JPS6029733B2 - Method for controlling degree of polymerization of polyester - Google Patents

Method for controlling degree of polymerization of polyester

Info

Publication number
JPS6029733B2
JPS6029733B2 JP13466475A JP13466475A JPS6029733B2 JP S6029733 B2 JPS6029733 B2 JP S6029733B2 JP 13466475 A JP13466475 A JP 13466475A JP 13466475 A JP13466475 A JP 13466475A JP S6029733 B2 JPS6029733 B2 JP S6029733B2
Authority
JP
Japan
Prior art keywords
polymerization
degree
tank
polyester
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13466475A
Other languages
Japanese (ja)
Other versions
JPS5258792A (en
Inventor
勝政 藤本
正隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP13466475A priority Critical patent/JPS6029733B2/en
Publication of JPS5258792A publication Critical patent/JPS5258792A/en
Publication of JPS6029733B2 publication Critical patent/JPS6029733B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

【発明の詳細な説明】 本発明は鷹投機を有する反応槽でポリエステルを連続的
に製造する場合の重合度製御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the degree of polymerization when polyester is continuously produced in a reactor having a hawk spectrometer.

以下、ポIJエチレンテレフタレートを製造する場合に
ついて説明すると、ジメチルテレフタレートとエチレン
グリコールのェステル交換反応、又はテレフタル酸とエ
チレングリコールのェステル化反応によって得られたビ
ス−3−ヒドロキシェチルテレフタレート又はその低重
合体を多段に設けた重合装置に連続的に供給し、高温高
真空下に渡洋を続けると最終の重合槽から目的とする重
合度のポリエチレンテレフタレートが連続的に得られる
Hereinafter, to explain the case of manufacturing POIJ ethylene terephthalate, bis-3-hydroxyethyl terephthalate obtained by transesterification reaction of dimethyl terephthalate and ethylene glycol or esterification reaction of terephthalic acid and ethylene glycol or its lower weight When the combined product is continuously supplied to a multi-stage polymerization apparatus and continues to be transported across the ocean under high temperature and high vacuum conditions, polyethylene terephthalate having the desired degree of polymerization can be continuously obtained from the final polymerization tank.

このような連続重合装置の製品重合度を所望の一定値に
保つ方法としては多段に配した重合槽の各出口で重合度
とほぼ一次的関係を有する物性、例えば溶融粘度を検出
し、この検出値を一定にすべく各重合槽の真空度を制御
する方法が一般的に行なわれてきた。
In order to maintain the degree of polymerization of products in such continuous polymerization equipment at a desired constant value, a physical property having an almost linear relationship with the degree of polymerization, such as melt viscosity, is detected at each outlet of the polymerization tank arranged in multiple stages, and this detection method is used. A method has generally been used to control the degree of vacuum in each polymerization tank in order to keep the value constant.

しかしながら、このような真空度を制御して重合度を一
定に保持する方法は、通常重合速度が比較的遅い場合に
は非常に有効なものであるが、重合体の自由表面積、自
由表面更新等を効果的に行うことによって従来より重合
速度をかなり遠くできるような重合槽が開発されてくる
と、上記真空制御方式のみによっては追随性が十分でな
く均一な重合度の製品を製造することが困難になってき
た。更に詳述すると本発明者らは速い重合速度を有する
重合装置を探索した際、蝿梓翼による反応物のかき上げ
および落下を行なって自由表面積の増大を計ったところ
、従来装置の2倍以上の重合速度が得られたにも拘らず
、製品重合度のバラッキが大きく、真空度の変化のみで
は到底制御出来ないことおよびこの際、重合速度は鯛梓
速度によってかなりの変化を示すことが判明した。
However, this method of controlling the degree of vacuum to maintain a constant degree of polymerization is usually very effective when the polymerization rate is relatively slow; With the development of polymerization tanks that can increase the polymerization rate much further than conventional methods by effectively carrying out It's getting difficult. More specifically, when the present inventors searched for a polymerization device with a high polymerization rate, they measured an increase in the free surface area by scraping up and dropping the reactants using fly wings, and found that the free surface area was more than twice that of the conventional device. Although a polymerization rate of 100% was obtained, the degree of polymerization of the product varied widely, and it was found that it could not be controlled by changing the degree of vacuum alone, and that the polymerization rate varied considerably depending on the Taiazusa speed. did.

本発明はこのような問題に鑑み連続重合プ。In view of these problems, the present invention is directed to a continuous polymerization process.

セスの重合度制御を精度高く安定して行なわんとするも
ので、鷹梓機を有する重合槽を多段に配列したポリエス
テルの連続重合装置において、重合槽の出口で反応液の
溶融粘度を検出して該粘度と目標値とを比較し、その差
を一定域内にあるように重合槽の麓拝速度を増減して槽
内の流動状態を変化させ重合度の調整を行うようにした
ことを特徴とするものである。ここで、遺群速度の変更
は機械的手段、電気的手段等の如何なる手段によっても
よく、又蝿梓速度の変化の度合は予め定められたもので
あれば数段変速の切換式でも無段変速でもよい。
The purpose of this system is to accurately and stably control the degree of polymerization in the process, and in a continuous polyester polymerization system with multiple polymerization tanks arranged in multiple stages, the melt viscosity of the reaction solution is detected at the outlet of the polymerization tank. The viscosity is compared with the target value, and the degree of polymerization is adjusted by increasing or decreasing the feeding speed of the polymerization tank to change the flow state in the tank so that the difference is within a certain range. That is. Here, the group speed may be changed by any means such as mechanical means or electrical means, and the degree of change in the fly azusa speed may be changed by a multi-speed switching method or a stepless method as long as it is predetermined. It may be variable speed.

本発明の制御方法をポリエチレンテレフタレートの場合
を例にとれば重合度が20以上、望ましくは50以上(
溶融粘度にして100ポィズ以上)の範囲で単独又は真
空度制御と同時に行うことが好ましい。
Taking the control method of the present invention in the case of polyethylene terephthalate as an example, the degree of polymerization is 20 or more, preferably 50 or more (
It is preferable to perform this alone or simultaneously with vacuum degree control within a range of 100 poise or more in terms of melt viscosity.

又この場合蝿梓翼回転数は数回転から数10回転にする
のが好ましい。以下、本発明を図面によって説明する。
第1図は本発明の具体例を示す系統図である。図におい
て、1は多段式の連続重合装置の最終重合槽を示し、該
重合槽1にその入口2より供給された重合体は内設され
た瀦梓翼によって順次反応されながら出口3に向って送
られる。
Further, in this case, it is preferable that the number of rotations of the fly azure blade is from several rotations to several tens of rotations. Hereinafter, the present invention will be explained with reference to the drawings.
FIG. 1 is a system diagram showing a specific example of the present invention. In the figure, 1 indicates the final polymerization tank of a multi-stage continuous polymerization apparatus, and the polymer supplied to the polymerization tank 1 from the inlet 2 is sequentially reacted by the built-in cascading blades and then flows toward the outlet 3. Sent.

重合槽1は第3〜4図に示す如く加熱ジャケット11を
有する横型の重合槽本体10に2つの縄梓軸12,13
が水平に並設されるとともに、該本体1川ま仕切板18
で仕切られ多数の反応室20を形成し、更に瀦拝軸12
,13には液面測定用の最終反応室を除いて各反応室2
0に板状の脇梓翼14,15が支持部村16,17を介
して軸万向に取付けられている。
As shown in FIGS. 3 and 4, the polymerization tank 1 has a horizontal polymerization tank body 10 having a heating jacket 11 and two rope shafts 12 and 13.
are arranged horizontally in parallel, and the main body 1 river partition plate 18
partitioned to form a large number of reaction chambers 20, and furthermore, a worship shaft 12
, 13 contains each reaction chamber 2 except for the final reaction chamber for liquid level measurement.
Plate-shaped side azusa wings 14 and 15 are attached to the shaft 0 through support sections 16 and 17 in all directions of the axis.

この耀拝軸12と13はギア噛合方式により3:2の速
度比率で矢印の方向に回転し、又蝿梓翼15は送り作用
を与えるため多少傾斜して設けられている。仕切板18
には縄梓翼15と対応する側に溢流口19が設けられ礎
梓翼15によって特上げられた際に重合物が次の室20
1こ押出される如くなされている。各反応室20では2
の女の櫨辞翼14,15が互いに噛み合いながら複雑な
運動を行うので重合物は均一に混合され、デットスベー
スの発生が防止される。重合物は縄梓翼14,15によ
って主として薄膜状に特上げられると共に特上げられた
重合物の大部分は回転に従って薄膜状に落下し、又液面
は複雑な曲面となって絶えず新しい表面が形成されるた
め重合が効果的に行なわれる。所定の重合度に反応され
た重合体は出口3から送液ポンプ4によって粘度計5に
送られ、ここで溶融粘度を計られたのち次の工程に送出
される。この溶融粘度の測定はバイパス通路を設けて行
ってもよい。この粘度計5で検出された重合体の溶融粘
度は制御装置6で温度補正後、設定値と比較されその差
に応じて又はその一定範囲を越えると可変減速機7に変
更指令を発し櫨拝翼の回転数を増減させる。この場合、
同時に真空度調節計8に信号を出し真空度調節弁9の関
度を変更するなどして重合槽1の真空度を制御するよう
にしてもよい。以上は2軸の蝿梓翼の例について説明し
たが、これに限定されるものでないことは言うまでもな
い。第2図は本発明を実施するに適した重合槽における
重合速度と縄拝速度との関係を一般的に示したものであ
る。
The worship shafts 12 and 13 rotate in the direction of the arrow at a speed ratio of 3:2 by means of a gear engagement system, and the fly azure blades 15 are provided at a slight inclination to provide a feeding action. Partition plate 18
An overflow port 19 is provided on the side corresponding to the rope azusa wing 15, so that when the polymer is lifted up by the foundation azusa wing 15, it flows into the next chamber 20.
It is made so that one piece is extruded. In each reaction chamber 20, 2
Since the female cylindrical blades 14 and 15 perform complex movements while meshing with each other, the polymer is mixed uniformly and the generation of a dead base is prevented. The polymer is mainly lifted up in the form of a thin film by the rope azusa blades 14 and 15, and most of the lifted polymer falls down in the form of a thin film as it rotates, and the liquid surface becomes a complex curved surface, with new surfaces constantly being created. Because of this formation, polymerization is effectively carried out. The polymer reacted to a predetermined degree of polymerization is sent from the outlet 3 to the viscometer 5 by the liquid sending pump 4, where the melt viscosity is measured and then sent to the next step. This measurement of melt viscosity may be performed by providing a bypass passage. The melt viscosity of the polymer detected by the viscometer 5 is corrected by the temperature in the control device 6, and then compared with the set value. Depending on the difference, or if it exceeds a certain range, a change command is issued to the variable reducer 7. Increase or decrease the rotation speed of the wing. in this case,
At the same time, the vacuum level of the polymerization tank 1 may be controlled by sending a signal to the vacuum level regulator 8 and changing the function of the vacuum level regulating valve 9. Although an example of a two-axis fly wing has been described above, it goes without saying that the present invention is not limited to this. FIG. 2 generally shows the relationship between polymerization rate and rope speed in a polymerization tank suitable for carrying out the present invention.

一般に重合速度は温度、真空度、重合体自由表面積およ
び自由表面積更新作用により変化するが、鷹梓速度が大
きく関係するのは後の二者である。このような自由表面
積および自由表面積更新作用を蝿梓作用によって効果的
に実施すると、櫨群遊度の増減によって重合速度が従釆
に比して大きく変化するので、何らかの変動、例えば供
給量の変動によって重合度が変化した場合、瀦梓速度を
変更することにより流動状態を変え重合速度を非常に速
やかに調整でき、従って重合度の変化中が極めて4・さ
くなり均一な製品重合体を得ることが可能となる。
Generally, the polymerization rate changes depending on the temperature, degree of vacuum, free surface area of the polymer, and free surface area renewal effect, but the latter two are largely related to the Takaazusa rate. If such a free surface area and free surface area renewal action is effectively carried out by the fly azure action, the polymerization rate will change greatly compared to the subordinate method due to an increase or decrease in the free surface area, so some fluctuations, such as fluctuations in the supply amount, will When the degree of polymerization changes due to the change in the degree of polymerization, changing the flow rate can change the flow state and adjust the polymerization rate very quickly. Therefore, the change in the degree of polymerization is extremely slow and a uniform product polymer can be obtained. becomes possible.

実施例 1 ジメチルテレフタレート10唯部、エチレングリコール
76部、酢酸亜鉛0.02郡、三酸化アンチモン0.0
4部の割合で通常の連続ェステル交換反応装置に仕込み
連続してェステル交換を行い、更に連続初期重合槽を通
して得られた極限粘度0.40(オルソクロルフヱノ−
ル溶液中35qoにて測定した値)の重合物を第1図お
よび第3〜4図に示す如き最終重合槽に200kg/H
rの流量で供給した。
Example 1 10 parts of dimethyl terephthalate, 76 parts of ethylene glycol, 0.02 parts of zinc acetate, 0.0 parts of antimony trioxide
4 parts of the mixture was charged into a conventional continuous transesterification reactor for continuous transesterification, and then passed through a continuous initial polymerization tank to obtain an intrinsic viscosity of 0.40 (orthochlorofluoroethylene).
200 kg/h of the polymer (measured at 35 qo in the solution) was transferred to the final polymerization tank as shown in Figures 1 and 3-4.
It was supplied at a flow rate of r.

重合槽内の温度は入口側2790〜28000、出口側
280qo〜285午Cに保たれており平均真空度は1
.0〜2.0肌Hga広に保持され、低速側の蝿洋軸が
毎分3回転の速度を基準として4〜12回転の間で連続
可変するように損梓翼を回転せしめた。そして重合物の
出口極限粘度の目標設定値は〔り〕=0.65とし、〔
り〕=0.65±0.010の範囲外を制御作動域とし
た。このようにして1ケ月間運転して得られた重合物の
出口極限粘度の変動は〔り〕=0.65±0.022で
あった。
The temperature inside the polymerization tank is maintained at 2,790 to 28,000 degrees Celsius on the inlet side and 280 degrees Celsius to 285 degrees Celsius on the outlet side, and the average degree of vacuum is 1.
.. The rotor blade was rotated so that the rotary shaft on the low speed side was continuously varied between 4 and 12 revolutions with a speed of 3 revolutions per minute as a reference. The target setting value of the exit limiting viscosity of the polymer is [ri]=0.65, and [
The area outside the range of =0.65±0.010 was defined as the control operation range. The variation in exit limiting viscosity of the polymer obtained by operating in this way for one month was 0.65±0.022.

実施例 2 実施例1と同様な条件で、更に真空度を0.5〜1仇肋
Hga戊の範囲で同時にコントロールできるようにして
反応を行い。
Example 2 The reaction was carried out under the same conditions as in Example 1, with the degree of vacuum simultaneously controllable within the range of 0.5 to 1 ft Hga.

3ケ月運転したところ、得られた重合物の出口極限粘度
の変動は〔刀〕=0.65土0.020であった。
After operating for 3 months, the variation in exit limiting viscosity of the obtained polymer was 0.65 = 0.020.

比較例 低速側の渡洋速度をSr.p.m.の一定回転にした以
外は実施例2と同じ条件で15日間運転したところ、重
合物の出口極限粘度の変動は〔り〕:0.65十0.0
51であった。
Comparative example The crossing speed on the low speed side was set to Sr. p. m. When the operation was carried out for 15 days under the same conditions as in Example 2 except that the rotation was constant, the variation in the exit limiting viscosity of the polymer was: 0.65 - 0.0
It was 51.

このように本発明によればポリエステルの連続反応装置
での重合度制御を極めて短時間で行うことができると共
に連続して品質の安定した均一な製品を得ることが可能
となりその効果は非常に大である。
As described above, according to the present invention, it is possible to control the degree of polymerization in a continuous polyester reaction apparatus in an extremely short time, and it is also possible to continuously obtain a uniform product with stable quality, which has a very large effect. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するために適した系統図、第2図
は本発明を説明するための縄拝速度と重合速度の関係図
、第3図は第1図に示す最終重合槽の一部断面を含む側
面図、第4図は第3図のA−A断面矢視図である。 1は最終重合槽、4はポンプ、5は粘度計、6は制御装
置、7は可変減速機、12,13は礎梓軸、14,15
は雌梓翼、18は仕切板、20は反応室。 第ー図 弊2図 沖る鶴 死4鶴
Figure 1 is a system diagram suitable for carrying out the present invention, Figure 2 is a diagram showing the relationship between rope speed and polymerization rate to explain the present invention, and Figure 3 is a diagram of the final polymerization tank shown in Figure 1. A side view including a partial cross section, FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3. 1 is the final polymerization tank, 4 is the pump, 5 is the viscometer, 6 is the control device, 7 is the variable speed reducer, 12 and 13 are the base shafts, 14 and 15
18 is a partition plate, and 20 is a reaction chamber. Fig. 2. Crane death 4.

Claims (1)

【特許請求の範囲】[Claims] 1 撹拌機を有する重合槽を多段に配列したポリエステ
ルの連続重合装置において、重合槽の出口で反応液の溶
融粘度を検出して該粘度と目標値とを比較し、その差を
一定域内にあるように重合槽の撹拌速度を増減して槽内
の流動状態を変化させ重合度の調整を行うようにしたこ
とを特徴とするポリエステルの重合度製御方法。
1. In a continuous polyester polymerization device in which polymerization tanks each having a stirrer are arranged in multiple stages, the melt viscosity of the reaction solution is detected at the exit of the polymerization tank, the viscosity is compared with a target value, and the difference is determined to be within a certain range. A method for controlling the degree of polymerization of polyester, characterized in that the degree of polymerization is adjusted by increasing or decreasing the stirring speed of the polymerization tank to change the fluid state in the tank.
JP13466475A 1975-11-11 1975-11-11 Method for controlling degree of polymerization of polyester Expired JPS6029733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13466475A JPS6029733B2 (en) 1975-11-11 1975-11-11 Method for controlling degree of polymerization of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13466475A JPS6029733B2 (en) 1975-11-11 1975-11-11 Method for controlling degree of polymerization of polyester

Publications (2)

Publication Number Publication Date
JPS5258792A JPS5258792A (en) 1977-05-14
JPS6029733B2 true JPS6029733B2 (en) 1985-07-12

Family

ID=15133658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13466475A Expired JPS6029733B2 (en) 1975-11-11 1975-11-11 Method for controlling degree of polymerization of polyester

Country Status (1)

Country Link
JP (1) JPS6029733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427700Y2 (en) * 1986-03-24 1992-07-03

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513744B2 (en) * 1987-12-07 1996-07-03 ポリプラスチックス株式会社 Method for producing polyester
JP2005220242A (en) * 2004-02-06 2005-08-18 Mitsubishi Chemicals Corp Method for producing aliphatic or alicyclic polyester
JP2006160881A (en) * 2004-12-07 2006-06-22 Nippon Ester Co Ltd Manufacturing process of polyethylene terephthalate
JP2009062412A (en) * 2007-09-04 2009-03-26 Mitsubishi Chemicals Corp Method for producing aliphatic polyester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427700Y2 (en) * 1986-03-24 1992-07-03

Also Published As

Publication number Publication date
JPS5258792A (en) 1977-05-14

Similar Documents

Publication Publication Date Title
US2530409A (en) Method for polymerizing styrene
Hicks et al. Cloud height in solids suspension agitation
US2758915A (en) Apparatus for continuous polymerization
KR101440208B1 (en) Vertical countercurrent solid-liquid contact method, method for washing solid particles, method for producing polyarylene sulfide, and device therefor
US5102229A (en) Agitator
US3390965A (en) Reactor for the manufacture of polyethylene phthalates
CN102643096A (en) Method and device for preparing gradient material containing continuously changed components
JPS6029733B2 (en) Method for controlling degree of polymerization of polyester
US4153766A (en) Continuous process for the production of ethylene terephthalate polyesters
NO164568B (en) ELECTRICAL CONNECTOR.
CN103180350A (en) Solution process for the production of EP(D)M elastomers and polymerisation reactor for use in said process.
US3498754A (en) Continuous polycondensation apparatus
US3929416A (en) Process and apparatus for producing gypsum lumps
US3987021A (en) Process utilizing a stirring reactor
JPS63100439A (en) Method and apparatus for continuous melting of gel-like material
US2701210A (en) Continuous process for preparing a solution of constant composition
US3003986A (en) Process of emulsion polymerization of ethylenically unsaturated monomers utilizing taylor ring flow pattern
CA1247936A (en) Continuous mixing process
US4184027A (en) Recycle control system for continuous polymerization
JPS6029734B2 (en) Polyester stirring method
US3881875A (en) Equipment for the continuous production of synthetic resins for the varnish industry
JPH08109208A (en) Production of seed particle for emulsion polymerization and continuous multistage emulsion polymerization process
US4017498A (en) Recycle control system for continuous polymerization
JPH0270704A (en) Apparatus and method for continuous polymerization
EP2300150A1 (en) Reactor