas atmosphere or vacuum for ~60 minutes. Thereafter, a heat treatment is performed at a temperature lower than that of the first heat treatment in January, for example, 270"C, for 2 hours in a vacuum or in an inert gas. After that, a 1000O2 film is formed by electron beam evaporation. The electrode 9 is obtained and used as a light receiving element.The spectral sensitivity at this time is the third
This is shown by curve d in the figure.

実施例2 第6図に示すように、CdSe単結晶を研摩及びエツチ
ングし、基板5とする。このGdSeは可視光を吸収す
る。この基板らを260°Cに設定し工n203を酸素
雰囲気中で反応性蒸着を行ない、工n2064を100
〇八形成する。この上に実施例1の第2層7以下同様の
工程で、光導電体膜8゜電極9を形成(〜て受光素子を
形成する。この才子ばほぼ可視光を完全に遮断し、近赤
外光にのみIN!3度のある受光素子となる。なお、感
度傷゛性に第3図の曲線Aのようになる。
Example 2 As shown in FIG. 6, a CdSe single crystal was polished and etched to form a substrate 5. This GdSe absorbs visible light. These substrates were set at 260°C, and step n203 was reactively vapor-deposited in an oxygen atmosphere, and step n2064 was deposited at 100°C.
〇8 Formed. On top of this, a photoconductor film 8° electrode 9 is formed (to form a light-receiving element) using the same steps as the second layer 7 and below in Example 1. This layer completely blocks visible light and near-infrared It is a light receiving element with IN!3 degrees only for external light.The sensitivity damage is as shown by curve A in Fig. 3.

発明の効果 本発明の受光素子は、特別に外っけのフィルタを必要と
ぜず、蒸着法によっても作成可能なので安価である。受
光する波長領域がLED、半導体レーザの波長である近
赤外領域で感度が高く、したがって他の可視光光源によ
る誤動作のおそれが少ない。このような特性をもつため
、近赤外光によるスイッチ等の幅広い応用に適する。
Effects of the Invention The light-receiving element of the present invention does not require a special external filter and can be produced by vapor deposition, so it is inexpensive. Sensitivity is high in the near-infrared wavelength region where light is received, which is the wavelength of LEDs and semiconductor lasers, so there is little risk of malfunction due to other visible light sources. Because of these characteristics, it is suitable for a wide range of applications such as switches using near-infrared light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はZn5e”dO13”nO,7Te)o、95
 (工n2Te3)0.05の分光感度を示す特性図、
第2図は光遮断フィルタの分光透過特性を示す特性図、
第3図は本発明の一実施例における受光素子の分光感度
を示す特性図、第4図A、Bは本発明の原理を示す構成
図、第6図は本発明の一実施例における受光素子の断面
図、第6図は同他の実施例を示す断面図である。 1.8・・・・・光導電体膜、2,6・・・・・・フィ
ルタ層、3.4・・・・・電極層、6・・・・基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 シ芝畏 〔八m) 第4図 1光
Figure 1 shows Zn5e"dO13"nO,7Te)o,95
A characteristic diagram showing the spectral sensitivity of (Engine2Te3)0.05,
Figure 2 is a characteristic diagram showing the spectral transmission characteristics of the light cutoff filter.
FIG. 3 is a characteristic diagram showing the spectral sensitivity of a light receiving element in an embodiment of the present invention, FIGS. 4A and B are block diagrams showing the principle of the present invention, and FIG. 6 is a characteristic diagram showing the spectral sensitivity of a light receiving element in an embodiment of the present invention. FIG. 6 is a sectional view showing another embodiment. 1.8...Photoconductor film, 2,6...Filter layer, 3.4...Electrode layer, 6...Substrate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure Shishiba (8m) Figure 4 1 light

Claims (3)

【特許請求の範囲】[Claims] (1) (Gdx zn j−z ’re ) 1−y
 (In、、 Te5) y(o、4x、41゜0<7
<0・1)からなる光導電体と、前記光導電体の光の入
射側に設けられた、(CdxZn1−xTe)(() 
4X 41 )の禁止帯幅と一致する禁止帯幅をもつ物
質からなるフィルタ層とを備えたことを特徴とする受光
素子。
(1) (Gdx zn j-z 're) 1-y
(In, Te5) y(o, 4x, 41°0<7
<0・1), and (CdxZn1-xTe)(() provided on the light incident side of the photoconductor.
4. A light-receiving element comprising: a filter layer made of a substance having a forbidden band width that coincides with a forbidden band width of 4× 41 ).
(2)光導電体とフィルタ層とが電気的に接触している
ことを特徴とする特許請求の範囲第1項記戦の受光素子
(2) The light receiving element according to claim 1, wherein the photoconductor and the filter layer are in electrical contact.
(3)光導電体のフィルタ層が設けられる面上に透光性
電極を有することを特徴とする特許請求の範囲第1項記
d戊の受光素子。
(3) The light-receiving element according to claim 1, d, characterized in that it has a light-transmitting electrode on the surface of the photoconductor on which the filter layer is provided.
JP58111246A 1983-06-20 1983-06-20 Light-receiving element Pending JPS603165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111246A JPS603165A (en) 1983-06-20 1983-06-20 Light-receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111246A JPS603165A (en) 1983-06-20 1983-06-20 Light-receiving element

Publications (1)

Publication Number Publication Date
JPS603165A true JPS603165A (en) 1985-01-09

Family

ID=14556291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111246A Pending JPS603165A (en) 1983-06-20 1983-06-20 Light-receiving element

Country Status (1)

Country Link
JP (1) JPS603165A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689650A (en) * 1985-10-03 1987-08-25 The United States Of America As Represented By The Secretary Of The Army Infrared epitaxial detector structure and method of making same
US5296384A (en) * 1992-07-21 1994-03-22 Santa Barbara Research Center Bake-stable HgCdTe photodetector and method for fabricating same
US5401986A (en) * 1992-07-21 1995-03-28 Santa Barbara Research Center Bake-stable HgCdTe photodetector with II-VI passivation layer
US5936268A (en) * 1988-03-29 1999-08-10 Raytheon Company Epitaxial passivation of group II-VI infrared photodetectors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057395A (en) * 1973-09-18 1975-05-19
JPS5125091A (en) * 1974-08-26 1976-03-01 Matsushita Electric Ind Co Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057395A (en) * 1973-09-18 1975-05-19
JPS5125091A (en) * 1974-08-26 1976-03-01 Matsushita Electric Ind Co Ltd

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689650A (en) * 1985-10-03 1987-08-25 The United States Of America As Represented By The Secretary Of The Army Infrared epitaxial detector structure and method of making same
US5936268A (en) * 1988-03-29 1999-08-10 Raytheon Company Epitaxial passivation of group II-VI infrared photodetectors
US5296384A (en) * 1992-07-21 1994-03-22 Santa Barbara Research Center Bake-stable HgCdTe photodetector and method for fabricating same
US5401986A (en) * 1992-07-21 1995-03-28 Santa Barbara Research Center Bake-stable HgCdTe photodetector with II-VI passivation layer

Similar Documents

Publication Publication Date Title
JP2737041B2 (en) Photocathode, method of manufacturing the same, and image amplifier tube for night vision system using the same
US4132999A (en) Semiconductor devices
EP1583156B1 (en) Ultraviolet sensor and method for manufacturing the same
US6111254A (en) Infrared radiation detector
US5262633A (en) Wideband anti-reflection coating for indium antimonide photodetector device and method of forming the same
CN110146948B (en) Silicon substrate long-wave pass infrared filter and preparation method thereof
GB2138209A (en) Photoconducting detector in optical immersion
US3961998A (en) Vacuum deposition method for fabricating an epitaxial pbsnte rectifying metal semiconductor contact photodetector
Canfield et al. Silicon photodiodes with integrated thin-film filters for selective bandpasses in the extreme ultraviolet
FR2596203A1 (en) PHOTOSENSITIVE DIODE ELEMENT
JPS603165A (en) Light-receiving element
US3845494A (en) HgTe-CdTe PHOTOVOLTAIC DETECTORS
US4034396A (en) Light sensor having good sensitivity to visible light
JPH02504574A (en) Cerium oxide fluoride antireflection coating for Group 2-6 photodetectors and method for forming the same
US6130431A (en) Monolithic pattern-sensitive detector
US4307319A (en) Semiconductor layer of oxygen depletion type cerium oxide or lead oxide
US6198100B1 (en) Method for fabricating an infrared radiation detector
JPH0554211B2 (en)
US4420684A (en) Large-surface fast photodetector sensitive in the 0.8-1.1 μm range
JPS6047752B2 (en) friction tube target
US6693311B2 (en) Wavelength selective detector
KR102584653B1 (en) Photodiode using 2D graphene layer
US5444577A (en) Impurity band optical filter
JPS5826832B2 (en) Method for manufacturing photoconductive targets
KR0161370B1 (en) Liquid crystal light valve