JPS6030553A - Continuous casting method of ingot - Google Patents

Continuous casting method of ingot

Info

Publication number
JPS6030553A
JPS6030553A JP13090383A JP13090383A JPS6030553A JP S6030553 A JPS6030553 A JP S6030553A JP 13090383 A JP13090383 A JP 13090383A JP 13090383 A JP13090383 A JP 13090383A JP S6030553 A JPS6030553 A JP S6030553A
Authority
JP
Japan
Prior art keywords
ingot
mold
molten metal
pouring
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13090383A
Other languages
Japanese (ja)
Other versions
JPH0323257B2 (en
Inventor
Susumu Nawata
名和田 進
Masaharu Sugiyama
杉山 雅春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP13090383A priority Critical patent/JPS6030553A/en
Publication of JPS6030553A publication Critical patent/JPS6030553A/en
Publication of JPH0323257B2 publication Critical patent/JPH0323257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To cast continuously a casting ingot having the uniform and dense structure form the surface layer to the central part by pouring directly the molten metal to a water-cooled casting mold into the central part of a casting ingot at a prescribed ratio and casting the ingot by making combination use of pouring by distributively pouring nozzles. CONSTITUTION:A nozzle 2 for direct pouring is disposed to a tundish 1 by directing the nozzle toward the central part of a casting ingot 8 formed in a casting mold 5 so as to be inserted deep under the molten metal surface. Distributive nozzles 3, 3 which pour molten metal into the mold 5 via floats 4 are disposed symmetrically on both sides of the nozzle 2 to pour simultaneously the molten metal. The pouring rate by the nozzle 2 is regulated to 35-70%, more particularly 40-60% of the pouring rate into the mold 5 in the case of pouring a molten metal 7 into the mold by the above-mentioned constitution. The casting ingot 8 formed to have the crystal structure uniform over the entire part is thus cast.

Description

【発明の詳細な説明】 ミニウム等の鋳塊を連続的に鋳造するに当シ、その組織
を改善し、該鋳塊によって得られる圧延材の機械的特性
を良好ならしめることのできる方法を提供しようとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION Provided is a method for continuously casting an ingot such as minium, improving its structure and improving the mechanical properties of a rolled material obtained from the ingot. This is what I am trying to do.

アルミニウム等の鋳塊を連続鋳造するには一般的に上下
方向において開放された枠形の金属製水冷鋳型を用い、
該鋳型下部に受台を装入した条件下で該受台上に金属溶
湯を連続的に供給し、鋳型内に凝固した鋳塊を前記受台
を下降させて鋳型下部から引出し、このようにして引出
された鋳塊に冷却水を施して凝固させる方法が採られて
いる。ところがこのような連続的鋳造法(新制半連続鋳
造を含む)においては鋳塊は外周部から順次に冷却され
中心部に向うほど冷却速贋が遅くなるため中心部では結
晶粒度やデンドライトアームスベーシング(以下DAS
という)などの組織が粗くなる。又同じ理由で中高力合
金角型鋳塊の中心部には多数のシュリンケージポロシテ
ィが発生する。斯様な関係は鋳塊の厚さが増すほど顕著
であって、上記のように外皮部と中心部と組織を異にし
た鋳塊を用いて製造筋れた圧延板などに2ける中心部の
機械的性質は表皮部に比較して劣ることになシ、何れに
しても所期するような特性を得難いと七となる。
To continuously cast ingots such as aluminum, generally a frame-shaped metal water-cooled mold that is open in the vertical direction is used.
Under the condition that a pedestal is inserted into the lower part of the mold, molten metal is continuously supplied onto the pedestal, and the ingot solidified in the mold is pulled out from the lower part of the mold by lowering the pedestal. The method used is to apply cooling water to the ingot that has been drawn out and solidify it. However, in such continuous casting methods (including the new semi-continuous casting method), the ingot is cooled sequentially from the outer periphery, and the cooling rate slows down toward the center. (Hereinafter referred to as DAS
) and other structures become coarse. Also, for the same reason, a large number of shrinkage porosity occurs in the center of a rectangular ingot of medium-high strength alloy. Such a relationship becomes more pronounced as the thickness of the ingot increases, and as mentioned above, the center part of a rolled plate, etc. manufactured using an ingot with different structures between the outer skin and the center part. The mechanical properties of the skin are inferior to those of the skin, and in any case, it is difficult to obtain the desired properties.

本発明は上記したような実情に鑑み研究を重ねて開発さ
れたものであって、アルミニウム鋳塊の如き全連続的に
鋳造するに当シ、水冷鋳型内に供給される溶湯を直接的
に鋳型内鋳塊の中心部に向けて吐出させると共に、分配
給湯ノズルによる給湯を併用して鋳造することを提案す
るものであり、それによって表層部から中心部まで略一
様で緻密な組織を形成し、又前記シ壬ンケージボロシテ
ィなどの発生をなからしめようとするものでるる。
The present invention has been developed through repeated research in view of the above-mentioned circumstances, and is suitable for casting molten metal directly into a water-cooled mold when casting aluminum ingots completely continuously. It is proposed to discharge molten metal toward the center of the inner ingot and to use a dispensing molten metal nozzle to supply the molten metal, thereby forming a nearly uniform and dense structure from the surface layer to the center. There are also attempts to eliminate the occurrence of the above-mentioned cage volocity.

斯かる本発明について仔細を説明すると、添付図面には
上記のような本発明方法を角型鋳塊を得る場合の装置と
して示されておシ、タンディツシュ1には鋳型5内に形
成される鋳塊8の中心部に向けて直接給湯用ノズル2が
上記鋳型5内の湯面下部に相当に深く挿入されていてそ
の挿入深さ位置でタンディツシュ1からの溶@を直接的
に吐出するように成っている。又このようなノズル2の
両側にはフロート4を介して鋳型5内に給湯する分配給
湯ノズル3.3が対称的に配設され、同時に給湯を行わ
しめておシ、鋳型5内溶湯7にはフィルター6を設け、
又鋳型5には冷却水が送入されて冷却効果上溶湯に与え
ると共にその下部に形成されたノズル9から引き出され
る鋳塊8の周面に冷却水を直接に供給して冷却するよう
に成っている。
To explain the present invention in detail, the attached drawing shows the method of the present invention as described above as an apparatus for obtaining a square ingot. A direct hot water supply nozzle 2 is inserted considerably deep below the hot water level in the mold 5 toward the center of the lump 8, so that the molten water from the tundish 1 is directly discharged at the insertion depth position. It is made. Also, distributing hot water nozzles 3.3 for supplying hot water into the mold 5 via the float 4 are arranged symmetrically on both sides of such nozzle 2. A filter 6 is provided,
In addition, cooling water is fed into the mold 5 and applied to the molten metal for cooling effect, and the cooling water is directly supplied to the circumferential surface of the ingot 8 drawn out from a nozzle 9 formed at the bottom of the mold 5 to cool it. ing.

上記したような装置によシ実施される本発明方法を更に
説明すると、給湯用ノズル2から供給される溶の量が多
いほど鋳塊中心部における同−深さ位置の溶湯温度が上
昇し、一方鋳塊8の表面温度はそれぞれの位置において
同様であることから相対的に中心部に対して与えられる
冷却速度が遠くなシ該中心部において緻密な結晶組織を
形成することができる。然してこのようにして鋳塊中心
部への給湯量が大となると、分配ノズル3から分配供給
きれる溶湯量が少なくなシ鋳塊表層部が冷えすぎてコー
ルドシャット(凝固によるくびn)が発生した9、又浮
遊晶も生じ易いと七となるので極端にノズル2からの紬
@量を増大することは不適切でろって、それらの関係は
鋳塊の形状や大きさによっても変動するが、一般的にノ
ズル2による給湯量は鋳型5内への給湯量の35〜70
%、特に40〜60%が好ましく、このようにすること
によって、全体全一様な結晶組織状態として鋳造するこ
とができる。なお上記のようにすることにょシ供給され
る溶湯の湿灰が同じであっても鋳型表層部に2ける温度
が低くなるので全量をフロート全周いたノズルから吐出
させる従来法に比し表層部にフェザ−晶が発生し難くな
る利点も確認はれている。直接給湯ノズル1は少なくと
もフロートキないし分配ノズル3よシは長く鋳型自溶湯
中に挿入することが必要でるり、フィルター6について
も従来のものよシ粗いものを用いることが効果的である
To further explain the method of the present invention carried out by the above-mentioned apparatus, the larger the amount of melt supplied from the hot water supply nozzle 2, the higher the temperature of the melt at the same depth in the center of the ingot; On the other hand, since the surface temperature of the ingot 8 is the same at each position, a dense crystal structure can be formed in the center because the cooling rate applied to the center is relatively far away. However, if the amount of molten metal supplied to the center of the ingot increases in this way, the amount of molten metal that can be distributed and supplied from the distribution nozzle 3 will be small, and the surface layer of the ingot will become too cold, causing a cold shut (neck due to solidification). 9, and 7 if floating crystals are likely to occur, so it would be inappropriate to increase the amount of pongee from nozzle 2 to an extreme degree, although the relationship between these will vary depending on the shape and size of the ingot. Generally, the amount of hot water supplied by the nozzle 2 is 35 to 70 times the amount of hot water supplied into the mold 5.
%, particularly 40 to 60%, and by doing so, it is possible to cast with a uniform crystal structure throughout. In addition, even if the wet ash of the molten metal supplied as described above is the same, the temperature at the surface layer of the mold will be lower than that of the conventional method in which the entire amount is discharged from a nozzle placed around the entire circumference of the float. The advantage that feather crystals are less likely to occur has also been confirmed. The direct hot water supply nozzle 1 needs to be inserted into the mold self-molten metal for a longer time than the float or distribution nozzle 3, and it is effective to use a filter 6 that is coarser than the conventional one.

上記したような不発明によるものの具体的な実施例につ
いて説明すると以下の如くである。
A specific example of the above-mentioned invention based on the invention will be described below.

内法が508X1060mmの角形矩形断面の鋳塊8を
連続鋳造するようにきれた水冷鋳型5に対して第1図の
ようにタンディツシュ1から直接給湯ノズル2と分配ノ
ズル3.3にょシ給湯し、鋳型5内溶湯面から直接給湯
ノズル2が40111111の深さまで挿入された状態
で、該ノズル2からは鋳型内紛湯量の52%を供給し、
分配ノズル3.3からはそれぞれ約24%を供給する条
件で99.5%アルミニウムを半連続鋳造した。鋳型5
底部からの鋳塊引出し速度は7 、5 (yl /fi
l nである。
As shown in FIG. 1, hot water is supplied directly from the tundish 1 to the hot water supply nozzle 2 and the distribution nozzle 3.3 to the water-cooled mold 5, which has been cut to continuously cast an ingot 8 having a rectangular cross section with an internal diameter of 508 x 1060 mm. With the hot water supply nozzle 2 inserted directly from the molten metal surface in the mold 5 to a depth of 40111111, 52% of the amount of molten metal in the mold is supplied from the nozzle 2,
99.5% aluminum was semi-continuously cast, with each distribution nozzle 3.3 supplying approximately 24%. Mold 5
The ingot withdrawal speed from the bottom is 7,5 (yl/fi
It is l n.

即ちこのようにして得られた鋳塊の中心部における結晶
組織は第2図の顕微鏡写真の如くであり、微細な組織と
なっていることは明らかである。これに対し直接給湯ノ
ズル2′?L使用しないでフロートを用いたノズルのみ
PCよる従来法によって同じアルミニウムを同じ速度で
半連続鋳造したときの鋳塊中心部の結晶組織は8g3図
の通シで心って、本発明方法によるものの結晶組織緻密
性は明確である。
That is, the crystal structure in the center of the ingot thus obtained is as shown in the micrograph of FIG. 2, and it is clear that the structure is fine. On the other hand, direct hot water supply nozzle 2'? When the same aluminum was semi-continuously cast at the same speed by the conventional method using PC only with a nozzle using a float without using L, the crystal structure in the center of the ingot was 8g. The density of the crystal structure is clear.

以上説明したような本発明によるときはこの種連続的鋳
造によって得られる鋳塊の結晶組織を表層部から中心部
まで略一様な緻密状態として適切に形成し、又ンユリ7
ケージポロシテイなどの発生をなからしめて優質の鋳塊
を提供し、それによって斯様な鋳塊を用いて得られる板
材その他の圧延材等における機械的特性その他を良好と
することができるものでろって、工業的にその効果の大
きい発明である。
According to the present invention as explained above, the crystal structure of the ingot obtained by this type of continuous casting is appropriately formed into a substantially uniform dense state from the surface layer to the center, and
It is possible to provide an ingot of superior quality by eliminating the occurrence of cage porosity, thereby improving the mechanical properties and other properties of plate materials and other rolled materials obtained using such an ingot. This is an invention with great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は本発明方法を実施するための装置の1例を示した断面
的説明図、第2図は本発明方法によって得られた鋳塊の
1例についてその中心部の結晶組織を示した顕微鏡写真
、第3図はその比較例によるものの顕微鏡写真であって
、何れも倍率50倍を以て示すものである。 父上記第1図において、1はタンディツシュ、2は直接
給湯ノズル、3は分配ノズル、4はフロート、5は水冷
鋳型、6はフィルター、7#′i溶湯、8は鋳塊、9は
冷却水を示すものである。 第 / 圓
The drawings show the technical contents of the present invention, and FIG. 1 is a cross-sectional explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. A microscopic photograph showing the crystal structure of the center of one example of an ingot, and FIG. 3 is a microscopic photograph of a comparative example thereof, both of which are shown at a magnification of 50 times. In Fig. 1 above, 1 is a tundish, 2 is a direct hot water supply nozzle, 3 is a distribution nozzle, 4 is a float, 5 is a water-cooled mold, 6 is a filter, 7 is a molten metal, 8 is an ingot, and 9 is a cooling water. This shows that. No. / Circle

Claims (1)

【特許請求の範囲】[Claims] 水冷鋳型内に溶湯を供給して連続的に鋳塊を得るに当っ
て、前記鋳型円中心部に設けられた直接給湯ノズルと分
配ノズルによって上記溶湯を供給し、前記直接給湯ノズ
ルによる給湯量を鋳型内給湯全量の35〜70%とした
ことを特徴とする鋳塊の連続的鋳造法。
When supplying molten metal into a water-cooled mold to continuously obtain an ingot, the molten metal is supplied through a direct hot water supply nozzle and a distribution nozzle provided at the center of the mold circle, and the amount of hot water supplied by the direct hot water nozzle is controlled. A method for continuous casting of an ingot, characterized in that the amount of hot water supplied in the mold is 35 to 70% of the total amount of hot water supplied in the mold.
JP13090383A 1983-07-20 1983-07-20 Continuous casting method of ingot Granted JPS6030553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13090383A JPS6030553A (en) 1983-07-20 1983-07-20 Continuous casting method of ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13090383A JPS6030553A (en) 1983-07-20 1983-07-20 Continuous casting method of ingot

Publications (2)

Publication Number Publication Date
JPS6030553A true JPS6030553A (en) 1985-02-16
JPH0323257B2 JPH0323257B2 (en) 1991-03-28

Family

ID=15045414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13090383A Granted JPS6030553A (en) 1983-07-20 1983-07-20 Continuous casting method of ingot

Country Status (1)

Country Link
JP (1) JPS6030553A (en)

Also Published As

Publication number Publication date
JPH0323257B2 (en) 1991-03-28

Similar Documents

Publication Publication Date Title
US4960163A (en) Fine grain casting by mechanical stirring
US5176197A (en) Continuous caster mold and continuous casting process
JPH03503506A (en) Continuous casting of ingots
US5299724A (en) Apparatus and process for casting metal matrix composite materials
US3672431A (en) Apparatus and procedures for continuous casting of metal ingots
JPS6030553A (en) Continuous casting method of ingot
JPS58196146A (en) Continuous casting method of square casting ingot
US3698466A (en) Method for continuous casting of steel
JPS60180646A (en) Continuous casting device for thin sheet
JPH0122061B2 (en)
US5067555A (en) Process and apparatus for continuous casting of metal strip
JPH03193245A (en) Method for continuously casting strip
JP3372861B2 (en) Heat-resistant screen for continuous casting of aluminum or aluminum alloy
JPS6087956A (en) Continuous casting method of metal
JPH0712524B2 (en) Method of pouring metal in continuous casting apparatus for thin metal strip
JP2845706B2 (en) Molding equipment for continuous casting equipment
KR200169961Y1 (en) Twin roll type sheet casting apparatus
JPS617048A (en) Continuous casting method of steel plate
JPH0239344B2 (en)
JP2003236646A (en) Method for continuously casting thin cast slab having excellent surface characteristic and partitioning weir
JPH0768351A (en) Production of cooling roll for strip continuous casting and cooling roll thereof
JPS63203254A (en) Apparatus for pouring molten metal for metal strip continuous casting
JPS5973156A (en) Holding furnace for continuous horizontal casting
JPH01321049A (en) Method for casting cast slab for producing thick steel plate
JPS63130244A (en) Production of cladding ingot