JPS6028888A - Purification of crude liquid containing organic substance with microorganism - Google Patents

Purification of crude liquid containing organic substance with microorganism

Info

Publication number
JPS6028888A
JPS6028888A JP58136726A JP13672683A JPS6028888A JP S6028888 A JPS6028888 A JP S6028888A JP 58136726 A JP58136726 A JP 58136726A JP 13672683 A JP13672683 A JP 13672683A JP S6028888 A JPS6028888 A JP S6028888A
Authority
JP
Japan
Prior art keywords
tank
liquid
stirring
oxygen
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58136726A
Other languages
Japanese (ja)
Inventor
Mamoru Kashiwatani
衛 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zaidan Hojin Nanyo Kyokai
Original Assignee
Zaidan Hojin Nanyo Kyokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zaidan Hojin Nanyo Kyokai filed Critical Zaidan Hojin Nanyo Kyokai
Priority to JP58136726A priority Critical patent/JPS6028888A/en
Publication of JPS6028888A publication Critical patent/JPS6028888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To improve purification efficiency of crude liquid due to microorganism and to enhance the effect for separating and removing microorganism by charging 1- 15vol% basing on the volume of a reaction tank of small piece chaped material having <=10mm. size and a specifeid specific gravity to crude liquid contg. org. substances contained in a batch type microbiological reaction tank. CONSTITUTION:After filling a reacting tank with crude liquid to a normal high liquid level through a crude feeding pipe 6, dispersion of air or dispersion of air in combination with stirring is performed to disperse small piece shaped material in the tank uniformly. When >=50% of soluble org. hydrocarbon compds. contained in the crude liquid in the tank is decreased by oxidation and assimilation by the effect of aerobic microorganisms sticking to the surface of the small piece shaped material, dispersion of air and stirring of the liquid are cased and lumps of microorganisms stripped off the small piece shaped material are settled to the bottom of the tank. Then, about 50-80% of the liquid in the tank is drawn as purified liquid through a discharge pipe 7, and 0.1- 1% of the liquid in the tank is drawn together with excess sludge through a sludge discharge pipe 10.

Description

【発明の詳細な説明】 本発明は生活排水、食品工場排水などの有機物含有原液
から炭素化合物(BODおよびCODの水質指標で表示
されるもの゛)、または炭素化合物と栄養塩類〔窒素お
よび(または)リンの化合物〕を除去するための微生物
処理を行なうに当り、攪拌装置と散気装置(以下本明細
書で空気・酸素・酸素に富んだガスを吹かせることを散
気と云う。)を装備された回分式の微生物反応槽を用b
、その反応槽内に原液よりも真比重または―、掛は比重
が小さいかまたは等しい寸法10朋以下(0,1mm以
上)の細片状物質を槽の空容積の1%ないし15%(1
容量)の範囲で投入を行なうことにより微生物による有
機物含有原液の浄化効果を高めると共に微生物の分離除
去効果を高める方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention extracts carbon compounds (indicated by BOD and COD water quality indicators) or carbon compounds and nutrient salts [nitrogen and (or ) When performing microbial treatment to remove phosphorus compounds], a stirring device and an aeration device (hereinafter, blowing air, oxygen, and oxygen-rich gas are referred to as aeration) are used. Using the equipped batch-type microbial reaction tank
, into the reaction tank, 1% to 15% (1% of the empty volume of the tank) of flaky material with dimensions of 10 mm or less (0.1 mm or more) having a true specific gravity smaller than or equal to that of the stock solution.
The present invention relates to a method for increasing the purification effect of an organic substance-containing stock solution by microorganisms and increasing the effect of separating and removing microorganisms by charging the solution within a range of 100 to 100 ml (capacity).

回分式微生物反応槽では好気性微生物を培養するだめに
散気装置は設置されているが、水洗を用いるときには攪
拌装置を併せ装備されているものを用いる。この攪拌装
置は微生物の付着している細片状物質を反応槽内液中で
一様に分散させて微生物処理を効果的に行なうこと、細
片状物質の1部は界面と大気との直接の接触を防止する
ために一様な膜状を形成させるように気液界面に残留さ
せたうえ細片状物質の大部分は反応槽内液中に一様に分
散させて微生物処理を効果的に行なうこと、これを停止
したときに微生物の付着している細片状物質は浮上させ
細片状物質に付着していない微生物塊は沈降させること
で固液分離を容易に行う役割を果す。また本反応槽、で
用いる散気装置は散気と停止とを繰返すことになるので
、とくに目ずまりが少くなるように工夫された機器等が
用いられる。散気装置によって散気が行なわれていると
き、通常は攪拌装置の運転も行なわれ、散気装置から噴
出された気泡は攪拌翼の回転にともなう剪断力を受け破
壊されてより微細な気泡に変り、気液表面積が増加する
ことによる混合液中の溶存酸素濃度をより高めるのに効
果的な役割を果す。また、通常の曝気槽のように攪拌な
しで散気を行ない細片状物質を一様に分散させなから好
気状態を本発明の目的は極めて簡易な構造を有する回分
式微生物反応槽を用いて−、有機物含有排水に含まれて
いる炭素化合物(’BOD、 coDまたはTOCの水
質指標で表わされるもの)または炭素化合物と栄養塩類
〔窒素または(および)リンの化合物〕を除去する方法
を提供するものである。連続的な流入原液の処理は行な
うことができないが、従来から用いられてきた曝気槽、
沈殿槽、汚泥返送設備というような複合的な設備から成
る複雑な処理施設を必要とせずに有機物含有原液の高度
の処理を行なうことを可能にするものである。単一槽内
で種々の微生物反応、固液分離などが行なわれるために
設備の製作費、維持管理費は極めて安価であ)、同種の
設備を用いて6種類の異なる操作法をもつ処理を行なう
ことができる利点がある。しかも主として細片状物質に
付着した微生物を用いて原水を浄化するので常に安定し
た処理が行なえる。
A batch type microbial reaction tank is equipped with an aeration device to cultivate aerobic microorganisms, but when using water washing, a tank equipped with a stirring device is used. This stirring device uniformly disperses the microorganism-attached particles in the reaction tank liquid to effectively perform microbial treatment. In order to prevent contact between the particles, the particles remain at the air-liquid interface to form a uniform film, and most of the particles are uniformly dispersed in the reaction tank liquid, making microbial treatment effective. When this process is stopped, the flaky material to which microorganisms are attached floats up, and the microbial mass not attached to the flaky material is allowed to settle, thereby facilitating solid-liquid separation. In addition, since the air diffuser used in this reaction tank repeats air diffusion and stop, equipment that is especially designed to reduce clogging is used. When air is being diffused by the aeration device, the agitation device is usually also in operation, and the air bubbles ejected from the aeration device are destroyed by the shearing force generated by the rotation of the agitation blades, and are broken down into finer bubbles. It plays an effective role in increasing the dissolved oxygen concentration in the mixed liquid by increasing the gas-liquid surface area. In addition, the purpose of the present invention is to use a batch type microbial reaction tank with an extremely simple structure to achieve an aerobic state by dispersing air without stirring and uniformly dispersing the particles like a normal aeration tank. - Provides a method for removing carbon compounds (expressed by water quality indicators of 'BOD, coD or TOC) or carbon compounds and nutrient salts [nitrogen or (and) phosphorus compounds] contained in organic matter-containing wastewater. It is something to do. Although it is not possible to continuously treat the inflowing stock solution, the aeration tank, which has been used conventionally,
This makes it possible to carry out sophisticated treatment of organic matter-containing raw solutions without requiring complex treatment facilities consisting of complex equipment such as settling tanks and sludge return facilities. Since various microbial reactions, solid-liquid separation, etc. are carried out in a single tank, the production and maintenance costs of the equipment are extremely low), and the same type of equipment can be used for processing with six different operating methods. There are advantages to doing so. Moreover, since the raw water is purified mainly using microorganisms attached to the fine particles, stable treatment can be performed at all times.

微生物の付着した細片状物質は槽内での攪拌によってお
互に衝突を繰返すことになり、付着微生物の1部は剥離
して懸濁性微生物塊となるが、これらも有機物含有原液
の浄化に関与する。また攪拌装置を停止してこれらを反
応槽底部に沈降せしめた時に、余剰汚泥としてその1部
を引抜くこととすれば、反応槽内の微生物量を長期間に
わたり所定の濃度で維持することができる。浄化液の引
抜きは、このような微生物の付着した細片状物質を液面
に集中させるとともに懸濁性微生物塊をほぼ完全に沈降
させた後に槽の高さの中間位置から行なわれる。この際
、細片状物質はすみやかに浮上するので攪拌装置の停止
時間は懸濁性微生物塊の静止沈降に脣する時間により定
められることになる。
The pieces of material with attached microorganisms repeatedly collide with each other as they are stirred in the tank, and some of the attached microorganisms detach and become suspended microorganisms, but these are also used for purification of organic matter-containing raw solutions. be involved in Furthermore, when the agitation device is stopped and these are allowed to settle to the bottom of the reaction tank, if a portion of them is pulled out as surplus sludge, it is possible to maintain the amount of microorganisms in the reaction tank at a predetermined concentration for a long period of time. can. The purification liquid is withdrawn from a mid-height position of the tank after concentrating such microorganism-attached fragments on the liquid surface and allowing suspended microorganisms to settle almost completely. At this time, since the fine particles quickly float to the surface, the stop time of the stirring device is determined by the time required for the suspended microorganisms to settle.

本発明の方法による微生物反応は炭素化合物の微生物に
よる酸化と同化、微生物によるケルダール窒素の酸化窒
素、ついで窒素ガスへの転換(水素供与体としては流入
下水中の易分解性有機物〃諷、内生呼吸状態にある微生
物細胞の分解による有機物のいずれかを用いるが、補助
的にメタノールな1! J CC21−e−鋼?−八 
励ル物からのリンの溶脱ト微生物によるリンの過剰摂取
などについて行なわれるが、これらの微生物反応の機構
や効率等は文献等によシすでに十分間らかにされている
。過去の知見からみて、微生物によるこれらの反応は反
応時の水温が一定の場合にも微生物濃度、反応時間基質
の濃度などによって変化することが知られている。本発
明の方法では細片状物質に付着した微生物と懸濁性の微
生物の双方がこの微生物反応成就に関与す石ために、従
来からの懸濁性微生物のみを用いる方法に比べて微生物
濃度を安定して高く維持することができる利点があろう
すなわち、懸濁性微生物を用いた場合にみられる活性汚
泥の膨化現象というようなものは本発明の方法では起ら
ない。このようにして反応槽内の微生物濃度が高く維持
されることとなると、反応時間が大巾に短縮できる効果
がある。これによって、成る1日当勺処理すべき原液量
に対しての設置すべき反応槽の数を減らすことができ、
あるいは槽容積を減らしうろことになり、経済的な価値
も高くなる。
The microbial reaction according to the method of the present invention involves the microbial oxidation and assimilation of carbon compounds, the microbial conversion of Kjeldahl nitrogen into nitrogen oxide, and the subsequent conversion of Kjeldahl nitrogen into nitrogen gas (the hydrogen donor is easily decomposed organic matter in the influent sewage, endogenous Any organic matter resulting from the decomposition of microbial cells in a state of respiration is used, but methanol is used as an auxiliary agent.
The leaching of phosphorus from excited substances and the excessive uptake of phosphorus by microorganisms are carried out, but the mechanism and efficiency of these microbial reactions have already been sufficiently elucidated in the literature. Based on past knowledge, it is known that these reactions by microorganisms change depending on the microorganism concentration, reaction time, substrate concentration, etc. even when the water temperature during the reaction is constant. In the method of the present invention, both the microorganisms attached to the flaky material and the suspended microorganisms are involved in the completion of this microbial reaction, so the concentration of microorganisms can be reduced compared to the conventional method using only suspended microorganisms. There is an advantage that the concentration can be stably maintained at a high level, that is, the phenomenon of swelling of activated sludge that occurs when suspended microorganisms are used does not occur in the method of the present invention. Maintaining a high microbial concentration in the reaction tank in this manner has the effect of greatly shortening the reaction time. As a result, the number of reaction tanks to be installed can be reduced for the amount of raw solution to be processed per day.
Alternatively, the tank volume can be reduced and the tank volume can be reduced, increasing the economic value.

槽内の微生物濃度が高い場合、ともすると槽内の溶存酸
素不足を生じ易くなるが、本発明の方法では槽内底部で
散気装置によシ生じた気泡が攪拌翼の回転による剪断力
によシ破壊されて気泡表面積を増加させることになるの
で槽内での酸素供給能力は既存の曝気槽の場合よシも高
められることになる。したがって、槽内での溶存酸素不
足という問題は考慮しなくてよく、微生物量は浮遊物濃
度として5,000■/11を越えてさらに高く維持す
ることも可能である。
When the concentration of microorganisms in the tank is high, it is easy to cause a lack of dissolved oxygen in the tank, but in the method of the present invention, the air bubbles generated by the air diffuser at the bottom of the tank are affected by the shearing force caused by the rotation of the stirring blades. Since the bubbles are destroyed and the surface area of the bubbles is increased, the oxygen supply capacity within the tank is increased compared to the existing aeration tank. Therefore, there is no need to consider the problem of lack of dissolved oxygen in the tank, and it is possible to maintain the amount of microorganisms as a suspended matter concentration higher than 5,000/11.

本発明の方法では原液よねも真比重または見掛は比重が
小さいかまたは等しい細片状物質が使用されるが、この
目的に最も適してbるものはアタ性ポリプロピレン、発
泡スチレン、ウレタン樹脂のフレーク、または軽石、海
綿、木材および樹皮などの天然産物や加工品などがある
。真比重または見掛は比重が原液に等しい細片状物質の
場合にもその寸法が比較的小さくて、かつ表面に微生物
が付着した場合には攪拌翼の回転を停止すると液面附近
に浮上することになるので、この目的のために使用でき
る。
In the method of the present invention, a flaky material having a true specific gravity or an apparent specific gravity that is small or equal to the stock solution is used. These include flakes, or natural and manufactured products such as pumice, sponge, wood, and bark. Even in the case of flaky substances whose true or apparent specific gravity is the same as that of the undiluted solution, if the size is relatively small and microorganisms adhere to the surface, they will float near the liquid surface when the rotation of the stirring blade is stopped. Therefore, it can be used for this purpose.

本発明の方法では寸法(相当径)を10fl以下とした
上記物質が使用される。寸法が10 mm、以上に大き
い物体は浮力が大きいので攪拌翼の回転のみで槽内に一
様に分散させることは困離となり、また全表面積も小さ
くなって効果は減少する。室内実験によれば寸法10f
i以下、空容積の15チ(容積)以下であれば、槽内液
のみを攪拌するのと余り大きな差を生じない範囲のエネ
ルギー消費量で細片状物質投入槽内液の混合を行なうこ
とができる。
In the method of the present invention, the above-mentioned substance whose size (equivalent diameter) is 10 fl or less is used. Objects larger than 10 mm have a large buoyant force, making it difficult to uniformly disperse them in the tank just by rotating the stirring blade, and the total surface area also becomes smaller, reducing the effectiveness. According to indoor experiments, the size is 10f.
i or less, if the empty volume is less than 15 cm (volume), mix the liquid in the tank for adding fine particles at an energy consumption that does not make much of a difference from stirring only the liquid in the tank. I can do it.

細片状物質の投入量は原液中の除去すべき物質の種類と
濃度によって異なる。一般にリンを除去する場合には槽
内液を完全嫌気状態に維持しなければならない関係上、
細片状物質投入量をその他の場合よりも多くするのがよ
い。実験結果から空容積の1%ないし15チ(容積)の
範囲で良好な結果が得られることが判明している。
The amount of fine material to be added varies depending on the type and concentration of the material to be removed in the stock solution. Generally, when removing phosphorus, the liquid in the tank must be maintained in a completely anaerobic state.
It is better to use a higher amount of fine material input than in other cases. Experimental results have shown that good results can be obtained in the range of 1% to 15 cm (volume) of empty volume.

以下、図面を参照して本発明の方法について更に詳細に
説明する。
Hereinafter, the method of the present invention will be explained in more detail with reference to the drawings.

本発明の最も基本的な態様として、反応槽内で攪拌装置
と散気装置が稼動している状態を縦断面図で第1図に、
停止している状態を縦断面図で第2図に示した。図中1
は反応槽であって角形であっても円形であってもよい。
As the most basic aspect of the present invention, FIG. 1 shows a vertical cross-sectional view of a state in which a stirring device and an aeration device are operating in a reaction tank.
Fig. 2 shows a vertical sectional view of the stopped state. 1 in the diagram
is a reaction tank, which may be square or circular.

また、反応槽容積は細片状物質を一様に分散できれば如
伺なる規模のものでもよい。円形の場合には掛拌翼の回
転で槽内液がとも廻りする虞れがち為ので2〜4枚の邪
魔板を槽内壁に取り付けるのがよい。槽内には攪拌翼2
が取付けられており、これは駆動部(モータ、減速機な
ど)3からの動力伝達によって回転する。また槽内には
散気装置4が設置されており、槽内に散気装置(散気管
など)を通じて送られる圧縮空気は別途設置しであるブ
ロワ−から空気管5を通じて供給される。反応槽には原
液流入管6、浄化液流出管7が取付けてあり、浄化液流
出管は所定の量の浄化液を流出できるように弁8が取付
けられている。また反応槽底部には排泥管10があシ静
止状態が維持されることによって沈殿した微生物塊9の
1部を余剰汚泥として排出できるように弁11が取付け
られている。反応槽内には微生物付着媒体として細片状
物質12が投入されるが、これ1は原液よりも軽い細片
状物質、好ましくは分子tio、ooo以下のアククチ
ツクポリプロピレン、例えば東京都千代田区丸め内3丁
目4の1新国際ビルデング834号、オスマン工業株式
会社から供給されるオスマン(登録商号)5号(寸法3
闘以上)、9号(3闘以下)等が使用される。細片状物
質は相互間の衝突などによって摩耗するので時々補給し
てやらなければならないがその頻度は数ケ月に1度穆度
である。
Further, the volume of the reaction tank may be of any size as long as the flaky material can be uniformly dispersed. In the case of a circular shape, there is a risk that the liquid in the tank may get mixed up due to the rotation of the stirring blades, so it is better to attach 2 to 4 baffle plates to the inner wall of the tank. There are 2 stirring blades in the tank.
is attached, and this is rotated by power transmission from a drive unit (motor, reducer, etc.) 3. Further, an air diffuser 4 is installed in the tank, and compressed air sent into the tank through the air diffuser (such as an air diffuser pipe) is supplied through an air pipe 5 from a separately installed blower. A raw solution inflow pipe 6 and a purified liquid outflow pipe 7 are attached to the reaction tank, and a valve 8 is attached to the purified liquid outflow pipe so that a predetermined amount of purified liquid can flow out. Further, a valve 11 is installed at the bottom of the reaction tank so that a part of the precipitated microbial mass 9 can be discharged as surplus sludge when the sludge drain pipe 10 is maintained in a stationary state. A flaky substance 12 is put into the reaction tank as a microbial adhesion medium, and this flaky substance 1 is lighter than the stock solution, preferably an active polypropylene with molecules less than tio or ooo, such as Chiyoda-ku, Tokyo. Marunouchi 3-4-1 Shin Kokusai Building No. 834, Osman (registered trade name) No. 5 (dimensions 3
No. 9 (3 or less), etc. are used. Since the flaky material is worn out due to mutual collisions, etc., it must be replenished from time to time, but the frequency is once every few months.

本願発明の方法は有機物含有排液の6方式の異なる操作
による微生物処理に適用される。その第1は通常行なわ
れている炭素化合物を除去する好気性微生物処理への適
用である。これは第1図のように原液流入管6によシ反
応槽の常用の高液位まで原液を満した後に散気又は散気
と攪拌を行ない、細片状物質を構内に一様に分散させて
、細片状物質の表面に付着している好気性微生物等の作
用により槽内液に含まれる溶解性有機性炭素系化金物の
5部チ以上が酸化と同化とによって減少した後に、第2
図に示すように散気と攪拌を停止して細片状物質を気液
境界面に集中させるとともに、細片状物質から剥離した
微生物塊は槽の底部建沈降させる。ついで槽内液量の5
0−80%程度を浄化液として流出管7から引抜くとと
もに、排泥管10から槽内液量の0.1〜1%程度を余
剰汚泥とともに引抜く。槽内液および余剰汚泥の引抜き
が終了した状況を第3図縦断面図で示す。引続いて原液
流入管6から常用の高液位までの原液の供給が行なわれ
、第1図に示す状態が繰り返えされる。この操作では原
液中の窒素の1部も除去されることになり、浄化効果の
かなり高い浄化液も得ることができる。
The method of the present invention is applied to microbial treatment of organic matter-containing wastewater through six different operations. The first is the application to the commonly used aerobic microbial treatment for removing carbon compounds. As shown in Figure 1, after filling the reactor with the stock solution to the usual high liquid level through the stock solution inlet pipe 6, aeration or aeration and stirring are performed to uniformly disperse the fine particles throughout the premises. After 5 parts or more of the soluble organic carbonaceous metals contained in the tank liquid are reduced by oxidation and assimilation due to the action of aerobic microorganisms attached to the surface of the flaky material, Second
As shown in the figure, aeration and agitation are stopped to concentrate the flaky material on the gas-liquid interface, and the microbial mass separated from the flaky material is allowed to settle to the bottom of the tank. Next, the amount of liquid in the tank is 5.
About 0-80% of the liquid is extracted from the outflow pipe 7 as purified liquid, and about 0.1-1% of the liquid amount in the tank is extracted from the sludge pipe 10 together with excess sludge. The vertical cross-sectional view in Figure 3 shows the situation when the tank liquid and excess sludge have been removed. Subsequently, the stock solution is supplied from the stock solution inlet pipe 6 to the usual high liquid level, and the situation shown in FIG. 1 is repeated. This operation also removes a portion of the nitrogen in the stock solution, making it possible to obtain a purification liquid with a considerably high purification effect.

第2は炭素化合物と窒素化合物の除去、とくに窒素除去
操作では有機物含有排液に含まれる炭素化合物を水素供
与体とした酸化窒素から窒素ガスへの転換(脱窒)を行
なう微生物処理に適用するものである。この方式では第
1図に示す原液流入管6により反応槽の常用の高液位ま
では液力監満さ時間は槽内液に含まれる酸化窒素の50
%以上が窒素ガス忙転換されるまでに要する時間である
。ついで散気と攪拌(または散気のみ)が行なわれるが
、これに要する時間は、原液に含まれているケルダール
窒素の(有機性窒素とアンモニア性窒素の和)80%以
上を酸化窒素に転換させる時間から決められる。この硝
化反応の際に槽内液の総アルカリ度が低下するようなら
ば苛性ソーダなどのアルカリ剤を注入して微生物反応が
正常に進行す石ような操作が付は加えられる。その後第
2図に示すように散気と攪拌を停止して細片状物質を槽
内液面に集中させるとともに、細片状物質から剥離した
微生物塊を槽の底部に沈降させた後に浄化液の流出と排
泥とを行なう。ここにおいて、排泥量は前記第1とほぼ
同量であるが、浄化液の流出量#−i第1の場合と異な
る。すなわち、第1の場合の浄化液流出と排泥後の液位
は第3図に示したように極めて低くなるが、第2の場合
には槽内液に含まれている酸化窒素を窒素ガスに転換(
脱窒)する必要から残留させておくので、槽内の液位は
第4図に示したように常用の高液位14osないし70
憾の位置にあることになる。引続いて原液流入管より常
用の高液位までの原液の供給が行なわれ、同様の操作が
繰返えされる。
The second is the removal of carbon compounds and nitrogen compounds, especially in nitrogen removal operations, it is applied to microbial treatment that converts nitrogen oxide into nitrogen gas (denitrification) using carbon compounds contained in organic matter-containing wastewater as hydrogen donors. It is something. In this method, the liquid force is supervised by the stock solution inflow pipe 6 shown in Fig. 1 until the liquid level reaches the normally used high level in the reaction tank.
% or more is the time required until nitrogen gas is converted. Next, aeration and stirring (or only aeration) are performed, but the time required for this is to convert more than 80% of the Kjeldahl nitrogen (sum of organic nitrogen and ammonia nitrogen) contained in the stock solution into nitrogen oxide. It can be determined based on the time. If the total alkalinity of the solution in the tank decreases during this nitrification reaction, an additional step is taken to ensure that the microbial reaction progresses normally by injecting an alkaline agent such as caustic soda. After that, as shown in Figure 2, aeration and stirring are stopped to concentrate the fine particles on the liquid surface in the tank, and the microorganisms separated from the fine particles are allowed to settle to the bottom of the tank, after which the purified liquid is drain and remove sludge. Here, the amount of sludge discharged is approximately the same amount as the first case, but the amount of outflow of purifying liquid #-i is different from the first case. That is, in the first case, the liquid level after the purified liquid flows out and the sludge is drained becomes extremely low as shown in Figure 3, but in the second case, the nitrogen oxide contained in the liquid in the tank is replaced with nitrogen gas. Convert to (
Since it is left in the tank for the purpose of denitrification (denitrification), the liquid level in the tank is kept at the usual high level of 14os to 70os, as shown in Figure 4.
It will be a deplorable position. Subsequently, the stock solution is supplied from the stock solution inflow pipe to the usual high liquid level, and the same operation is repeated.

第3は炭素化合物と窒素化合物の除去、とくに窒素除去
操作では内生呼吸状態にちる微生物細胞の分解による有
機物を水素供与体とした酸化窒素から窒素ガスへの転換
(脱窒)を行なう微生物処理に適用するものである。こ
の方式では第1図に示す原液流入管6によシ反応槽の常
用の高水位まで原液が満された後に、まず散気と攪拌(
または散気のみ)が行なわれる。これに要する時間は原
液に含まれているケルダール窒素の80%以上を酸化窒
素に転換させる時間から決められる。この硝化反応の際
に槽内液の総アルカリ度が極めて低下するようならば、
苛性ソーダなどのアルカリ剤を注入して微生物反応が正
常に進行するような操作が付は加えられる。続いて散気
なしで攪拌のミ力工行なわれる。この攪拌時間は槽内液
に含まれる酸化窒素の50−以上が窒素ガスに転換され
るまでに要する時間である。ついで、再び散気と攬1牢
(または散気のみ)が行なわれる。これに要する時1川
は槽内液に含まれている窒素ガスを大気中に1々出させ
るだめのものであシ、通常は5分間ないし10分間であ
る。その後、第2図に示す工うに散気と攪拌を停止して
細片状物質を槽内液面に集中させるとともに、細片状物
質から剥離した微生物塊を槽の底部に沈降させた後に浄
化液の排出と杉ト泥とを行なう。ここにおいて浄化液の
流出量と排泥量は第1の場合とほぼ同じである。すなわ
ち、浄化液流出と排泥後の液位は第3図に示したように
低い位置に保たれる。引続いて原液流入管妙1ら常用の
高液位までの原液の供給が行なわれ、同様の操作が繰り
返えされる。
The third step is the removal of carbon compounds and nitrogen compounds, especially in the nitrogen removal operation, microbial treatment that converts nitrogen oxide into nitrogen gas (denitrification) using organic matter as a hydrogen donor through the decomposition of microbial cells under endogenous respiration. This applies to In this method, after the stock solution inlet pipe 6 shown in Fig. 1 is filled with the stock solution up to the normally used high water level of the reactor, first aeration and stirring (
or diffused only). The time required for this is determined from the time required to convert 80% or more of the Kjeldahl nitrogen contained in the stock solution into nitrogen oxide. If the total alkalinity of the tank solution decreases significantly during this nitrification reaction,
An additional operation is added to ensure that the microbial reaction progresses normally by injecting an alkaline agent such as caustic soda. Subsequently, stirring is carried out without aeration. This stirring time is the time required for 50 or more of the nitrogen oxide contained in the tank liquid to be converted into nitrogen gas. Then, aeration and aeration (or only aeration) are performed again. The time required for this is just enough to allow the nitrogen gas contained in the tank liquid to be released into the atmosphere one by one, and usually takes 5 to 10 minutes. After that, aeration and agitation are stopped using the mechanism shown in Figure 2 to concentrate the flaky material on the liquid surface in the tank, and the microbial mass separated from the flaky material is allowed to settle to the bottom of the tank before being purified. Drain the liquid and add cedar mud. In this case, the amount of purification liquid flowing out and the amount of sludge discharged are almost the same as in the first case. That is, the liquid level after the purification liquid flows out and the sludge is drained is kept at a low level as shown in FIG. Subsequently, the stock solution is supplied from the stock solution inlet pipe 1 to the usual high liquid level, and the same operation is repeated.

第4は炭素化合物とリン化合物の除去、とくにリン除去
操作では反応槽内の微生物からリンを溶脱させた後に1
微生物によるリンの過剰摂取(脱リン)を行なう微生物
処理に適用するものである。
The fourth step is the removal of carbon compounds and phosphorus compounds, especially in the phosphorus removal operation, after leaching phosphorus from the microorganisms in the reaction tank.
This method is applied to microbial treatment that involves the excessive uptake of phosphorus by microorganisms (dephosphorization).

この方式では反応槽内に常用の高液位まで原液75(満
された後に、第5図に示すようにまず攪拌のみが行なわ
れる。微生物からのリンの溶脱を行なわしめるために、
水沫では細片状物質の量を第1ないし第3の場合より多
く投入した上、撹拌翼の構造、設置位置、回転数を第1
図の状態とはやや変化させて、細片状物質の1部が液面
で一様な膜状を形成して残留し、大部分が槽内液と十分
に混合する状態−すなわち、第5図で示す状態で運転で
きるようにする。細片状物質の1部で液面に一様な膜を
形成することにより、槽内は完全な嫌気状態が極めて早
い時間内に形成され2、微生物からのリンの溶脱が急速
に起ることになる。微生物からのリンの溶脱が相当貴行
なわれ、槽内液中の溶解性リンが攪拌開始前に対し15
0%以上に達しだ後、第6図に示すように散気と攪拌(
または散気のみ)による好気性微生物処理が行なわれ、
ここで溶解性リンは微生物に過剰に摂取されて槽内液に
含まれる溶解性リンは攪拌開始前の70チ以下まで減少
する。このような状態に達したら、第2図に示したと同
様に散気と攪拌(または散気のみ)を停止して細片状物
質を気液接触面に集中させ、ついで第3図に示したと同
様に槽内液量の50〜80%程度を浄化液として流出管
から引抜くとともに排泥管によシ槽内液量の0.1〜1
%程度を余剰汚泥とともに引抜く。引続いて原液供給が
常用の高水位まテ行すわれ、第5図に示す状態が繰返え
される。
In this method, after the reactor is filled with the stock solution 75 (to the usual high level), only stirring is performed as shown in Figure 5.In order to leached phosphorus from the microorganisms,
In the case of water droplets, a larger amount of fine particles were added than in the first to third cases, and the structure, installation position, and rotation speed of the stirring blades were changed to the first to third cases.
Slightly different from the state shown in the figure, a part of the flaky material remains as a uniform film on the liquid surface, and most of it is sufficiently mixed with the liquid in the tank. Be able to operate under the conditions shown in the diagram. By forming a uniform film on the liquid surface with a portion of the flaky material, a completely anaerobic state is formed in the tank within an extremely short time2, and phosphorous is rapidly leached from the microorganisms. become. The leaching of phosphorus from the microorganisms took place considerably, and the soluble phosphorus in the tank solution decreased by 15% compared to before the start of stirring.
After reaching 0% or more, aeration and stirring (
Aerobic microbial treatment is carried out by (or only by aeration),
Here, the soluble phosphorus is excessively ingested by the microorganisms, and the soluble phosphorus contained in the liquid in the tank is reduced to 70% or less before the start of stirring. When such a state is reached, aeration and agitation (or only aeration) are stopped to concentrate the fine particles on the gas-liquid contact surface in the same way as shown in Figure 2, and then as shown in Figure 3. Similarly, about 50 to 80% of the liquid volume in the tank is drawn out from the outflow pipe as purification liquid, and 0.1 to 1% of the liquid volume in the tank is drawn out to the drain pipe.
% is extracted along with excess sludge. Subsequently, the stock solution is supplied at the usual high water level, and the situation shown in FIG. 5 is repeated.

第5は、第4および第2の微生物による処理を組み合せ
たものである。すなわち、反応槽内の微生物からのリン
の溶脱と微生物によるリンの過剰な摂取、および有機物
含有排液に含まれる炭素化合物を水素供与体とした硝酸
性窒素から窒素ガスへの転換(脱窒)を行なう3種類の
成分を除去する微生物処理に適用される。この方式では
第7図に示すごとく、上下2段の攪拌翼を有する攪拌装
置が使用されるほか、浄化液貯留槽13と浄化液貯留槽
14とその付属ポンプ15が設置される。水沫での細片
状物質の投入量は第3の場合と同量である。
The fifth is a combination of the fourth and second microbial treatments. In other words, leaching of phosphorus from microorganisms in the reaction tank, excessive intake of phosphorus by microorganisms, and conversion of nitrate nitrogen into nitrogen gas using carbon compounds contained in organic matter-containing wastewater as hydrogen donors (denitrification). It is applied to microbial treatment to remove three types of components. In this system, as shown in FIG. 7, a stirring device having two stages of upper and lower stirring blades is used, and a purified liquid storage tank 13, a purified liquid storage tank 14, and an attached pump 15 are installed. The amount of fine material input in the water droplets is the same as in the third case.

また、下部の攪拌翼の構造、設置位置等は常用の高液位
の40%ないし70%となる液位において、細片状物質
の1部で液面に一様な膜を形成して槽内水を早期に完全
な嫌気状態に維持できるようにする。第7図は細片状物
質、微生物を含む構内残留液に原液を加えて攪拌を行な
い、微生物に含まれるリンの溶脱を第4の場合と同様に
行なわしめている状態を示している。第8図はそれに浄
化液貯留槽からの浄化液を反応槽の常用の高液位まで加
えて攪拌を行ない、無または微溶存酸素状態を維持して
槽内液に含まれている酸化窒素の窒素ガスへの転換(脱
窒)を行なっている状態を示している。槽内液に含まれ
る酸化窒素の50%以上が窒素ガスに転換して脱窒反応
が終了に近ずくと、攪拌と散気を行なうことにより、す
でに溶脱しているリンの微生物への過剰な摂取を行なわ
しめるとともに、槽内液に含まれているケルダール窒素
の閏チ以上を酸化窒素に転換するっこの場合の散気と攪
拌(または散気のみ)に要する時間はこの酸化窒素の転
換に要する時間から定まる。この硝化反応の際に槽内液
の総アルカリ度が極めて低下するようならば苛性ソーダ
などのアルカリ剤を注入して微生物反応が正常に進行す
る操作が付は加えられる。その後、反応槽は第2図に示
すと同様に散気攪拌(または散気のみ)を停止して細片
状物質を液面に集中させるとともに、細片状物質から剥
離した微生物塊は檜の°底部に沈降させ、第9図に示す
ごとく浄化液を浄化液貯留槽に移し、余剰の浄化液を貯
水槽から流出させる。また排泥管から槽内液量の0.1
〜1%程度を余剰汚泥とともに引抜く。次いで原液を加
えて第7図に示す状態で運転が行なわれ、それぞれの操
作が繰返えされる。
In addition, the structure and installation position of the lower stirring blade are such that a uniform film is formed on the liquid surface with part of the flaky material at a liquid level of 40% to 70% of the normally used high liquid level. To quickly maintain inland water in a completely anaerobic state. FIG. 7 shows a state in which a stock solution is added to the residual liquid in the plant containing flakes and microorganisms and stirred, and phosphorus contained in the microorganisms is leached out in the same manner as in the fourth case. Figure 8 shows that the purified liquid from the purified liquid storage tank is added to the reaction tank up to the normally used high liquid level and stirred to maintain a state of no or very little dissolved oxygen to eliminate the nitrogen oxides contained in the liquid in the tank. This shows a state in which conversion to nitrogen gas (denitrification) is being performed. When more than 50% of the nitrogen oxide contained in the tank liquid is converted to nitrogen gas and the denitrification reaction is nearing completion, stirring and aeration are performed to prevent the excess phosphorus that has already been leached from reaching the microorganisms. In this case, the time required for aeration and agitation (or just aeration) is the time required for the conversion of nitrogen oxide. It is determined by the time required. During this nitrification reaction, if the total alkalinity of the tank solution drops significantly, an additional step is added to inject an alkaline agent such as caustic soda to allow the microbial reaction to proceed normally. After that, in the reaction tank, as shown in Figure 2, aeration agitation (or only aeration) is stopped to concentrate the flaky material on the liquid surface, and the microbial mass separated from the flaky material is removed from the cypress. °The purification liquid is allowed to settle to the bottom, and the purification liquid is transferred to a purification liquid storage tank as shown in FIG. 9, and the excess purification liquid is allowed to flow out from the water storage tank. In addition, 0.1 of the liquid volume in the tank is removed from the sludge pipe.
~1% is extracted along with excess sludge. Next, the stock solution is added and operation is performed in the state shown in FIG. 7, and each operation is repeated.

第6は第4および第3の微生物による処理を組み合せた
ものである。すなわち、反応槽内微生物のリンの溶脱と
微生物による過剰摂取および微生物の内生呼吸により生
成される溶解性有機炭素系化合物を利用しての酸化窒素
から窒素ガスへの転換(脱窒)を行なうなど、3種類の
成分を除去する微生物処理に適用するものである。この
方式では運転方法は異なるが、反応槽の設備、細片状物
質の投入量などは第4の場合と全く同様である。
The sixth is a combination of the fourth and third microbial treatments. That is, conversion of nitrogen oxide to nitrogen gas (denitrification) is performed using soluble organic carbon-based compounds produced by leaching of phosphorus by microorganisms in the reaction tank, excessive intake by microorganisms, and endogenous respiration of microorganisms. It is applied to microbial treatment to remove three types of components. Although the operating method is different in this method, the equipment of the reaction tank, the amount of fine material to be fed, etc. are exactly the same as in the fourth case.

すなわち、反応槽内の常用の高液位まで原液が満された
後に、第5図に示すように散気なしでの攪拌が行なわれ
る。微生物からのリンの溶脱を行なわしめるために、細
片状物質の投入量を第4の場合と同じとして細片状物質
の1部が液面で一様な膜状を形成して残留し、大部分が
槽内液と十分に混合する状態で運転される。そして槽内
液を完全嫌気性に保って槽内微生物からのリンの溶脱を
第4の場合と同様に攪拌開始前に対し15F)%以上行
なわしめる。次に第6図に示すように散気と攪拌(また
は散気のみ)を行なって好気性微生物処理を行なうこと
により、槽内の溶解性リンの微生物による禍剰摂取およ
びケルダール窒素の80%以上の酸化窒素への転換を進
める。この場合の1拌と散気の併用に要する時間はこの
酸化窒素への転換に要する時間から定まる。この硝化反
応の際に槽内液の総アルカリ度が極めて低下するような
らば、苛性ノーズなどのアルカリ剤を注入して微生物反
応が正常に進行する操作が付は加えられる。次に散気を
停止して攪拌のみにより無酸素状態を維持する。この操
作において完全嫌気状態が維持されることになると、す
でに述べたリンの溶脱が起るので、ここでは完全嫌気状
態とならないように時時ごく僅かの散気を行なうことで
無溶存酸素またはそれに極めて近い微溶存酸素の状態に
保持させておく。この際の無または微溶存酸素の状態を
維持する時間は槽内液に含まわる酸化窒素の5部チ以上
が窒素ガスに転換される時間から定まる。続いて短時間
(約5〜10分)の散気と攪拌(また、は散気のみ)を
行なって槽内液中に残留する壺素ガスを大気中に放出さ
せてから、散気と攪拌をともに停止させて第2図に示し
たと同様に細片状物質を液面に集中させ、細片状物質に
付着していない微生物塊は沈殿させて、さらに第3図に
示したと同様に槽内液量の50〜80チ程度を浄化液と
1〜で流出管より引抜くとともに、排泥管より槽内液骨
の0.1〜1係程度を余剰汚泥とともに引抜く。引続い
て原液供給が槽内最高水位まで行なわれ、第5図に示す
状態が繰返えされる。
That is, after the reactor is filled with the stock solution up to the commonly used high liquid level, stirring without aeration is performed as shown in FIG. In order to cause the leaching of phosphorus from the microorganisms, a part of the flaky material forms a uniform film shape on the liquid surface and remains, with the amount of the flaky material input being the same as in the fourth case. Most of the liquid is operated in a state where it is sufficiently mixed with the liquid in the tank. Then, the liquid in the tank is kept completely anaerobic, and phosphorus is leached from the microorganisms in the tank by 15% or more compared to before the start of stirring, as in the fourth case. Next, as shown in Figure 6, by performing aerobic microbial treatment by performing aeration and agitation (or only aeration), the microorganisms can absorb excess soluble phosphorus in the tank and more than 80% of the Kjeldahl nitrogen. Promote the conversion of nitrogen into nitrogen oxide. In this case, the time required for the combination of stirring and aeration is determined by the time required for conversion to nitrogen oxide. If the total alkalinity of the tank solution drops significantly during this nitrification reaction, an additional operation is added to inject an alkaline agent such as caustic nose to allow the microbial reaction to proceed normally. Next, aeration is stopped and anoxic conditions are maintained only by stirring. If a completely anaerobic state is maintained in this operation, the leaching of phosphorus will occur as described above, so in order to prevent a completely anaerobic state, a very small amount of air is diffused from time to time to prevent dissolved oxygen or It is maintained in a state of extremely low dissolved oxygen. At this time, the time period for maintaining the state of no or only a small amount of dissolved oxygen is determined by the time period required for 5 parts or more of the nitrogen oxides contained in the tank liquid to be converted into nitrogen gas. Next, aeration and agitation (or just aeration) are performed for a short period of time (approximately 5 to 10 minutes) to release the gas remaining in the tank liquid into the atmosphere, and then aeration and agitation are performed. Both are stopped and the flaky material is concentrated on the liquid surface as shown in Figure 2, the microbial mass not attached to the flaky material is allowed to precipitate, and then the liquid is concentrated in the tank as shown in Figure 3. About 50 to 80 inches of the internal liquid is pulled out from the outflow pipe along with the purification liquid, and about 0.1 to 1 part of the liquid bone in the tank is pulled out from the sludge pipe together with excess sludge. Subsequently, the stock solution is supplied to the highest water level in the tank, and the state shown in FIG. 5 is repeated.

微生物を用いる窒素除去およびリン除去では微生物反応
を行なう槽内液の液温、基質の種類と濃度、反応に関与
する微生物の濃度などが関係するので、酸化窒素から窒
素ガスへの転換の際に微生物反応にかかわシやすい溶解
性炭素化合物−たとえばメタノールを補助的に添加して
反応を効果的にすすめたり、またリン除去のために金属
塩凝集剤−たとえば硫酸アルミニウムを補助的に添加し
て除去効率の向上をはかることなどは懸濁性微生物のみ
を用いる生物処理の場合と同様に行なうこともできる。
Nitrogen and phosphorus removal using microorganisms is affected by the temperature of the tank liquid in which the microbial reaction takes place, the type and concentration of the substrate, and the concentration of the microorganisms involved in the reaction, so when converting nitrogen oxide to nitrogen gas, Dissolved carbon compounds that are easily involved in microbial reactions - for example, methanol can be added as an auxiliary to promote the reaction effectively, and metal salt flocculants - for example, aluminum sulfate can be added as an auxiliary to remove phosphorus. Improvements in efficiency can also be carried out in the same manner as in the case of biological treatment using only suspended microorganisms.

実施例 散気装置と攪拌装置を装備した回分式微生物反応槽(ア
クリル製5))を数個のタイマーと液面スイッチとそれ
を制御する電気回路により、原液流入、槽内液攪拌、槽
内液への散気と攪拌、槽内液への散気、槽内液の静置、
中間液位からの浄化液の排出、底部堆積微生物塊の排出
(排泥)などの操作をそれぞれ任意設定の時間間隔で、
任意設定の時間範囲(0時間設定も可能)で行なえるよ
うにした装置を用いて室内実験を行なった。実験に用い
た原液は粉末孔に尿素塩化アンモン、リン酸二水素カリ
ウムを添加したうえ水道水を加えて生活排水に近似させ
たものであり、T −BOD 200■/It ’rO
c 130η/l、ケルダール窒素(Kj−N)40η
/J(有機性窒素20■/!、アンモニア性窒素20+
v/J)、全リン′(T−P ) 8m9/lをすべて
溶解性成分の形で含んでいる。同一の原液を用いてすで
に述べてきた6種の実験を行なってきた。
Example: A batch type microbial reaction tank (acrylic 5) equipped with an aeration device and a stirring device is controlled by several timers, a liquid level switch, and an electric circuit that controls them. Aeration and stirring of the liquid, aeration of the liquid in the tank, leaving the liquid in the tank still,
Operations such as discharging the purification liquid from the intermediate liquid level and discharging the microbial mass deposited at the bottom (sludge removal) are performed at arbitrarily set time intervals.
Indoor experiments were conducted using a device that allows experiments to be carried out in any time range (zero hour setting is also possible). The stock solution used in the experiment was made to approximate domestic wastewater by adding urea ammonium chloride and potassium dihydrogen phosphate to the powder pores, and then adding tap water.
c 130η/l, Kjeldahl nitrogen (Kj-N) 40η
/J (organic nitrogen 20■/!, ammonia nitrogen 20+
v/J) and total phosphorus' (T-P) 8 m9/l, all in the form of soluble components. The six experiments already described have been carried out using the same stock solution.

実施例−1 粒径3m以下の細片状物質、アタクチック、1? 1J
プロピレン(オスマン9号)を反応槽中容積の5チを投
入し、2週間以上にわたり原液との好気−静置の繰返え
しによる接触を行なって、細片状物質の表面に微生物を
付着、増殖させた。
Example-1 Fragile material with a particle size of 3 m or less, atactic, 1? 1J
Propylene (Ottoman No. 9) was added to the reaction tank in an amount of 5 cm, and the raw solution was brought into contact with the stock solution by repeated aerobic and standing conditions for over 2 weeks to infiltrate microorganisms on the surface of the flaky material. attached and proliferated.

静置状態(第2図に示す)において槽の中間液位から浄
化液と余剰汚泥を含む液を合せて201引抜いて第3図
の状態を維持した後に原液供給ポンプによって原液を反
応槽の常用の高水位まで供給(液面スイッチの設定によ
り一定液位に達したら原液供給ポンプを停止)した後、
第1図に示すように散気と攪拌とを行なって微生物の付
着したアタクチックポリプロピレン粒子を槽内にほぼ一
様に分散させて好気性微生物反応を2時間にわたって行
なった。次に、散気と攪拌とを停止して0.75時間に
わたシ槽内液を静止状態に置いた。その後0.2時間か
けて浄化液19.8Jと余剰汚泥を含む液0.2ノとを
自然流下によシ引抜き、その後、 0.05時間かけて
原液を常用の高液位まで揚水した。この槽内液の散気と
攪拌を行なっているときに径スnのガラス管を用いて、
槽の液表面から底部までの垂直方向のアタクチックポリ
プロピレンの細片を含む槽内液を採取した。この槽内液
試料を2分して、一方を超音波洗浄器にかけてアタクチ
ック、/ IJプロピレン粒子の表面に付着している微
生物を剥離、分離することにより槽内液に含まれる微生
物量を全揮発性浮遊物濃度とするとともに、微生物の付
着したアタクチックポリプロピレンを除いた槽・内液に
ついても(懸濁性)揮発性浮遊物濃度を測定した。また
採取しておいた浄化液の成分も測定した。
In the stationary state (shown in Figure 2), the purified liquid and the liquid containing excess sludge are pulled out from the intermediate liquid level of the tank 201 to maintain the state shown in Figure 3, and then the stock solution is supplied to the reaction tank by the stock solution supply pump. After supplying the raw solution to a high water level (stop the raw solution supply pump when a certain level is reached by setting the liquid level switch),
As shown in FIG. 1, the atactic polypropylene particles to which microorganisms were attached were dispersed almost uniformly in the tank by aeration and stirring, and an aerobic microbial reaction was carried out for 2 hours. Next, aeration and agitation were stopped, and the liquid in the cotton tank was kept stationary for 0.75 hours. Thereafter, 19.8 J of the purified liquid and 0.2 J of the liquid containing excess sludge were drawn out by gravity over a period of 0.2 hours, and then the undiluted solution was pumped up to the commonly used high liquid level over a period of 0.05 hours. While aerating and stirring the liquid in the tank, a glass tube with a diameter of n is used to
A tank solution containing vertical strips of atactic polypropylene from the surface of the tank to the bottom was collected. This tank liquid sample is divided into two parts, and one part is applied to an ultrasonic cleaner to peel off and separate the microorganisms attached to the surface of the atactic/IJ propylene particles, thereby completely volatilizing the amount of microorganisms contained in the tank liquid. In addition to measuring the concentration of volatile suspended solids, the concentration of volatile suspended solids (suspended) was also measured for the tank and internal liquid excluding atactic polypropylene with microorganisms attached. The components of the collected purification fluid were also measured.

これらの測定結果を次に示す。The results of these measurements are shown below.

槽内液 全揮発性浮遊物濃度 4,620■/l懸濁し
ている揮発性浮遊物濃度 420η/l浄化液 pH6
,7浮遊物 5 m9/IT−BOD 17.211v
J TOC30,2m9/IATkD 15.511v
J NOn+N02−N 2.2rny/1実施例−2 粒径3朋以下の細片状物質、アタクチックポリプロピレ
ン(オスマン9号)を反応槽全容積の5チを投入した状
態で原液との無酸素−好気一静市の繰返しによる微生物
の馴致を2週間以上続けた。
Tank liquid Total volatile suspended solids concentration 4,620 η/l Suspended volatile suspended solids concentration 420η/l Purification liquid pH 6
,7 Floating objects 5 m9/IT-BOD 17.211v
J TOC30,2m9/IATkD 15.511v
J NOn+N02-N 2.2rny/1 Example-2 Atactic polypropylene (Ottoman No. 9), a flaky material with a particle size of 3 mm or less, was added to the reaction tank in an amount of 5 mm, and was mixed with the stock solution in an oxygen-free manner. - The microorganisms were acclimatized by repeated aerobic cycles for more than two weeks.

静止状態(第2図に示す)において槽の中間液位から浄
化液と余剰汚泥を含む液を合せて8.1!引抜いて第4
図の状態を維持した後に、原液供給ポンプにより原液を
反応槽の常用の高水位まで供給した後、まず2時間にわ
たシ攪拌のみを行なって微生物の付着したアタクチック
ポリプロピレン細片を構内に一様に分散させた。この状
態で槽内の溶存酸素を測定したところ1o分後1/C0
,5m9/l、加分後にほぼO■/!に達していること
を確認した。次に散気と攪拌とを併用して3時間にわた
って好気状態を維持した。ついで散気と攪拌とを停止し
て0.75時間にわたり槽内液を静止状態に維持した後
に、0.2時間かけて浄化液8.OA’と余剰汚泥を含
む液0.11を引抜き、その後0.05時間かけて原液
を常用の高液位まで揚水した。槽内液の散気と攪拌を行
なっているときに、径24@のガラス管を用いて、檜の
液表面から底面寸でのアタクチックポリプロピレン細片
を含む槽内液を採取し、実施例−1と同時に微生物量を
全揮発性浮遊物濃度および懸濁している揮発性浮遊物濃
度として測定した。また採取しておいた浄化液の成分を
測定した。
In a stationary state (as shown in Figure 2), the total amount of purified liquid and liquid containing excess sludge from the intermediate liquid level of the tank is 8.1! Pull out the fourth
After maintaining the condition shown in the figure, the stock solution was supplied to the reaction tank using the stock solution supply pump to the normally used high water level, and then only stirring was performed for 2 hours to remove the atactic polypropylene pieces that had attached microorganisms. It was dispersed evenly. When the dissolved oxygen in the tank was measured in this state, it was 1/C0 after 10 minutes.
, 5m9/l, almost O■/ after addition! confirmed that it has been reached. Next, aerobic conditions were maintained for 3 hours using a combination of aeration and stirring. Then, after stopping the aeration and stirring and maintaining the liquid in the tank in a stationary state for 0.75 hours, the purified liquid 8. 0.11 l of the liquid containing OA' and excess sludge was drawn out, and then the stock liquid was pumped up to a commonly used high liquid level over 0.05 hours. While aerating and stirring the liquid in the tank, a glass tube with a diameter of 24 @ was used to collect the liquid in the tank containing atactic polypropylene pieces from the surface of the cypress liquid to the bottom dimension. -1 and simultaneously measured the amount of microorganisms as total volatile suspended matter concentration and suspended volatile suspended matter concentration. In addition, the components of the purified liquid that had been collected were measured.

これらの測定結果を次に示す。The results of these measurements are shown below.

槽内液 全揮発性浮遊物濃度 5.8701J懸濁して
いる揮発性浮遊物濃度 7201Mj/l!浄化液 p
H7,4浮遊物 2 my/IT−BOD 9.8my
/7 TOC1s、5trtq/ltT −N 14.
5η/il Kj−m o、5mtz/lNO3+NO
2N 14.0°m9/1実施例−3 寸法3n以下の細片状物質、アタクチックポリプロピレ
ン(オスマン9号)を反応槽全容積の5チを投入した状
態で原液との好気−無酸素一好気−静止の繰返しにょる
′微生物の馴致を2週間以上続けた。
Tank liquid Total volatile suspended solids concentration 5.8701J Suspended volatile suspended solids concentration 7201Mj/l! Purification liquid p
H7,4 floating matter 2 my/IT-BOD 9.8 my
/7 TOC1s, 5trtq/ltT -N 14.
5η/il Kj-m o, 5mtz/lNO3+NO
2N 14.0°m9/1 Example-3 Atactic polypropylene (Ottoman No. 9), a flake-like material with a size of 3n or less, was mixed with the stock solution in an aerobic-anoxic manner with 5 cm of the total volume of the reaction tank. Acclimatization of the microorganisms by repeating aerobic-static cycles was continued for more than two weeks.

静止状態(第2図に示す)において槽の中間液位より浄
化液と余剰汚泥を含む液を合せて201引抜いて第3図
の状態を維持した後に原液供給lンゾにより原液を反応
槽の常用の高液位まで供給した後、第1図に示すように
散気と攪拌を行なって微生物の付着したアタクチックポ
リプロピレン細片を槽内にほぼ一様に分散させて好気性
微生物反応を6時間にわたって行なった。この間pHを
連続的に測定し、苛性ソーダ液を用いてl)Hを7.5
前後に維持させた。次に散気を停止し、攪拌を4.9時
間にわた如継続した。この間檜内の溶存酸素を測定した
ところ10分後に#1ぼ0■/ノに達していることが判
明した。次に散気と攪拌とを0.1時間にわたシ継続し
、続いて散気と攪拌とを停止して0.75時間にわたシ
槽内液を静止状態に維持した後に、約0.2時間かけて
浄化液19.91と余剰汚泥を含む液0.11とを引抜
き、その後0.05時間かけて原液を常用の高液位まで
揚水した。このデータ収集時には排泥はとくに行なわな
かった。槽内液の散気と攪拌を行なっているときに径2
4訂のガラス管を用いて実施例−1と同時に槽内試料を
採取して、微生物濃度を全揮発性浮遊物濃度および懸濁
している揮発性浮遊物濃度として測定した。また採取し
ておいた浄化液の水質を測定した。
In a stationary state (as shown in Figure 2), the clarified liquid and the liquid containing excess sludge are pulled out from the intermediate level of the tank 201 to maintain the state shown in Figure 3, and then the raw solution is transferred to the reaction tank by the stock solution supply pipe. After supplying the liquid to the usual high level, as shown in Figure 1, aeration and agitation are performed to disperse the atactic polypropylene pieces with microorganisms attached almost uniformly in the tank to stimulate an aerobic microbial reaction. It was done over time. During this period, the pH was continuously measured and the pH was adjusted to 7.5 using caustic soda solution.
It was maintained back and forth. The aeration was then stopped and stirring continued for 4.9 hours. During this time, the dissolved oxygen inside the cypress was measured and it was found that it had reached #1 0/no after 10 minutes. Next, aeration and agitation were continued for 0.1 hour, then aeration and agitation were stopped to maintain the liquid in the cotton tank in a stationary state for 0.75 hours, and after approximately 0.1 hour. 19.91 liters of purified liquid and 0.11 ml of liquid containing excess sludge were drawn out over 2 hours, and then the stock solution was pumped up to the commonly used high liquid level over 0.05 hours. Sludge removal was not performed during this data collection. While aerating and stirring the liquid in the tank,
At the same time as in Example-1, a sample was collected from the tank using a 4th edition glass tube, and the microorganism concentration was measured as the total volatile suspended matter concentration and the suspended volatile suspended matter concentration. We also measured the water quality of the purified liquid that had been collected.

これらの測定結果を次に示す。The results of these measurements are shown below.

槽内液 全揮発性浮遊物濃度 6,840 m’l/1
懸濁している揮発性浮遊物濃度 850■/l浄化液 
pH7,8浮遊物 3 靴々 T−BOD 10.1my/7?Toe 16.7ty
i/IT−N 15.3■/1 xj−N o、8mq
/INCh +NO;−N 14 、5■≠実施例−4 寸法3 fil+1以下の細片状物質、アタクチックポ
リプロピレン(オスマン9号)を反応槽9容Mの8チを
投入した状態で原液と嫌気−好気一靜止の繰返しによる
微生物の馴致を2週間以上続けた。
Tank liquid Total volatile suspended solids concentration 6,840 m'l/1
Concentration of suspended volatile substances: 850 ■/l purification liquid
pH7.8 Floating matter 3 Shoes T-BOD 10.1my/7? Toe 16.7ty
i/IT-N 15.3■/1 xj-N o, 8mq
/INCh +NO; -N 14, 5■≠Example-4 Dimensions: 3 fil+1 or less flaky material, atactic polypropylene (Ottoman No. 9), was mixed with the stock solution and anaerobically with 8 pieces of 9 volume M of the reaction tank charged. - Acclimatization of microorganisms was continued for more than two weeks by repeating aerobic pauses.

静止状態(第2図に示す)において槽の中間液位から浄
化液と余剰汚泥を含む液を合せて20J引抜いて第3図
の状態を維持した後に原液供給ポンプにより原液を反応
槽の常用の高水位まで供給した後、第5図に示すように
微生物の付着したアタクチックポリプロピレン細片の1
部が気液界面を一様に覆うようにし、大部分が構内に一
様に分散させるようにした。嫌気状態が維持された否か
の判断は酸化還元電位の測定によったが、1部分後には
すでに一100m’V以下になったことが確認された。
In a stationary state (as shown in Figure 2), a total of 20J of the purified liquid and the liquid containing excess sludge are drawn out from the intermediate liquid level of the tank and the state shown in Figure 3 is maintained.Then, the raw solution is supplied to the reaction tank by the stock solution supply pump. After supplying water to a high level, one of the atactic polypropylene strips with microorganisms attached, as shown in Figure 5.
The liquid was made to uniformly cover the air-liquid interface, and most of it was evenly distributed within the premises. Whether or not the anaerobic state was maintained was determined by measuring the redox potential, and it was confirmed that the potential had already dropped to below -100 m'V after one portion.

この嫌気状態を2時間にわたって継続し、た後、第6図
に示すような散気と攪拌を1時間にわたって行なった。
This anaerobic state was continued for 2 hours, and then aeration and stirring as shown in FIG. 6 were performed for 1 hour.

ついで散気と攪拌とを停止して0.75時間にわたり槽
内液を静止状1ill’に維持した後に、0.2時間か
けて浄化液19,8 A!と余剰汚泥を含む液0.2I
Iを引抜き、その後0.05時間かけて原液を常用の高
液位まで揚水した。槽内液の散気と攪拌を行なっている
ときに、径241ilのガラス管を用いて、槽の液表面
から底部までのアタクチックポリゾロピレン細片を含む
構内液を採取し、実施例−1と同様に微生物量を全揮発
性浮遊物濃度および懸濁している揮発性浮遊物濃度とし
て測定した。また採取しておいた浄化液の成分を測定し
たほか、嫌気状態終了直前に採取した試料をろ過したう
え総リン濃度(T−P)を測定した。
Then, aeration and agitation were stopped, and the liquid in the tank was maintained at a static state of 1ill' for 0.75 hours, and then the purified liquid was heated to 19.8 A! over 0.2 hours. and 0.2I of liquid containing excess sludge
I was withdrawn, and then the stock solution was pumped up to the commonly used high liquid level over 0.05 hours. While aerating and stirring the liquid in the tank, a glass tube with a diameter of 241 il was used to collect the liquid containing atactic polyzolopyrene fragments from the liquid surface to the bottom of the tank. In the same manner as in Example 1, the amount of microorganisms was measured as the concentration of total volatile suspended matter and the concentration of suspended volatile suspended matter. In addition to measuring the components of the purified liquid that had been collected, the sample taken just before the end of the anaerobic state was filtered and the total phosphorus concentration (T-P) was measured.

これらの測定結果を次に示す。The results of these measurements are shown below.

槽内液 全揮発性浮遊物濃度 4,850■/l懸濁し
ている揮発性浮遊物!1度 590 m9/1浄化液 
pH’ 7=1 浮遊物 6 mW/1’r−BOD 
18.1 mgl/l ’rOc 32.17!19/
IT −P O,06mf//l ’ 嫌気状態終了直前採取試料ろ通抜T ’−P 10.2
η/実施例−5 実施例−1から4までに使用した回分式微生物反応槽の
攪拌装置を上下2段翼に改造したうえ、浄化液用貯留槽
、浄化液貯留槽および返送ポンプ゛ を設置したポンプ
を設置した。反応槽の容量は他の実施例同様K 2.5
1 、浄化液用貯留槽は有効容量を121とした。
Tank liquid Total volatile suspended matter concentration 4,850 ■/l Suspended volatile suspended matter! 1 degree 590 m9/1 purification liquid
pH' 7=1 Floating matter 6 mW/1'r-BOD
18.1 mgl/l 'rOc 32.17!19/
IT -P O,06mf//l ' Sample filtering and removal just before the end of anaerobic state T '-P 10.2
η/Example-5 The stirring device of the batch-type microbial reaction tank used in Examples-1 to 4 was modified to have upper and lower two-stage blades, and a purification liquid storage tank, a purification liquid storage tank, and a return pump were installed. A pump was installed. The capacity of the reaction tank is K 2.5 as in other examples.
1. The effective capacity of the purification liquid storage tank was set to 121.

この反応槽に寸法311111以下の細片状物質、アタ
クチックポリプロピレン(オスマン9号)を反応槽空容
積の8チを投入した状態で原液を加えての常用の高液位
の50%における嫌気、続いて浄化液を返送して常用の
高液位における無酸素−好気一静止一浄化液引抜きによ
る微生物の馴致を3週間以上続けた。
Anaerobic reaction at 50% of the usual high liquid level was carried out by adding a stock solution to this reaction tank, with a piece of atactic polypropylene (Ottoman No. 9) having a size of 311111 or less and 8 cm of the empty volume of the reaction tank being charged. Subsequently, the purified liquid was returned and the microorganisms were allowed to acclimatize by the usual high liquid level, anoxic-aerobic, static, and purified liquid withdrawal for more than 3 weeks.

静止状態において槽の中間液位より浄化液19.9ノと
余剰汚泥を含む液0.1!を引抜いて浄化液の11、I
Jを浄化液貯留槽に貯留した後に、原液供給ポンプによ
り原液8.1ノを供給した後、第7図に示すように、微
生物の付着しているアタクチックポリプロピレン細片の
1部が気液界面を一様に覆うようにし、大部分が槽内で
一様に分散させるようにした。嫌気状態が維持されたか
否かの判断は酸化還元電位の測定によったが、10分後
にはすでに一100mV以下となっていることが確認さ
れた。
In a stationary state, the intermediate liquid level of the tank is 19.9 mm of purified liquid and 0.1 mm of liquid containing excess sludge! 11, I of purification liquid by pulling out
After storing J in the clarification liquid storage tank and supplying 8.1 mm of the undiluted solution with the undiluted solution supply pump, as shown in Fig. 7, part of the atactic polypropylene strips to which microorganisms have adhered become gas-liquid. The interface was made to be uniformly covered, and most of it was made to be evenly dispersed within the tank. Whether or not the anaerobic state was maintained was determined by measuring the redox potential, and it was confirmed that the potential was already below -100 mV after 10 minutes.

この嫌気状態を1.25時間にわたって継続した後、第
8図に示すように浄化液貯留槽からの浄化液を返送ポン
プにより反応槽の常用の高液位まで(量12.51 ’
)加えて2.25時間にわたって攪拌を継続した。次に
、散気と攪拌とを併用して3.5時間にわたって好気状
態を維持した。ついで散気と攪拌とを停止して0.75
54?−間にわたり槽内液を静止状態に維持した後に、
約0.2時間かけて浄化液19,9 /と余剰汚泥を含
む液0.11を引抜き、その後約0905時間で原液8
.11を構内に供給した。槽内液の散気と峰拌を行なっ
ているときに、径24期のガラス管を用いて実施例−1
と同様に構内試料を採取して、微生物濃度を全揮発性浮
遊物濃度および懸濁している揮発性浮遊物濃度として測
定した。また採取しておいた浄化液の成分を測定したほ
か、嫌気状態終了直前に採取した試料をろ運してその総
リン濃度(T−P)を測定した。
After this anaerobic condition continued for 1.25 hours, as shown in Figure 8, the purified liquid from the purified liquid storage tank was returned to the normally used high liquid level in the reaction tank by the return pump (amount of 12.51'
) and continued stirring for 2.25 hours. Next, aerobic conditions were maintained for 3.5 hours using a combination of aeration and stirring. Then, aeration and stirring were stopped and the temperature was reduced to 0.75.
54? - After maintaining the liquid in the tank in a static state for a period of time,
It took about 0.2 hours to draw out the purified liquid 19.9 / and the liquid containing excess sludge 0.11, and then about 0.905 hours to draw out the undiluted solution 8.
.. 11 were supplied to the premises. When performing aeration and peak agitation of the liquid in the tank, Example-1 was carried out using a glass tube with a diameter of 24 mm.
In-house samples were collected in the same manner as above, and the microbial concentrations were measured as total volatile suspended solids concentration and suspended volatile suspended solids concentration. In addition to measuring the components of the purified liquid that had been collected, the total phosphorus concentration (T-P) of the sample collected just before the end of the anaerobic state was measured.

これらの測定結果を次に示す。The results of these measurements are shown below.

槽内液 全揮発性浮遊物種度 6 、280 m9/1
懸濁している揮発性浮遊物濃度 1,080rnv/l
浄化液 pH7,3浮遊物 5 InVIT−BOD 
7.5+ll5I/J TO,C15,1+11.?/
7浄化液化液r−P O,12mV/l T−N 13
.8’W/A’”j N O,3,”i/l NO3+
N02−N 13.5Wf/AI嫌気状態終了直前採取
試料ろ通抜T−P23.5”llF/l実施例−6 実施例−4で使用したと同様の装置を用い、アククチツ
クポリゾロピレン(オスマン9号)の投入量も実施例−
4と同様に反応槽空容積の8%として、原液を加えての
常用の高水位での嫌気−好気一微酸素一好気一静止の繰
返しによる微生物の馴致を3週間以上続けた。
Tank liquid Total volatile suspended solids degree 6, 280 m9/1
Concentration of suspended volatiles: 1,080rnv/l
Purification liquid pH 7.3 suspended matter 5 InVIT-BOD
7.5+ll5I/J TO, C15, 1+11. ? /
7 Purified liquefied liquid r-P O, 12mV/l T-N 13
.. 8'W/A'"j N O,3,"i/l NO3+
N02-N 13.5Wf/AI Sample collected just before the end of anaerobic state Filtration and extraction T-P23.5”llF/l Example-6 Using the same equipment as used in Example-4, Example of input amount of (Ottoman No. 9)
Similarly to 4, the undiluted solution was added to 8% of the empty volume of the reaction tank, and microbial acclimatization was continued for more than 3 weeks by repeating anaerobic-aerobic-microoxygen-aerobic-rest at a commonly used high water level.

静止状態(第2図に示す)において、槽の中間液位より
浄化液と余剰汚泥を含む液を合せて2ol引抜いて第3
図の状態を維持した後に原液供給ポンプによって原液を
反応槽の常用の高液位まで供給した後微生物の付着した
アタクチックポリプロピレン細片の1部が気液界面を一
様に覆うようにし、大部分が槽内に一様に分散させるよ
うにした。
In a stationary state (as shown in Figure 2), a total of 2 ol of the purified liquid and the liquid containing excess sludge are drawn out from the intermediate liquid level of the tank, and the third
After maintaining the state shown in the figure, the stock solution is supplied by the stock solution supply pump to the normally used high liquid level in the reaction tank. The parts were evenly distributed in the tank.

嫌気状態が維持されたか否かの判断は酸化還元電位の測
定によったが、10分後にはすでに一100mV以下と
なっていることが確認された。この嫌気状態を1.9時
間にわたって継続した後、第6図に示すような散気と攪
拌を7.5時間にわたって継続した。この間pHを連続
的に測定し、苛性ソーダ液を用いてpHを7.5前後に
維持させた。次に極く僅かな散気での攪拌を5.5時間
にわたり継続した。この間の散気は槽内の溶存酸素濃度
をo、1my/l付近で維持できるようなものとした。
Whether or not the anaerobic state was maintained was determined by measuring the redox potential, and it was confirmed that the potential was already below -100 mV after 10 minutes. After this anaerobic state was continued for 1.9 hours, aeration and stirring as shown in FIG. 6 were continued for 7.5 hours. During this time, the pH was continuously measured and maintained at around 7.5 using a caustic soda solution. Stirring with minimal aeration was then continued for 5.5 hours. Aeration during this period was such that the dissolved oxygen concentration in the tank could be maintained at around 0.1 my/l.

次に強力危散気と攪拌とを行なうことにより約0.1時
間にわたり槽内を好気状態に維持し、その後散気と攪拌
とを停止してo、rSq間にわたり槽内液を静止状態と
した後に約0.2時間かけて浄化液19.91と余剰汚
泥を含む液0.1ノを引抜き、その後0.05時間かけ
て原Mを常用の高液位まで揚水した。槽内液の散気と押
押を行なっているときに径24 mmのガラス管を用い
て実施例−1と同様に槽内試料を採取して、微生物濃度
を全揮発性浮遊物e!度および懸濁している揮発性浮遊
物濃度として測定した。また採取しておいた浄化液の成
分を測定したほか、嫌気状態終了直前に採取した試料を
ろ過して、その後1ノンa度(T−P’)を測定した。
Next, the inside of the tank is maintained in an aerobic state for about 0.1 hour by performing strong air diffusion and stirring, and then air diffusion and stirring are stopped, and the liquid in the tank is kept in a static state for a period of o, rSq. After that, 19.91 mm of purified liquid and 0.1 mm of liquid containing excess sludge were drawn out over about 0.2 hours, and then the raw M was pumped up to the usual high liquid level over 0.05 hours. While the liquid in the tank was being aerated and pressed, samples were collected from the tank using a glass tube with a diameter of 24 mm in the same manner as in Example 1, and the microbial concentration was determined as the total volatile suspended matter e! It was measured as the concentration of suspended volatiles and suspended volatiles. In addition to measuring the components of the purified liquid that had been collected, the sample taken just before the end of the anaerobic state was filtered, and then the 1 degree nona (T-P') was measured.

これらの測定結果を次に示す。The results of these measurements are shown below.

槽内液 全揮発性浮遊物濃度 6,550q/1懸濁し
ている揮発性浮遊物濃度 960■/l浄化液 pH7
,5浮遊物4 m9/IT−BOD 6.4 my/ノ
 TOC14,7In’j/1’r−po、tt〜/I
t ’r−N 13.6■/lKj −N O,4■’
/l NoンNo’;’−N 13.2■/l嫌気状態
終了直前採取試料ろ通抜T−P22.2+rvJ本法で
用いる回分式微生物反応槽はその容積を任意に選定でき
る。小規模なものでは容積が数リットルから大規模なも
のでは数拾立方米までの範囲で使用することができる。
Tank liquid Total volatile suspended solids concentration 6,550q/1 Suspended volatile suspended solids concentration 960■/l Purification liquid pH 7
,5 floating objects 4 m9/IT-BOD 6.4 my/ノ TOC14,7In'j/1'r-po, tt~/I
t 'r-N 13.6■/lKj -N O,4■'
/l No'No';'-N 13.2■/l Sample collected just before the end of anaerobic state Filtered and drained T-P22.2+rvJ The volume of the batch type microbial reaction tank used in this method can be arbitrarily selected. The volume can range from a few liters in a small scale to several tens of cubic meters in a large scale.

大規模な反応槽では攪拌方法や散気方法に十分留意して
水洗を用いる効果が1部でも失なわれるようなことがあ
ってはならないことは当然である。
In a large-scale reaction tank, it is a matter of course that sufficient attention must be paid to the stirring method and the aeration method so that even a part of the effect of water washing is not lost.

【図面の簡単な説明】[Brief explanation of drawings]

図面はすべて反応槽廻りの断面図を示している。 第1図は散気と攪拌を行なっている運転状態にある本発
明方法に使用される回分式微生物反応槽の断面図である
。反応槽内は原液が送入されて満水状態にあり、細片状
物質を攪拌によって一様に分散されている。第2図は散
気と攪拌を停止したときの状況を示す断面図である。散
気と攪拌(散気を行なっていない場合は攪拌のみ)を停
止すると、細片状物質は微生物を付着した状態のままで
液面付近に集中し、細片状物質に付着していない微生物
塊は底部に沈積した状態となる。第3図は浄化液の一定
量を中間液位から引抜き、底部に沈積した微生物塊を汚
泥として引抜いた状況を示している断面図である。第4
図は第3図と同様に浄化液の一定量を中間液位から引抜
き、底部に沈積した微生物塊を汚泥として引抜いた状況
を示しているが、浄化液を常用の高液位の40チないし
70チの位置まで残して、酸化窒素から9素ガスへの転
換する操作を行なわしめる前段階を断面図で示している
。第5図は反応槽内での微生物からのリンの溶脱と炭素
化合物の細胞内への取り込みを行なわしめるために完全
嫌気状態を形成させるために細片状物質の1部が液面で
一様な膜状を形成して残留し、大部分が槽内液と十分に
混合する状態を断面図で示している。第6図では第5図
の状態に散気を併用することにより、好気性微生物処理
によって微生物によるリンの過剰摂取とすでに細胞内に
取り込んである炭素化合物の酸化と同化を行なわしめる
状況を断面図で示している。第7図は次に続く酸化窒素
から窒素ガスへの転換操作を行なわしめるために浄化液
貯留槽に酸化窒素を含有する浄化液を保存しながら、反
応槽内では第5図の場合と同様に微生物からのリンの溶
脱と炭素化合物の細胞内への取り込みを行なわしめる完
全嫌気状態を構成させている状況を断面図で示している
。 第8図は第7図に示す操作が終了して浄化液貯留槽に保
存しておいた酸化窒素を含む浄化液が反応槽に移送され
て無または微藩存酸素状態での酸化窒素から窒素ガスへ
の転換操作が行なわれている状態を断面図で示している
。第9図は第8図の操作終了後に散気と攪拌との併用に
よって好気性微生物処理が行なわれて既溶脱のリンの微
生物による摂取とすでに細胞内に取り込んである炭素化
合物および残留する炭素化合物の微生物による酸イヒと
同化、それに加えてケルダール窒素(有機性窒素とアン
モニア性窒素との和)の酸化窒素への転換を行なった後
に浄化液を排出させて、その1部を浄化液貯留槽に保存
′しておいている状態を断面図で示している。この際、
反応槽底部に堆積した微生物塊の1部は排泥管から排除
されることになる。 に回分式微生物反応槽 2:攪拌装置の攪拌翼3:攪拌
装置の駆動部 4:散気装置 5:空気管 6:原液供給管 7:浄化液流出管、 8:弁 9部細片状物質に付着していない微生物塊の堆積物10
:排泥管 11:弁 12:微生物の付着した細片状物質 13:浄化液貯留槽 14:浄化液貯留槽15:付属ポ
ンプ 代理人 弁理土佐々井 彌太部。 同 佐々井克 部・− X/虐 才Z閏 X3扉 才φ閏 才5鴎 オ6廓 3ry図 pg図 、!!’9図
All drawings show cross-sectional views around the reaction tank. FIG. 1 is a sectional view of a batch type microbial reactor used in the method of the present invention in an operating state where aeration and agitation are performed. The inside of the reaction tank is filled with water as the stock solution is introduced, and the fine particles are uniformly dispersed by stirring. FIG. 2 is a sectional view showing the situation when aeration and stirring are stopped. When aeration and agitation (if aeration is not being performed, only agitation) is stopped, the fine particles with microorganisms still attached concentrate near the liquid surface, and the microorganisms not attached to the fine particles concentrate. The lumps will be deposited at the bottom. FIG. 3 is a cross-sectional view showing a situation in which a certain amount of purified liquid is withdrawn from the intermediate liquid level and the microbial mass deposited at the bottom is withdrawn as sludge. Fourth
The figure shows a situation in which a certain amount of purification liquid is drawn from the intermediate liquid level and the microbial mass deposited at the bottom is pulled out as sludge, as in Fig. The sectional view shows the preliminary stage of converting nitrogen oxide to 9 elemental gas, leaving up to the 70-inch position. Figure 5 shows that part of the flaky material is uniformly distributed on the liquid surface in order to create a completely anaerobic state in order to leached phosphorus from microorganisms and take carbon compounds into cells in the reaction tank. The cross-sectional view shows a state in which the liquid remains in a film-like form, and most of it is sufficiently mixed with the liquid in the tank. Figure 6 is a cross-sectional view of the situation in which the conditions shown in Figure 5 are combined with aeration to cause the microorganisms to take in an excessive amount of phosphorus and to oxidize and assimilate the carbon compounds that have already been taken into the cells through aerobic microbial treatment. It is shown in Figure 7 shows that while the purified liquid containing nitrogen oxide is stored in the purified liquid storage tank for the subsequent conversion operation from nitrogen oxide to nitrogen gas, the same process as in Figure 5 is carried out in the reaction tank. The cross-sectional view shows a completely anaerobic state in which phosphorus is leached from microorganisms and carbon compounds are taken into cells. Figure 8 shows that after the operation shown in Figure 7 is completed, the purification liquid containing nitrogen oxide stored in the purification liquid storage tank is transferred to the reaction tank, and the nitrogen oxide is converted into nitrogen with no or very little oxygen present. A cross-sectional view shows a state in which a conversion operation to gas is being performed. Figure 9 shows that after the operation in Figure 8 is completed, aerobic microbial treatment is carried out using a combination of aeration and agitation, and the leached phosphorus is taken up by the microorganisms, and the carbon compounds that have already been taken into the cells and the remaining carbon compounds are removed. After the microorganisms assimilate acid and assimilate Kjeldahl nitrogen (the sum of organic nitrogen and ammonia nitrogen) into nitrogen oxide, the purification liquid is discharged and a part of it is stored in the purification liquid storage tank. The cross-sectional view shows the state in which it is stored. On this occasion,
A portion of the microbial mass deposited at the bottom of the reaction tank will be removed from the drainage pipe. Batch-type microbial reaction tank 2: Stirring blade of the stirring device 3: Drive part of the stirring device 4: Diffusion device 5: Air pipe 6: Stock solution supply pipe 7: Purified liquid outflow pipe, 8: Valve 9 parts fine material Deposits of microbial masses not attached to 10
: Sludge pipe 11: Valve 12: Fragile material with microorganisms attached 13: Purified liquid storage tank 14: Purified liquid storage tank 15: Attached pump representative Yatabe Tosasai, Benri. Same Katsu Sasai Department - ! Figure '9

Claims (1)

【特許請求の範囲】 1、原液よシ真比重または見掛は比重が小さいかまたは
等しい、寸法が約10wn以下の細片状の物質を攪拌装
置と散気装置の装備された原液の入った回分式微生物反
応槽に全容積の1チないし15チ(容積)の範囲であら
かじめ投入して細片状物質への微生物の付着、増殖を行
なわせ、槽内原液中で細片状物質による浮遊層又は一部
の細片状物質が浮上して浮上層を形成するが大部分のも
ので浮遊層を形成せしめ、原液に含まれる溶解性有機炭
素系化合□えゆヮ素、イ、金物よ、素およ苓撃、イ、。 物の栄養塩を減少させた後微生物の付着した細片物質を
浮上させて浮上層を形成させ細片状物質に付着していな
い懸濁性の微生物塊を沈降させて槽底部の排泥管からそ
の一部を排除し、流入原液量に相当する浄化液量を反応
槽の中間位置から排出する操作を繰返えすことを特徴と
する有機物含有原液の微生物による回分式浄化方法。 2、原液に含まれ不溶解性有機炭素化合物の約50チ(
重量)以上が減少する迄空気又は酸素又は酸素に富んだ
ガスによる又は機械的操作によって攪拌を続けて浮遊層
を形成させる特許請求の範囲1による方法。 3、原液を反応槽に常用の高液位に達するまで供給して
槽内液と細片物質とがほぼ一様に混合された槽内が無ま
たは微溶存酸素状襟の浮遊層になる攪拌を行なって槽内
液に含まれる酸化窒素の50チ以上を窒素ガスに転換し
、ついで槽内液に含まれるケルダール窒素の80チ以上
が酸化窒素に転換されるまでの間にわたシ空気又は酸素
又は酸素に富んだガスによる又は機械的操作による攪拌
を行って浮遊層を継続さヤ妬特許請求の範囲1による方
法。 4、原液を反応槽に常用の高液位に達するまで供給して
槽内液と細片状物質とがほぼ一様に混合する空気又は酸
素又は酸素に富んだガスによる又は機械的操作による攪
拌を行って浮遊層を形成させ、槽内液に含まれるケルプ
ール9素の80%以上が酸化窒素に転換されるまでの間
にわたシ継続した後に、攪拌しながら無または微溶存酸
素状態の浮遊層を維持して槽内の酸化窒素の50%以上
を窒素ガスに転換して、引続いて5分間以上の空気又は
酸素又は酸素に富んだガスによる又は機械的操作による
攪拌によって浮遊層を維持する特許請求の範囲1の方法
。 5、原液を反応槽に常用の高液位に達するまで供給して
細片状物質の1部が液面に一様な膜状全形成して残留し
、大部分が槽内液とほぼ一様に混合されて槽内が完全な
嫌気状態の浮遊層になる攪拌を継続して槽内液に含まれ
る溶解性リンを攪拌開始前に対し150%以上に達する
まで高め、ついで空気又は酸素又は酸素に富んだガスに
よる又は機械的操作によって攪拌をして浮遊層を槽内液
の溶解性リンが攪拌開始前の70チ以下に減少するまで
継続する特許請求の範囲1の方法。 6、原液を反応槽に常用の高液位の40チないし70係
の高さに達するまで供給して細片状物質の1部が液面に
一様な膜状を形成して残留し大部分が槽内液をほぼ一様
に混合された槽内が完全な嫌気状態の浮遊層になる攪拌
を継続して槽内液に含まれる溶解性リンを攪拌開始前に
対し150%以上に達するまで高めて、ついであらかじ
め貯留していた既浄化液を反応槽の常用の高液位に達す
るまで加えて槽内液と細片状物質の大部分がほぼ一様に
混合された槽内が無または微溶存酸素状態になる攪拌を
行なって槽内液に含まれる酸化窒素の50%以上を窒素
ガスに転換し、その後原液に含まれるケルダール窒素の
80チ以上が酸化窒素に転換されるまでの間にわたり空
気又は酸素又は酸素に富んだガスによる又は機械的操作
によって攪拌をし浮遊層を継続する特許請求の範囲1の
方法。 7、原液を反応槽に常用の高液位に達するまで供給して
細片状物質の1部が液面に一様な膜状を形成して残留し
、大部分が槽内液と#1ぼ一様如混合きれた槽内が完全
な嫌気状態になる攪拌を行なう浮遊層で槽内液に含まれ
る溶解性リンを攪拌開始前に対し150%以上に達する
まで高めて、ついで槽内液に含まれるケルダール窒素の
80チ以上が酸化窒素に転換されるまでの間にわたシ空
気又は酸素又は酸素に富んだガスによる又は機械的操作
による浮遊層を継続した後に攪拌しながら無または微溶
存酸素状態を維持して酸化窒素の50チ以上を窒素ガス
に転換し、引続いて5分間以上の空気又は酸素又は酸素
に富んだガスによる又は機械的操作による浮遊層を続け
る特許請求の範囲1の方法。
[Scope of Claims] 1. The true specific gravity or apparent specific gravity is small or equal to that of the undiluted solution, and the size of the material is about 10wn or less. Microorganisms are added in advance to a batch-type microbial reaction tank in the range of 1 to 15 cm (volume) of the total volume to allow microorganisms to adhere to and multiply on the fine particles, and then suspended by the fine particles in the undiluted solution in the tank. A layer or some of the flaky substances float to form a floating layer, but most of them form a floating layer, and the soluble organic carbon compounds contained in the stock solution, such as , Sooyo Reigeki, I. After reducing the nutrient salts in the material, the debris with microorganisms attached to it is floated to form a floating layer, and the suspended microorganisms that are not attached to the debris are allowed to settle and drain into the sludge pipe at the bottom of the tank. A batch purification method using microorganisms for an organic substance-containing stock solution, characterized in that the operation of repeatedly removing a part of the raw solution from the inflow and discharging an amount of purified solution corresponding to the amount of the inflow stock solution from an intermediate position of a reaction tank. 2. Approximately 50% of insoluble organic carbon compounds contained in the stock solution (
The method according to claim 1, wherein stirring is continued by air or oxygen or an oxygen-enriched gas or by mechanical operation until the weight decreases to form a suspended layer. 3. Supply the stock solution to the reaction tank until it reaches a commonly used high liquid level, and agitate the tank where the tank liquid and fine particles are almost uniformly mixed and the tank becomes a floating layer with no or a small amount of dissolved oxygen. to convert more than 50 g of nitrogen oxide contained in the tank liquid into nitrogen gas, and then, until more than 80 g of Kjeldahl nitrogen contained in the tank liquid is converted to nitrogen oxide, cotton air or 2. A method according to claim 1, wherein the suspended layer is maintained by stirring with oxygen or oxygen-enriched gas or by mechanical manipulation. 4. Stirring by air or oxygen or oxygen-rich gas or by mechanical operation, by supplying the stock solution to the reaction tank until it reaches a commonly used high liquid level and mixing the tank liquid and the flaky material almost uniformly. After 80% or more of the 9 Kelpool elements contained in the tank liquid are converted to nitrogen oxide, a suspended layer is formed with no or very little dissolved oxygen while stirring. Convert at least 50% of the nitrogen oxide in the tank into nitrogen gas while maintaining a suspended layer, followed by stirring for at least 5 minutes with air or oxygen or oxygen-rich gas or by mechanical operation. The method of claim 1. 5. Supply the stock solution to the reaction tank until it reaches the commonly used high liquid level, and some of the flaky substances remain as a uniform film on the liquid surface, and most of the material remains at almost the same level as the liquid in the tank. By continuing stirring, the soluble phosphorus contained in the tank liquid reaches 150% or more of the level before the start of stirring, and then air, oxygen or 2. The method of claim 1, wherein stirring is continued by oxygen-rich gas or by mechanical operation until the soluble phosphorus in the tank liquid is reduced to 70 g or less before the stirring is started. 6. Supply the stock solution to the reaction tank until it reaches the usual high liquid level of 40 to 70 degrees, and some of the fine particles form a uniform film on the liquid surface and remain. The tank liquid is mixed almost uniformly and the tank becomes a completely anaerobic suspended layer.Continue stirring to reach 150% or more of the soluble phosphorus contained in the tank liquid compared to before the stirring started. Then, the purified liquid that had been stored in advance was added to the reaction tank until it reached the normally used high liquid level. Alternatively, stirring is performed to bring about a state of slightly dissolved oxygen, converting 50% or more of the nitrogen oxide contained in the tank liquid into nitrogen gas, and then stirring until more than 80% of the Kjeldahl nitrogen contained in the stock solution is converted to nitrogen oxide. 2. The method of claim 1, wherein the suspended layer is continued by stirring with air or oxygen or an oxygen-enriched gas or by mechanical operation. 7. Supply the stock solution to the reaction tank until it reaches the commonly used high liquid level, and some of the flaky substances will form a uniform film on the liquid surface and remain, and most of it will be mixed with the tank liquid and #1 The soluble phosphorus contained in the tank liquid is increased to 150% or more compared to before the start of stirring using a floating layer that performs stirring to bring the inside of the tank into a completely anaerobic state. Until more than 80% of Kjeldahl nitrogen contained in the water is converted to nitrogen oxide, no or only a small amount of Kjeldahl is dissolved while stirring after continuing the floating layer with air or oxygen or oxygen-rich gas or by mechanical operation. Converting at least 50 g of nitrogen oxide into nitrogen gas while maintaining oxygen conditions, followed by a suspended layer with air or oxygen or oxygen-rich gas or by mechanical manipulation for at least 5 minutes. the method of.
JP58136726A 1983-07-28 1983-07-28 Purification of crude liquid containing organic substance with microorganism Pending JPS6028888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58136726A JPS6028888A (en) 1983-07-28 1983-07-28 Purification of crude liquid containing organic substance with microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136726A JPS6028888A (en) 1983-07-28 1983-07-28 Purification of crude liquid containing organic substance with microorganism

Publications (1)

Publication Number Publication Date
JPS6028888A true JPS6028888A (en) 1985-02-14

Family

ID=15182060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136726A Pending JPS6028888A (en) 1983-07-28 1983-07-28 Purification of crude liquid containing organic substance with microorganism

Country Status (1)

Country Link
JP (1) JPS6028888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458779A (en) * 1990-01-23 1995-10-17 Kaldnes Miljoteknologi A/S Method for purification of water
WO1999000332A1 (en) * 1997-06-27 1999-01-07 Chikashi Ishimaru Waste water treatment apparatus and waste water treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681197A (en) * 1979-12-06 1981-07-02 Ebara Infilco Co Ltd Apparatus for nitrificating and denitrificating waste water biologically

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681197A (en) * 1979-12-06 1981-07-02 Ebara Infilco Co Ltd Apparatus for nitrificating and denitrificating waste water biologically

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458779A (en) * 1990-01-23 1995-10-17 Kaldnes Miljoteknologi A/S Method for purification of water
US5543039A (en) * 1990-01-23 1996-08-06 Kaldnes Miljoteknologi A/S Reactor for purification of water
WO1999000332A1 (en) * 1997-06-27 1999-01-07 Chikashi Ishimaru Waste water treatment apparatus and waste water treatment method

Similar Documents

Publication Publication Date Title
JP4801256B2 (en) Surge anoxic mixed continuous batch reaction system
EP0225965B1 (en) Method of treating waste water and equipment therefor
JP5963668B2 (en) Wastewater treatment method
US4159945A (en) Method for denitrification of treated sewage
CN102438956A (en) Sewage and wastewater treatment device comprising a rectangular upstream anaerobic/oxygen-free reaction tank, and a sewage and wastewater treatment method using the same
JPH07106360B2 (en) Method and equipment for cleaning wastewater, especially urban wastewater
CN108328858A (en) The recycling treatment system and method for train toilet waste collector fecaluria waste liquid
CN1309665C (en) Nitrogen and phosphorus removing process
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
AU2006298434B2 (en) Method and system for treating organically contaminated waste water
CN112194251A (en) Magnetized MBBR sewage treatment method and system
JP2001009498A (en) Treatment of waste water and treating device therefor
JPS6028888A (en) Purification of crude liquid containing organic substance with microorganism
JP4608771B2 (en) Biological denitrification equipment
KR100373745B1 (en) Device and method of sewage ·waste water management in sbr construction
JP3387244B2 (en) Anaerobic treatment method
JPH06142682A (en) Anaerobic water treatment device
JP4034074B2 (en) Wastewater treatment equipment
KR100360561B1 (en) A treatment methods for organic sewage
CN1033269C (en) High-effective treating process of glue wastewater
JP4547799B2 (en) Biological phosphorus removal equipment
CN217868303U (en) High-integration full-set immersion type aeration filter tank
CN110104776A (en) A kind of small-scale sewage processing integration apparatus
CN218435465U (en) Integrated sewage treatment equipment
RU2225368C1 (en) Method of extensive treatment of sewage and biological extensive treatment station