JPS6030771B2 - Method for manufacturing polyester fiber nonwoven fabric - Google Patents

Method for manufacturing polyester fiber nonwoven fabric

Info

Publication number
JPS6030771B2
JPS6030771B2 JP51004575A JP457576A JPS6030771B2 JP S6030771 B2 JPS6030771 B2 JP S6030771B2 JP 51004575 A JP51004575 A JP 51004575A JP 457576 A JP457576 A JP 457576A JP S6030771 B2 JPS6030771 B2 JP S6030771B2
Authority
JP
Japan
Prior art keywords
intrinsic viscosity
component
fibers
nonwoven fabric
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51004575A
Other languages
Japanese (ja)
Other versions
JPS5288678A (en
Inventor
啓文 吉川
一成 林
巌 藤本
敏之 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP51004575A priority Critical patent/JPS6030771B2/en
Publication of JPS5288678A publication Critical patent/JPS5288678A/en
Publication of JPS6030771B2 publication Critical patent/JPS6030771B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 本発明はポリエチレンテレフタレートのみよりなる未延
伸複合繊維の2成分間に融点差乃至は熱軟化温度の差を
与え、この未延伸複合繊維を用いて繊維間に雛着を生ぜ
しめ組織の強化をなさしめたポリエステル繊維不織布の
製造方法に関する。
Detailed Description of the Invention The present invention provides a difference in melting point or heat softening temperature between two components of an undrawn composite fiber made only of polyethylene terephthalate, and uses this undrawn composite fiber to create a nest between the fibers. The present invention relates to a method for producing a polyester fiber nonwoven fabric with a reinforced texture.

従来、ポリエステル繊維の表面の一部又は全部をポリエ
ステル繊維よりも低温の熱軟化性重合体で被覆した熱接
着性繊維を用い繊維間に融着を生ぜしめる不織布の製造
方法は知られている。例えば特公昭43一1776号に
はポリエチレンテレフタレ−トを芯成分とし軟化点16
0〜200℃のポリマーを鞘成分とした熱接着性複合繊
維を用い、繊維間に融着を生ぜしめた不織布を製造する
ことが記載されている。しかしながら、そこに用いられ
た如き複合繊維は紡糸後一且冷却固化して引取られた後
に施される実用に耐える繊維性能を賦与するための数倍
の延伸において変形により構成成分間に界面剥離が生じ
易いと云う欠点がある。更に、本質的にポリエステルと
別種ポリマーを使用している為に繊維性能が低下するこ
とも避けられない。本発明者らはかかる問題を解消する
べく鋭意研究の結果、ポリエチレンテレフタレートのみ
で熱接着性未延伸複合繊維からなる不織布を作り得るこ
とを見出し本発明に到達したものである。即ち本発明は
固有粘度の差△〔り〕が0.08〜0.39あるポリエ
チレンテレフタレートを用いて、固有粘度の高い方を芯
成分、低い方を鞘成分とした芯鞘型未延伸複合繊維若し
くは2種の貼合せ型未延伸複合繊維を、△〔り〕に対し
0.08≦△〔り〕<0.2のときは 1200 △〔り〕十〇.12−1000SVミ50o。
BACKGROUND ART Conventionally, a method for producing a nonwoven fabric is known in which heat-adhesive fibers in which part or all of the surface of polyester fibers is coated with a heat-softening polymer having a temperature lower than that of the polyester fibers are used to cause fusion between the fibers. For example, in Japanese Patent Publication No. 43-1776, polyethylene terephthalate is used as a core component and the softening point is 16.
It is described that a nonwoven fabric in which fusion is formed between the fibers is produced using heat-adhesive conjugate fibers containing a polymer of 0 to 200° C. as a sheath component. However, the composite fibers used therein are deformed during the several-fold stretching process, which is performed after spinning, cooling, solidifying, and pulling, to give the fiber performance that can withstand practical use. There is a drawback that it is easy to occur. Furthermore, since a polymer essentially different from polyester is used, it is inevitable that the fiber performance will deteriorate. The present inventors have conducted extensive research to solve this problem, and have discovered that it is possible to produce a nonwoven fabric made of heat-adhesive undrawn conjugate fibers using only polyethylene terephthalate, and have thus arrived at the present invention. That is, the present invention uses polyethylene terephthalate with an intrinsic viscosity difference of 0.08 to 0.39 to produce a core-sheath type undrawn composite fiber in which the higher intrinsic viscosity is the core component and the lower intrinsic viscosity is the sheath component. Or, when two types of laminated undrawn composite fibers are △[ri] and 0.08≦△[ri]<0.2, 1200 △[ri] 10. 12-1000SV Mi50o.

0.2S△〔り〕≦0.39のときは 1舵0 2750≦V≦△〔り〕十〇.12−1000の範囲に
ある縁糸速度V(凧/min)にて級糸し、得られた未
延伸複合繊維をもってウェブを作り、該ウェブ或いは糟
届した該ウェブを高固有粘度成分の融点以下、低固有粘
度成分が融着を起す温度以上に加熱して圧縮することを
特徴とするポリエステル繊維不織布の製造方法にある。
When 0.2S△[ri]≦0.39, 1 rudder is 0. 2750≦V≦△[ri]10. The yarn is graded at an edge yarn speed V (kite/min) in the range of 12-1000, and the obtained undrawn composite fibers are used to make a web, and the web or the finished web is heated to a temperature below the melting point of the high intrinsic viscosity component. , a method for producing a polyester fiber nonwoven fabric characterized by heating and compressing the low intrinsic viscosity component to a temperature higher than the temperature at which fusion occurs.

本発明におけるポリエチレンテレフタレートとは繰返し
単位の95モル%以上がエチレンテフタレートであるポ
リエステルのことであり、5モル%以下の割合で共重合
され得る第3成分が付加されたものも含まれ、その様な
第3成分としてはィソフタル酸、フタル酸、メチルテレ
フタル酸、ヘキサヒドロテレフタル酸、ナフタレンジカ
ルボン酸、ジフェニルジカルボン酸、セバチン酸、アジ
ピン酸等の二塩基酸類、ネオベンチルグリコール、トリ
メチレングリコール、ヘキサメチレングリコール、1・
4ーシクロヘキサンジメタノール、1・4−ビスヒドロ
キシベンゼン、ビスフエノールA等のグリコール類、グ
リコール類、P−オキシ安息香酸等のオキシカルボン酸
類あるいはそれらの機能的誘導体があげられる。そして
本発明におけるポリエチレンテレフタレートに重合度調
整剤、安定剤、艶消剤、着色剤等を添加することもなさ
れる。本発明はこの様なポリエチレンテレフタレートを
重合する際に重合条件等を変更することにより容易に得
られる固有粘度の異なる重合体の中から固有粘度の差△
〔り〕が0.08〜0.39の範囲にある2種の組合せ
を選び、固有粘度の高い方を芯成分、低い方を鞘成分と
した芯鞘型未延伸複合繊維若しくは両者の鮎合せ型未延
伸複合繊維を△〔り〕の値に応じた特定の範囲にある級
糸速度で紡糸することにより繊維間融着不織布の製造に
通した繊維を得ているのである。
In the present invention, polyethylene terephthalate refers to a polyester in which 95 mol% or more of the repeating units are ethylene terephthalate, and also includes polyesters to which a third component that can be copolymerized is added in a proportion of 5 mol% or less. Examples of the third component include dibasic acids such as isophthalic acid, phthalic acid, methylterephthalic acid, hexahydroterephthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, sebacic acid, adipic acid, neobentyl glycol, trimethylene glycol, Hexamethylene glycol, 1.
Examples include glycols such as 4-cyclohexanedimethanol, 1,4-bishydroxybenzene, and bisphenol A, glycols, oxycarboxylic acids such as P-oxybenzoic acid, and functional derivatives thereof. Further, a polymerization degree regulator, a stabilizer, a matting agent, a coloring agent, etc. may be added to the polyethylene terephthalate in the present invention. The present invention aims at determining the difference in intrinsic viscosity from among polymers with different intrinsic viscosities that can be easily obtained by changing the polymerization conditions etc. when polymerizing such polyethylene terephthalate.
Select a combination of two types with [ri] in the range of 0.08 to 0.39, and use a core-sheath type undrawn composite fiber with the higher intrinsic viscosity as the core component and the lower intrinsic viscosity as the sheath component, or a combination of both. By spinning the undrawn conjugate fibers at a yarn speed within a specific range depending on the value of Δ, fibers that can be used to produce interfiber-fused nonwoven fabrics are obtained.

固有粘度に差のある2種のポリエチレンテレフタレート
を複合級糸すると絞糸張力により発生するフィラメント
の酢向は紡糸時の溶融粘度の高い則ち固有粘度の高い成
分の方が大きくなり、溶融粘度の低い則ち固有粘度の低
い成分の方は小さくなる。この紡糸時に発生する2成分
の配向差は紡糸張力の大きいほど艮0ち紡糸速度が大き
いほど、大きくなる。そして低配向の成分は高配向の成
分に比し融点乃至は熱軟化温度が低くなり融着しやすい
ので、新かる未延伸複合繊維は従釆の融点の異なる別種
ポリマーを用いたと同じく低配向成分が敵着しやすい未
延伸複合繊維となる。両成分の配向差を大きくするには
両成分の固有粘度の差△〔り〕を大きくすることが必要
である。しかしながら△〔り〕が0.39より大となる
と低固有粘度成分の粘度が低く高固有粘度成分の粘度が
高くなり過ぎて級糸時にニーリンク、断糸等を生じ級糸
調子が不良となる。また逆に△〔り〕が0.08よりも
小さくなると級糸が支障なく行なえる抜糸速度5000
肌′min以下では最早目的を達するに十分な配向差が
得られないと云うことになる。
When two types of polyethylene terephthalate with different intrinsic viscosities are used as composite yarns, the direction of the filament caused by the drawing tension is greater for the component with a higher melt viscosity during spinning, that is, a component with a higher intrinsic viscosity. The lower the component, that is, the lower the intrinsic viscosity, the smaller the component. The difference in orientation between the two components that occurs during spinning becomes smaller as the spinning tension increases, and increases as the spinning speed increases. Since the low-orientation component has a lower melting point or thermal softening temperature than the high-orientation component and is easier to fuse, the new undrawn conjugate fiber can be created by using the low-orientation component in the same manner as using a different type of polymer with a different melting point. It becomes an undrawn composite fiber that is easily attacked by enemies. In order to increase the orientation difference between the two components, it is necessary to increase the difference Δ in the intrinsic viscosities of the two components. However, if △[ri] is larger than 0.39, the viscosity of the low intrinsic viscosity component will be low and the viscosity of the high intrinsic viscosity component will become too high, resulting in knee links, yarn breakage, etc. during grade yarn, and poor grade yarn condition. . On the other hand, if △ is smaller than 0.08, the thread removal speed is 5000, which allows thread removal without any problem.
If the distance is less than 10 min, it is no longer possible to obtain a sufficient orientation difference to achieve the objective.

そして△〔り〕が0.2より小なるときには紙糸速度V
(仇′min)を1200/(△〔り〕十0.12)‐
1000SVS5000の範囲に定め、0.2以上のと
きは2750以上(1920/(△〔り〕十0.12)
−1000)以下の範囲に定めれば両成分間に十分な配
向差を有する未延伸複合繊維が安定に紡糸し得るのであ
る。
And when △ [ri] is smaller than 0.2, the paper thread speed V
(k'min) 1200/(△[ri]10.12)-
Set in the range of 1000SVS5000, and when it is 0.2 or more, 2750 or more (1920/(△[ri]10.12)
-1000), undrawn composite fibers having a sufficient orientation difference between both components can be stably spun.

△〔り〕が0.2より小において紡糸速度が下限より遅
いと十分な配向差が得られず、5000肌′minより
大となると安定な級糸が困難となるほか鞘成分の配向も
高くなってウェブにしてからの加熱圧縮で鞘成分のみの
溶融接着を生ぜしめることが困難となり、強いて融着す
れば大きな物性低下をもたらすと云う問題を生じ、△〔
り〕が0.2以上で紙糸速度が下限より遅いと全体に酉
己向性が上がらず得られた未延伸複合繊維は強度小さく
伸度の大きいものとなって不織布に好ましくない物性の
ものとなり、紙糸速度が上限を超すと紙出調子の安定性
が失われるという問題を生ずる。本発明における未延伸
複合繊維の製造には従来公知の複合繊糸装置を使用する
ことが出来、また未延伸複合繊維の高固有粘度成分と低
固有粘度成分との複合比は重量比にして20:80〜8
0〜20、好ましくは30:70〜70:30%とされ
る。
If Δ[ri] is smaller than 0.2 and the spinning speed is slower than the lower limit, sufficient orientation difference cannot be obtained, and if it is larger than 5000 min, it becomes difficult to produce a stable yarn and the orientation of the sheath component is also high. As a result, it is difficult to melt and bond only the sheath components by heating and compressing them into a web, and if they are forced to fuse together, the physical properties will deteriorate significantly.
If the paper yarn speed is lower than the lower limit and the paper yarn speed is lower than the lower limit, the undrawn conjugate fiber will not have an increased overall tropism and the resulting undrawn composite fiber will have low strength and high elongation, which is undesirable for nonwoven fabrics. Therefore, if the paper thread speed exceeds the upper limit, a problem arises in that the stability of the paper output condition is lost. A conventionally known composite yarn apparatus can be used to produce the undrawn composite fiber in the present invention, and the composite ratio of the high intrinsic viscosity component and the low intrinsic viscosity component of the undrawn composite fiber is 20 in terms of weight ratio. :80~8
The ratio is 0 to 20%, preferably 30:70 to 70:30%.

低固有粘度成分が20%より少なくなると不織右にした
場合の繊維の接着性が劣り、80%より増すと繊維とし
て必要な力学的特性が劣る様になる。複合形態は不織布
にして繊維間融着を容易に起さしめると云う点から芯鞘
型が好ましく、更に十分開繊されて均一な、しかも高性
のある不織布を作り得ることからすると捲縮を発現する
タイプの偏○状芯鞘型が一層好ましいとされる。以上述
べた如き条件により複合紙糸された繊維は所定の引取速
度のゴヂツトロール又はネルソンロールを経て空気噴射
ノズルにより分織解緩され乍ら移動金網上に均一となる
ように吹き付けられ滞積してウヱブを形成する。
If the low intrinsic viscosity component is less than 20%, the adhesion of the fiber when made into a non-woven fabric will be poor, and if it is more than 80%, the mechanical properties necessary for the fiber will be poor. The core-sheath type is preferable because the composite form can easily cause inter-fiber fusion in a nonwoven fabric, and it is also preferable to use crimping because the fibers can be sufficiently opened to produce a uniform and high-strength nonwoven fabric. The oblate core-sheath type of the type expressed is said to be more preferable. The fibers made into composite paper yarn under the above-mentioned conditions are passed through a Gojitsu roll or a Nelson roll at a predetermined take-up speed, decomposed and loosened by an air jet nozzle, and then uniformly sprayed onto a moving wire mesh and accumulated. Form a web.

次いで得られた該ウェブを高固有粘度成分の融点以下、
低固有粘度成分が融着を起す温度に加熱して圧縮するこ
とにより繊維間が交絡点において互いに融着せしめられ
た安定した構造の不織布が製造されるのである。ここで
ウェブは上記連続繊維ウヱブに限らず、コデットロール
又はネルソンロールで引取った連続繊維をカットしてス
テープルとし、これを開繊してカードやランダムウェー
バーを通したウェブを積層したウェブでもよいし、或い
はゴデットロール又は、ネルソンロールで引取った連続
繊維サブトウを引揃えてトウとし、これを特公昭47一
9232号の方法によってウェブとしたものでもよい。
ウェブを加熱圧着する方法はカレンダー加熱等任意の公
知の方法が採用されるが、その際ェンボス加工を行なう
ことは有用である。ェンボス加工するとェンポス凹部が
集中的に圧力をうけて強固に繊維が接合されるのに対し
、凸部は繊維が嵩性を得つた状態でセットされるため、
複合繊維の持つ潜在捲縮能力が発揮されて捲縮をもつ不
織布となる。また、ェンボスの柄形状により使用目的に
従って種々の柄の不織布が得られる。以下本発明の実施
例について述べる。
Next, the obtained web is heated to a temperature below the melting point of the high intrinsic viscosity component.
By heating and compressing the low intrinsic viscosity component to a temperature that causes fusion, a nonwoven fabric with a stable structure in which the fibers are fused to each other at intertwining points is produced. Here, the web is not limited to the above-mentioned continuous fiber web, but may also be a web obtained by laminating continuous fibers taken with a codet roll or Nelson roll, cut into staples, spread, and passed through a card or random web. Alternatively, continuous fiber sub-tows drawn with a godet roll or a Nelson roll may be aligned to form a tow, and this may be made into a web by the method disclosed in Japanese Patent Publication No. 47-19232.
Any known method such as calender heating may be used to heat and press the web, but it is useful to perform embossing at this time. When embossing, the concave part of the embossing receives intensive pressure and the fibers are firmly bonded, whereas in the convex part, the fiber is set in a state where it has gained bulk.
The latent crimp ability of the composite fibers is demonstrated, resulting in a nonwoven fabric with crimp. Furthermore, depending on the shape of the embossing pattern, nonwoven fabrics with various patterns can be obtained depending on the purpose of use. Examples of the present invention will be described below.

実施例 1 表1に示す固有粘度の2種のポリエチレンテレフタレー
トを高固有粘度成分を芯に低固有粘度成分を鞘として孔
数48、口金温度28yoで複合比1:1で偏心芯鞘型
に複合紡糸し、表1に示す紙糸速度で回転している一対
のネルソンロールに巻きつけた後空気噴射ノズルで引取
り目付250夕/あのランダムウェブを形成させた。
Example 1 Two types of polyethylene terephthalate having the intrinsic viscosities shown in Table 1 were composited into an eccentric core-sheath type with a high intrinsic viscosity component as a core and a low intrinsic viscosity component as a sheath at a composite ratio of 1:1 with 48 holes and a mouth temperature of 28yo. After spinning and winding around a pair of Nelson rolls rotating at the paper yarn speed shown in Table 1, a random web with a fabric weight of 250 mm was formed using an air injection nozzle.

得られた糸条の性能を表1に示す。次にこのランダムウ
ェプを同じく表1に示す表面温度、圧力10k9/めで
深さ1肋の全面点ェンボスを行った。
Table 1 shows the performance of the obtained yarn. Next, this random web was subjected to point embossing on the entire surface to a depth of one rib at the surface temperature and pressure of 10 k9/m as shown in Table 1.

得られた不織布の中、表1で良好と記したものは、集中
的に圧力を受けたェンボス凹部において繊維が強固に接
着され凸部は凹部に比し繊維が自由にセットされて捲縮
が発現し、強くて柔軟な優れた不織布であった。比較例
に相当する実験No.6のウェブについては別に170
〜180℃の表面温度のェンボス加工を行ったがその場
合は接着性不良であった。表1 (註)実験修2,5,6,8は比較例に相当 る。
Among the obtained nonwoven fabrics, those marked as good in Table 1 have fibers that are firmly bonded in the embossed concave areas that are subjected to intensive pressure, and fibers are set more freely in the convex areas than in the concave areas and are not crimped. The result was an excellent nonwoven fabric that was strong and flexible. Experiment No. corresponding to a comparative example. Regarding the web of 6, there is a separate 170
Although embossing was performed at a surface temperature of ~180°C, adhesion was poor in that case. Table 1 (Note) Experimental modifications 2, 5, 6, and 8 correspond to comparative examples.

実施例 2表2に示す固有粘度の2種のポリエチレンテ
レフタレートを孔数48、口金温度283qo、複合比
1:1で貼合せ型こ複合級糸し、表2に示す紙糸速度で
回転している一対のネルソンロールに巻きつけた後空気
噴射ノズルで引取り目付300夕/地のランダムウェブ
を形成させた。
Example 2 Two types of polyethylene terephthalate having the intrinsic viscosities shown in Table 2 were laminated into a composite yarn with a number of holes of 48, a die temperature of 283 qo, and a composite ratio of 1:1, and the yarn was rotated at the paper yarn speed shown in Table 2. After winding it around a pair of Nelson rolls, a random web with a take-up weight of 300 mm was formed using an air injection nozzle.

得られた繊維の性能を同じく表2に示す。次にこのラン
ダムウェブを同じ表2に示す表面温度、圧力12k9/
めで深さ1.2肌の全面点ェンボスを行った。
The performance of the obtained fibers is also shown in Table 2. Next, this random web was subjected to surface temperature and pressure of 12k9/1 as shown in Table 2.
Embossing was performed on the entire surface to a depth of 1.2 skin.

得られた不織布はェンボス凹部が集中的に圧力を受け繊
維が強固に接着され凸部は凹部に比し繊維が自由にセッ
トされて捲縮も発現した良好な不織布であった。表2
The obtained nonwoven fabric was a good nonwoven fabric in which the embossed concave portions were subjected to intensive pressure and the fibers were firmly bonded, and the convex portions had fibers set more freely than the concave portions and crimped. Table 2

Claims (1)

【特許請求の範囲】 1 固有粘度の差△〔η〕が0.08〜0.39あるポ
リエチレンテレフタレートを用いて、固有粘度の高い方
を芯成分、低い方を鞘成分とした芯鞘型未延伸複合繊維
若しくは2種の貼り合せ型未延伸複合繊維を、△〔η〕
に対し0.08≦△〔η〕<0.2のときは (1200)/(△〔η〕+0.12)−1000≦V
≦50000.2≦△〔η〕≦0.39のときは275
0≦V≦(1920)/(△〔η〕+0.12)−10
00の範囲にある紡糸速度V(m/min)にて紡糸し
、得られた未延伸複合繊維をもつてウエブを作り、該ウ
エブ或いは積層した該ウエブを高固有粘度成分の融点以
下、低固有粘度成分が融着を起す温度以上で加熱して圧
縮することを特徴とするポリエステル繊維不織布の製造
方法。
[Claims] 1. A core-sheath type non-woven fabric using polyethylene terephthalate with an intrinsic viscosity difference Δ[η] of 0.08 to 0.39, with the higher intrinsic viscosity as the core component and the lower intrinsic viscosity as the sheath component. Stretched composite fiber or two types of bonded unstretched composite fiber, △[η]
When 0.08≦△[η]<0.2, (1200)/(△[η]+0.12)-1000≦V
275 when ≦50000.2≦△[η]≦0.39
0≦V≦(1920)/(△[η]+0.12)-10
A web is made from the obtained undrawn conjugate fibers by spinning at a spinning speed V (m/min) in the range of A method for producing a polyester fiber nonwoven fabric, which comprises heating and compressing at a temperature higher than the temperature at which viscosity components fuse.
JP51004575A 1976-01-20 1976-01-20 Method for manufacturing polyester fiber nonwoven fabric Expired JPS6030771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51004575A JPS6030771B2 (en) 1976-01-20 1976-01-20 Method for manufacturing polyester fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51004575A JPS6030771B2 (en) 1976-01-20 1976-01-20 Method for manufacturing polyester fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JPS5288678A JPS5288678A (en) 1977-07-25
JPS6030771B2 true JPS6030771B2 (en) 1985-07-18

Family

ID=11587822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51004575A Expired JPS6030771B2 (en) 1976-01-20 1976-01-20 Method for manufacturing polyester fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JPS6030771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167418A (en) * 1981-04-03 1982-10-15 Kuraray Co Ltd Heat bonding composite spun fiber
IN167096B (en) * 1985-04-04 1990-09-01 Akzo Nv

Also Published As

Publication number Publication date
JPS5288678A (en) 1977-07-25

Similar Documents

Publication Publication Date Title
JP2007182646A (en) Flame-retardant ultrafine polyester fiber, method for producing the same and high-density woven fabric
JPH02221414A (en) Conjugated fiber yarn
JPH0749619B2 (en) Entangled nonwoven fabric and method for producing the same
EP0042150B1 (en) Bulky non-woven fabric of polybutylene terephthalate continuous filaments
JP4835181B2 (en) Leather-like product, molded body thereof, and method for producing leather-like product
JPS6030771B2 (en) Method for manufacturing polyester fiber nonwoven fabric
JPH02182963A (en) Heat-shrinkable filament nonwoven sheet and production thereof
JPH01266220A (en) Polyester different denier, different crimping conjugated filament yarn
JP2002054036A (en) Crimped polyester fiber and method for producing the same
JP3235908B2 (en) Composite fibers and non-woven fabrics made therefrom
JP3879289B2 (en) Method for producing polyester short fiber for cushion material and method for producing cushion material
JPS6316504B2 (en)
JP4140996B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JP2007247107A (en) Bulky polyester conjugate fiber
JPH11158724A (en) Polyester hollow fiber
JPH02221415A (en) Conjugated fiber yarn
JPH0357973B2 (en)
JPH03185102A (en) Conjugate fiber for artificial hair and production thereof
JPH05186946A (en) Production of nonwoven fabric from ultra-fine fiber
JP2731339B2 (en) Fusion-bonded yarn and method for producing the same
JP2023140088A (en) Spun-bonded nonwoven fabric
JP2000256954A (en) Stretchable non-woven fabric
WO2022065191A1 (en) Long-fiber woven fabric and method for producing long-fiber woven fabric
JP2958297B2 (en) Manufacturing method of textile products
JP2023136326A (en) Spun-bonded nonwoven fabric and interfacing fusible made thereof