JPS6028420B2 - Semiconductor laser switching method - Google Patents

Semiconductor laser switching method

Info

Publication number
JPS6028420B2
JPS6028420B2 JP52004924A JP492477A JPS6028420B2 JP S6028420 B2 JPS6028420 B2 JP S6028420B2 JP 52004924 A JP52004924 A JP 52004924A JP 492477 A JP492477 A JP 492477A JP S6028420 B2 JPS6028420 B2 JP S6028420B2
Authority
JP
Japan
Prior art keywords
output
semiconductor laser
circuit
current
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52004924A
Other languages
Japanese (ja)
Other versions
JPS5390801A (en
Inventor
喜市 山下
紘一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52004924A priority Critical patent/JPS6028420B2/en
Publication of JPS5390801A publication Critical patent/JPS5390801A/en
Publication of JPS6028420B2 publication Critical patent/JPS6028420B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 m 発明の利用分野 本発明は、半導体レーザ2個を有する光送信器に関し、
特に半導体レーザの切換方式に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to an optical transmitter having two semiconductor lasers,
In particular, it relates to a switching method for semiconductor lasers.

‘2} 従来技術半導体レーザは光通信用の光源として
有望な素子である。
'2} Prior Art Semiconductor lasers are promising devices as light sources for optical communications.

近年、この素子の寿命が大幅に延びたが、光通信網の耐
用年数(約2江王)に比べれば一桁程度低く、信頼性確
保の点で大きな問題となっている。そこで、従来は第1
図に示す如く、現用、予備の2ルートを設置し、いずれ
か一方が回線断になった場合他方のルートに切換えて信
頼性確保に努めている。同図で、端子より入力された電
気信号は分配器2によって送信器3及び4に供給される
。送信器3及び4では電気−光変換され、その光出力は
伝送路5及び6に送出される。伝送路からの光信号は受
信器7及び8により光一電気変換され回線切換器9によ
っていずれか一方を選択される。この信号は端子10に
出力される。この従釆例では、送信器2台を必要とする
。これは装置規模が大きく、また価格も高くなる欠点が
ある。また、半導体レーザはホットスタンバイされるの
が一般的であるが、この場合には半導体レーザの寿命が
単体の場合と同じであり、この点に関する信頼性向上は
期待できない。{31 発明の目的 本発明は上記従来技術の問題点に鑑みてなされたもので
、小型、低価格な送信器を実現するための高速の半導体
レーザ切換方式を提供することを目的とする。
Although the lifespan of this element has been significantly extended in recent years, it is still an order of magnitude lower than the lifespan of optical communication networks (approximately 2 years), which poses a major problem in ensuring reliability. Therefore, conventionally the first
As shown in the figure, two routes are set up, one for current use and one for backup, and if one of the routes is disconnected, the system switches to the other route in an effort to ensure reliability. In the figure, an electrical signal input from a terminal is supplied to transmitters 3 and 4 by a distributor 2. The transmitters 3 and 4 perform electrical-to-optical conversion, and the optical outputs thereof are sent to transmission lines 5 and 6. Optical signals from the transmission line are optical-to-electrical converted by receivers 7 and 8, and either one is selected by a line switch 9. This signal is output to terminal 10. This follow-up example requires two transmitters. This has the disadvantage that the scale of the device is large and the price is also high. Further, semiconductor lasers are generally put on hot standby, but in this case the life of the semiconductor laser is the same as that of a single semiconductor laser, and no improvement in reliability in this regard can be expected. {31 Purpose of the Invention The present invention has been made in view of the problems of the prior art described above, and it is an object of the present invention to provide a high-speed semiconductor laser switching method for realizing a small, low-cost transmitter.

【41 発明の総括説明 本発明は、変流切襖信号を発生する過程で、2個の半導
体レーザ光出力の監視出力レベルと光出力の規定標準レ
ベルとを別々に比較した信号により光出力の状態を監視
することを特徴としておりこの比較信号の論理演算信号
により電流切換えを行なう。
[41 General Description of the Invention The present invention provides a method for controlling the optical output using a signal that separately compares the monitoring output level of the optical output of two semiconductor lasers and the prescribed standard level of the optical output in the process of generating a current-variant cutting signal. It is characterized by monitoring the state, and current switching is performed by a logical operation signal of this comparison signal.

また、監視出力を唯一つ使う場合には電源投入時の電流
の状態を決める起動回路を用いる必要があるが、この場
合には起動回路出力と監視出力との論理和により電流切
換えを行なう。t5} 実施例以下、本発明を実施例を
参照して詳細に説明する。
Further, when only one monitoring output is used, it is necessary to use a starting circuit that determines the state of the current when the power is turned on, but in this case, current switching is performed by the logical sum of the starting circuit output and the monitoring output. t5} Examples Hereinafter, the present invention will be explained in detail with reference to examples.

第2図は本発明の実施例を示すブロック図である。21
は電気信号入力端子、22は半導体レーザ駆動回路、2
3は切換器、24,25は半導体しーザ、26は光結合
器、27,28は監視回路、29は判別器、30は光世
力端子である。
FIG. 2 is a block diagram showing an embodiment of the present invention. 21
2 is an electric signal input terminal, 22 is a semiconductor laser drive circuit, 2
3 is a switch, 24 and 25 are semiconductor lasers, 26 is an optical coupler, 27 and 28 are monitoring circuits, 29 is a discriminator, and 30 is an optical power terminal.

この系の動作を詳述すると、まず端子21より入力され
た電気信号を駆動回路22にて電圧−電流変換する。こ
の電流信号は判別器29の出力によって制御される切換
器23を介して半導体レーザ24或いは25のいずれか
一方に流れるが、この判別は次の動作によりなされる。
但し、この時監視回路27の出力は半導体レーザ光出力
が規定レベル以上の場合には論理レベル“0”を、以下
の場合には“1”を送出するものとする。これから、最
初に半導体レーザ24がON、25力ミOFF状態にあ
ったとすれば監視回路27の出力は“0”、28の出力
は“1”となっている。この状態で、半導体レーザ24
が劣化し、その世力が規定レベル以下となったとすれば
監視回路27の出力は“1”となり、28の出力と同一
論理レベルとなる。然し、まだこの場合、電流は半導体
レーザ24に流れているので、切換信号を発生させて電
流を切換える必要がある。電流が切換えると半導体レー
ザ24がOFF、25力のN状態になるため監視回路2
7の出力は“1”、28の出力は“0”になるがこの場
合には切換信号は発生させないものとする。下表はこの
動作を論理レベル表示したもので監視回路27、28の
出力が同符号の場合にのみ切換信号を発生するが、半導
体レーザ24および25が同時にONすることはありえ
ないので“0”の同符号は存在しない。
To explain the operation of this system in detail, first, an electric signal inputted from the terminal 21 is converted into voltage and current by the drive circuit 22. This current signal flows through the switch 23 controlled by the output of the discriminator 29 to either the semiconductor laser 24 or 25, and this discrimination is made by the following operation.
However, at this time, the output of the monitoring circuit 27 shall be a logic level "0" if the semiconductor laser light output is above a specified level, and a logic level "1" if it is below. From this, if the semiconductor laser 24 is initially in the ON state and 25 times in the OFF state, the output of the monitoring circuit 27 is "0" and the output of the monitoring circuit 28 is "1". In this state, the semiconductor laser 24
If the monitor circuit 27 deteriorates and its world power falls below the specified level, the output of the monitoring circuit 27 becomes "1", which is the same logic level as the output of the monitor circuit 28. However, in this case, current still flows through the semiconductor laser 24, so it is necessary to generate a switching signal to switch the current. When the current is switched, the semiconductor laser 24 turns OFF and enters the N state of 25 power, so the monitoring circuit 2
The output of 7 becomes "1" and the output of 28 becomes "0", but in this case no switching signal is generated. The table below shows this operation in logical levels, and a switching signal is generated only when the outputs of the monitoring circuits 27 and 28 have the same sign. However, since it is impossible for the semiconductor lasers 24 and 25 to be turned on at the same time, it is necessary to set the switching signal to "0". Same symbols do not exist.

半導体レーザ24及び25が同時に劣化した場合には“
1”の同符号となるが、同符号になった瞬間のみに切襖
信号を発するので、いずれか一方に電流は固定されハン
ティング現象は生じない。尚、“1”の同符号の状態を
送信器異常信号に使うこともできる。但し、亀流切換時
間は送信器異常信号発生時間より十分短いものとする。
以上の動作は半導体レーザ25が最初に○Nした場合も
同じである。上表の論理演算は排他論理和によって表わ
される。
If the semiconductor lasers 24 and 25 deteriorate at the same time, “
1" with the same sign, but since the Kirifusuma signal is emitted only at the moment when the same sign becomes the same, the current is fixed to either one and no hunting phenomenon occurs. Furthermore, the state of "1" with the same sign is transmitted. It can also be used as a transmitter abnormality signal.However, the current switching time must be sufficiently shorter than the transmitter abnormality signal generation time.
The above operation is the same even when the semiconductor laser 25 first turns ○N. The logical operations in the table above are expressed by exclusive OR.

この場合t定常状態では上述の如く“0”の同符号は存
在しないが、電源起動時には起り得る状態である。従っ
て、これも切換信号として使っても誤動作は生じないこ
とは容易にわかる。それ故、電源起動時に状態が定まら
ないことはない。この論理演算を実現できるのは排他論
理和回路であるが、これの出力は電流が切換わる時間内
にのみ発生するので、切換え後の状態を保持できない。
このため、状態保持信号を発生するのに排他論理和回路
出力をトリガとするT型フリツプフロップはパルスが入
力する毎に前の状態を反転するので、安定な状態保持信
号を得ることができる。これらの動作は判別器29にて
行なわれるので判別器は排他論理和回路とT型フリップ
フロップで構成される。尚、半導体レーザ24及び25
の出力は結合器26を介して光世力端子30から取出さ
れる。第3図に本発明の他の実施例を示す。
In this case, in the steady state t, the same sign of "0" does not exist as described above, but this is a state that can occur when the power is turned on. Therefore, it is easy to see that even if this is used as a switching signal, no malfunction will occur. Therefore, the state will not be unstable when the power is turned on. This logical operation can be realized by an exclusive OR circuit, but since the output of this circuit is generated only during the time when the current is switched, the state after switching cannot be maintained.
Therefore, the T-type flip-flop, which uses the output of the exclusive OR circuit as a trigger to generate a state holding signal, inverts the previous state every time a pulse is input, so that a stable state holding signal can be obtained. Since these operations are performed by the discriminator 29, the discriminator is composed of an exclusive OR circuit and a T-type flip-flop. Note that the semiconductor lasers 24 and 25
The output is taken out from the optical power terminal 30 via the coupler 26. FIG. 3 shows another embodiment of the invention.

第3図は第2図において監視回路27の出力のみによっ
て電流を切換えようとするものであるが、この場合最初
に半導体レーザ24に電流を流す。然し、この方式では
電源起動時に半導体レーザ24に電流が流れるとは限ら
ないので、起動回路41が必要となる。この起動回路は
積分回路及び閥値回路により実現でき、監視回路27の
出力との論理積をとることにより起動パルスを作ること
ができる。即ち、電源投入時に監視回路27の出力が“
1”の時、積分回路出力が閥値回路の関値より低い場合
は“0”であるから論理積は“0”となり起動回路41
は切換信号を発しないが、ある時間がたち積分回路出力
が闇値以上になると閥値回路出力は“1”になるため論
理積は“1”となり起動回路41は切換信号を発する。
従って電流は半導体レーザ24に流れることになる。こ
の時、監視回路27の出力は“0”になるが、第2図と
同じ論理動作をするものとすれば切換信号は生じない。
次に半導体レーザ24が劣化すれば、論理積は“1”と
なるから亀流切換が行なわれ、半導体レーザ24がOF
F、25がONとなる。最初に監視回路27の出力が“
0”の場合には論理積は“0”であり、電流は半導体レ
ーザ24に流れることは容易にわかる。
In FIG. 3, the current is switched only by the output of the monitoring circuit 27 in FIG. 2, but in this case, the current is first passed through the semiconductor laser 24. However, in this method, current does not necessarily flow through the semiconductor laser 24 when the power is turned on, so the starting circuit 41 is required. This starting circuit can be realized by an integrating circuit and a threshold circuit, and by performing a logical product with the output of the monitoring circuit 27, a starting pulse can be generated. That is, when the power is turned on, the output of the monitoring circuit 27 is “
1", if the integral circuit output is lower than the function value of the threshold circuit, it is "0", so the logical product becomes "0" and the starting circuit 41
does not issue a switching signal, but when the integral circuit output exceeds the dark value after a certain period of time, the threshold circuit output becomes "1", so the logical product becomes "1" and the starting circuit 41 issues a switching signal.
Therefore, current flows through the semiconductor laser 24. At this time, the output of the monitoring circuit 27 becomes "0", but if the logic operation is the same as in FIG. 2, no switching signal is generated.
Next, when the semiconductor laser 24 deteriorates, the logical product becomes "1", so turtle flow switching is performed, and the semiconductor laser 24 becomes OF.
F, 25 is turned ON. First, the output of the monitoring circuit 27 is “
0'', the AND is 0, and it is easy to see that the current flows to the semiconductor laser 24.

尚、第2図において、監視回路出力を光出力が規定レベ
ル以上で“1”、判定レベル以下で“0”とし、又、こ
の時排他論理和信号‘10”で電流を切換えてもよいこ
とは容易にわかる。
In addition, in Fig. 2, the output of the monitoring circuit is set to "1" when the optical output is above the specified level, and "0" when it is below the judgment level, and at this time, the current may be switched using the exclusive OR signal '10'. is easy to understand.

第3図の方式も同様で電流切換は論理積信号の“0”に
よって行なってもよい。第4図は本発明の他の実施例を
示すプ。
The system shown in FIG. 3 is similar, and current switching may be performed by "0" of the AND signal. FIG. 4 is a diagram showing another embodiment of the present invention.

ック図である。この系の動作を詳述すると、まず端子5
1より入力された電気信号は駆動回路52にて電圧−電
流変換され、この電流は切換器53を介して半導体レー
ザ54,55のいずれか一方に流れるが、‐この判別は
次の動作によりなされる。第5‐図は蚤流切携動作の過
程を示すタイムチャートである。監視回路56,57の
出力は半導体レーザ光をピーク値あるいは平均値検出し
た直流信号であり、これを第5図のb及びdに示す。‐
説明をし易くするために最初半導体レーザ54が導通、
55が遮断しているものとする。従って、第5図bが監
視回路56の出力、dが監視回路57の出力に相当する
。さて、半導体レーザ54が劣化し光出力が減少してく
ると、監視回路26の出力は第5図bの如く減少するが
、この出力の減少が半導体レーザ光出力の規定値(図に
破線で示す)以下となる場合には異常信号を出す必要が
ある。
This is a diagram. To explain the operation of this system in detail, first, terminal 5
The electric signal inputted from 1 is converted into voltage and current by a drive circuit 52, and this current flows through a switch 53 to either one of the semiconductor lasers 54 and 55, but this determination is made by the following operation. Ru. Figure 5 is a time chart showing the process of the flow joint operation. The outputs of the monitoring circuits 56 and 57 are DC signals obtained by detecting the peak value or average value of the semiconductor laser light, and these are shown in b and d of FIG. -
For ease of explanation, first the semiconductor laser 54 is conductive,
55 is cut off. Therefore, FIG. 5b corresponds to the output of the monitoring circuit 56, and d corresponds to the output of the monitoring circuit 57. Now, when the semiconductor laser 54 deteriorates and its optical output decreases, the output of the monitoring circuit 26 decreases as shown in FIG. In the following cases, it is necessary to issue an abnormal signal.

この判別には比較器を用いればよい。第4図で比較器5
8のデータ入力端子に監視回路56の出力を供給し、ま
た−端子63より入力された第5図aで示すクロツク信
号をクロック端子に供給すれば、比較器の出力は監視回
路56の出力が比較器の基準値以上では“1”、以下で
は“0”となるから、この基準値を光出力の規定値しベ
ルに等しく選べば目的は達成される。第3図において比
較器58の出力はcで示されるが監視回路56の出力が
破線より上の場合は常に比較器出力は“1”であり、破
線以下では“0”となっている。一方、半導体レーザ5
5は電流が流れていないので、その光世力は第5図dに
示す如く零である。このため、監視回路57の出力をデ
ータ入力とし、第5図aの信号をクロックとする比較器
59の出力は第3図eに示す如くやはり零である。電流
切換えを確実に行ない、また、片方の半導体レーザが劣
化している場合の電源投入時に劣化していない半導体レ
ーザを確実に選択するには比較器58,59の出力の排
他論理和をとればよい。例えば、半導体レーザ54が劣
化しない前では、比較器58の出力は“1”、59の出
力は“0”であるから排他論理和信号は“1”であり、
この状態では電流は半導体レーザ54に流れている、半
導体レーザ54が劣化し規定値以下に光出力がなれば比
較器58の出力は“0”になるから排他論理和は“0”
になる。第‐5図fはこの排他論理和を示したものであ
る。然し、排他論理和は電流が切換り、半導体レーザ5
5が導通し、半導体レーザ54が遮断すると第5図c,
e,fに示す如く比較器59の出力が“1”、5 8の
出力が“0”となるため、再び“1”になり、亀流切換
後の状態を保持できないから、この為、信号の立上りの
みでトリガされるT型フリツプフロップを排他論理和回
路の後段に設ける。こうすれば第5図gの如き、露流切
換信号が縛られる。従って、判別器60は排他論理和回
路並びにT型FlipFlopにより構成される。次に
、電流切換時の各部の動作について述べる。半導体レー
ザ54が劣化し規定値以下になると第5図gの如き露流
切換信号が発生し、電流は半導体レーザ55に切換るこ
とは上述した通りである。光出力が規定値以下になって
から電流切換信号が生じるまでの時間は論理ICの遅延
時間を無視すれば遅くても信号の1タイムスロットに抑
えられる。また、露流切換器53の切襖時間は数船に抑
えられる。従って、露流切換に要する時間は低速の場合
に最悪1タイムスロットに相当する時間であり、極めて
高速の切換えが可能である。尚、この切換時間を短縮す
るには、クロック信号を逓倍すればよい、例えばn通倍
の場合には功襖時間は1ノnに短縮される。電流が半導
体レーザ55に切換った時は、監視回路56,57の出
力は夫々第5図b,dで示す如く、回路の時定数により
ゆっくり下降、あるいは上昇し、“0”及び“1”にな
る。この過程で第5図bでは常に規定値以下であるから
比較器出力は“0”であるが、第5図dでは回路の時定
数で決まるある時間を経過後に規定値しベルを超えるの
でこの時初めて比較器59の出力eは“1”になる。従
って比較器58、59出力の間に時間差が生じるから、
第5図fの如き排他論理和を生じるが、この場合にはT
型フリップフロップは作動せず、状態を保持する。半導
体レーザ54、55の光出力は結合器61により一つに
集められ端子62より送出される。第6図に本発明の更
に他の実施例を示す。この方式は監視回路が一つであり
、最初は必ず半導体レーザ54が導適する様にしたもの
であるが亀流切襖信号発生の過程は第5図とほぼ同じで
ある。然し、このままでは電源投入時に半導体レーザ5
4を選択しない場合があるので電源投入時のみ動作する
起動回路72を設け、この回路出力と比較器58の出力
との論理和信号により電流切換信号を発生させる。起動
回路は電源swに運動した積分回路およびその回路出力
によりトリガされる閑適回路により構成できる。この場
合、電源投入時よりある一定時間遅れて関値回路の出力
が“1”より“0”に切換わるものとすれば、電源投入
時に比較器出力が“0”の時には判別器71は電流を半
導体レーザ54に強制的に流すから、比較器出力は“1
’’にセットされ正常動作に入る。{61まとめ以上、
説明した如く本発明は光出力の規定値と監視出力とを比
較し、その信号の論理演算により電流切換信号を発生さ
せることを特徴としており、非常に高速の電流切換えが
可能である。
A comparator may be used for this determination. Comparator 5 in Figure 4
If the output of the monitoring circuit 56 is supplied to the data input terminal of 8, and the clock signal shown in FIG. If the comparator exceeds the reference value, it will be "1", and if it is below, it will be "0", so if this reference value is selected to be equal to the specified value of the optical output, the objective will be achieved. In FIG. 3, the output of the comparator 58 is indicated by c, and when the output of the monitoring circuit 56 is above the broken line, the comparator output is always "1", and below the broken line, it is "0". On the other hand, the semiconductor laser 5
5 has no current flowing through it, so its light world power is zero as shown in Figure 5d. Therefore, the output of the comparator 59, which uses the output of the monitoring circuit 57 as a data input and uses the signal shown in FIG. 5a as a clock, is also zero as shown in FIG. 3e. In order to ensure current switching and to select a semiconductor laser that is not degraded when power is turned on when one of the semiconductor lasers is degraded, take the exclusive OR of the outputs of comparators 58 and 59. good. For example, before the semiconductor laser 54 does not deteriorate, the output of the comparator 58 is "1" and the output of the comparator 59 is "0", so the exclusive OR signal is "1".
In this state, current is flowing to the semiconductor laser 54. If the semiconductor laser 54 deteriorates and the optical output falls below the specified value, the output of the comparator 58 will be "0", so the exclusive OR will be "0".
become. FIG. 5f shows this exclusive OR. However, in the exclusive OR, the current is switched and the semiconductor laser 5
5 becomes conductive and the semiconductor laser 54 is cut off, as shown in FIG.
As shown in e and f, the output of the comparator 59 becomes "1" and the output of the comparator 58 becomes "0", so it becomes "1" again, and the state after switching the turtle current cannot be maintained, so the signal A T-type flip-flop that is triggered only by the rising edge of is provided at the subsequent stage of the exclusive OR circuit. In this way, the dew current switching signal as shown in FIG. 5g is tied. Therefore, the discriminator 60 is composed of an exclusive OR circuit and a T-type FlipFlop. Next, the operation of each part during current switching will be described. As described above, when the semiconductor laser 54 deteriorates and becomes below the specified value, a leakage current switching signal as shown in FIG. 5g is generated, and the current is switched to the semiconductor laser 55. If the delay time of the logic IC is ignored, the time from when the optical output becomes less than the specified value until the current switching signal is generated can be suppressed to one time slot of the signal at the latest. Further, the switching time of the dew flow switching device 53 can be suppressed to a few ships. Therefore, the time required for switching the open current is at worst equivalent to one time slot in the case of low speed, and extremely high speed switching is possible. In order to shorten this switching time, the clock signal may be multiplied. For example, if the switching time is multiplied by n times, the switching time will be shortened to 1 n. When the current is switched to the semiconductor laser 55, the outputs of the monitoring circuits 56 and 57 slowly fall or rise depending on the time constant of the circuit, as shown in FIGS. 5b and 5d, respectively, and become "0" and "1". become. In this process, in Figure 5b, the comparator output is always below the specified value, so the comparator output is "0", but in Figure 5d, the output reaches the specified value and exceeds the bell after a certain time determined by the time constant of the circuit. For the first time, the output e of the comparator 59 becomes "1". Therefore, since there is a time difference between the outputs of the comparators 58 and 59,
An exclusive OR as shown in Fig. 5f is produced, but in this case, T
Type flip-flops do not operate and hold their state. The optical outputs of the semiconductor lasers 54 and 55 are combined by a coupler 61 and sent out from a terminal 62. FIG. 6 shows still another embodiment of the present invention. This system has only one monitoring circuit, and the semiconductor laser 54 is always used at the beginning, but the process of generating the turtle flow cutting signal is almost the same as that shown in FIG. However, if this continues, the semiconductor laser 5 will not be activated when the power is turned on.
4 may not be selected, a starting circuit 72 is provided which operates only when the power is turned on, and a current switching signal is generated by the OR signal of the output of this circuit and the output of the comparator 58. The starting circuit can be constituted by an integrating circuit powered by the power supply sw and an idle circuit triggered by the circuit output. In this case, assuming that the output of the function value circuit switches from "1" to "0" after a certain period of time delay after the power is turned on, when the comparator output is "0" when the power is turned on, the discriminator 71 is forced to flow through the semiconductor laser 54, so the comparator output is “1”.
'' and enters normal operation. {Over 61 summaries,
As described, the present invention is characterized in that a specified value of optical output and a monitored output are compared, and a current switching signal is generated by a logical operation of the signal, so that very high-speed current switching is possible.

また、本発明によれば、同一駆動回路にて2個の半導体
レーザを駆動できる為、小型化、低価格化が可能となる
。更に光出力の安定化に、監視回路出力が兼用できる利
点も有している。尚、半導体レーザの駆動回路を用いて
各々独立に行なってもよいことは容易にわかる。
Further, according to the present invention, since two semiconductor lasers can be driven by the same drive circuit, miniaturization and cost reduction are possible. Furthermore, it has the advantage that the output of the monitoring circuit can also be used to stabilize the optical output. Note that it is easily understood that each may be performed independently using a semiconductor laser drive circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光伝送装置の実施例を示す接続図、第2
図、第3図、第4図、第6図は本発明の実施例を示す接
続図、第5図は、本発明の一実施例第4図を説明するた
めのタイムチャートである。 多7図 努之図 多3図 多ム図 多J図 多ク図
Figure 1 is a connection diagram showing an example of a conventional optical transmission device;
3, 4, and 6 are connection diagrams showing embodiments of the present invention, and FIG. 5 is a time chart for explaining one embodiment of the present invention shown in FIG. 4. Many 7 drawings, Tsutomu no drawing, many 3 drawings, many J drawings, many J drawings.

Claims (1)

【特許請求の範囲】[Claims] 1 2個の半導体レーザを有する送信器に於いて、該2
個の半導体レーザの夫々の監視出力と前記送信器出力の
規定標準レベルとを比較する手段と、前記2つの比較信
号の論理演算信号により電流切換えを行なう手段とから
成ることを特徴とする半導体レーザ切換方式。
1 In a transmitter having two semiconductor lasers, the two
A semiconductor laser comprising: means for comparing the monitoring output of each of the two semiconductor lasers with a specified standard level of the output of the transmitter; and means for switching the current based on a logic operation signal of the two comparison signals. Switching method.
JP52004924A 1977-01-21 1977-01-21 Semiconductor laser switching method Expired JPS6028420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52004924A JPS6028420B2 (en) 1977-01-21 1977-01-21 Semiconductor laser switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52004924A JPS6028420B2 (en) 1977-01-21 1977-01-21 Semiconductor laser switching method

Publications (2)

Publication Number Publication Date
JPS5390801A JPS5390801A (en) 1978-08-10
JPS6028420B2 true JPS6028420B2 (en) 1985-07-04

Family

ID=11597146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52004924A Expired JPS6028420B2 (en) 1977-01-21 1977-01-21 Semiconductor laser switching method

Country Status (1)

Country Link
JP (1) JPS6028420B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363027U (en) * 1989-10-16 1991-06-20

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448415A (en) * 1977-09-26 1979-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical relay unit
JPS56108276U (en) * 1980-01-22 1981-08-22
US4403139A (en) * 1981-04-20 1983-09-06 Bell Telephone Laboratories, Incorporated Redundant light source circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363027U (en) * 1989-10-16 1991-06-20

Also Published As

Publication number Publication date
JPS5390801A (en) 1978-08-10

Similar Documents

Publication Publication Date Title
SE461696B (en) PROCEDURES FOR LIGHTING AND DISCONNECTING LED AND COUPLED VOLTAGE CIRCUIT FOR LED EMISSIONS
JPS6028420B2 (en) Semiconductor laser switching method
JP2002280965A (en) Optical output control circuit
CN113517868B (en) Negative voltage protection circuit
US6334009B1 (en) Optical signal switching apparatus
JP2000196184A (en) Laser diode module
US5394419A (en) Circuit arrangement for limiting the power of the optical signal emitted by a laser diode
US7880629B2 (en) Power supply device
US20200059103A1 (en) Power conversion system for power system interconnection
JPH10276138A (en) Optical transmitter
JPS5868336A (en) Light source switching system
US11588510B2 (en) Network communication power supply with digital signal isolation
CN112332673B (en) Network communication power supply with digital signal isolation
CN108388302B (en) Control circuit, control method, selection circuit and power management integrated circuit
TW201839548A (en) Power supply apparatus and power supply method
CN109994924B (en) Solid-state light source driving device and projection apparatus
JP2003218814A (en) Converter having power source interruption notifying function
KR100528801B1 (en) Circuit for shifting voltage level
KR200179812Y1 (en) Apparatus for switching of optical signal when main control unit fail in optical transmission system
JPH05328606A (en) Double dc power supply circuit
JP3125262B2 (en) High-speed laser diode drive circuit
SU656152A1 (en) Device for relieving electric network region
JP2002135207A (en) Optical output stopping system
JPH04276673A (en) Drive circuit of laser diode
JPS60214648A (en) Laser switching circuit